CN1844245A - 一种抗菌材料 - Google Patents

一种抗菌材料 Download PDF

Info

Publication number
CN1844245A
CN1844245A CN 200510046183 CN200510046183A CN1844245A CN 1844245 A CN1844245 A CN 1844245A CN 200510046183 CN200510046183 CN 200510046183 CN 200510046183 A CN200510046183 A CN 200510046183A CN 1844245 A CN1844245 A CN 1844245A
Authority
CN
China
Prior art keywords
polyaniline
antibiotic
good
antibacterial
biotic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200510046183
Other languages
English (en)
Inventor
石南林
郭雪梅
敬和民
宫俊
孙超
杨柯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN 200510046183 priority Critical patent/CN1844245A/zh
Publication of CN1844245A publication Critical patent/CN1844245A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明涉及聚苯胺,其用于制作抗菌材料。本发明还涉及一种抗菌材料,所述材料是聚苯胺导电高分子材料及其相关复合材料;其在自然光、弱光或无光的条件下都具有明显的抗菌性。所述抗菌材料具有微米、亚微米和纳米尺度的微观结构;所述材料具有颗粒、纤维和膜三种宏观形态;所述材料聚合度约为100~10000。本发明具有如下优点:作为抗菌材料的环境适应性极好;其还具有优良的导电性能;材料尺度和形态多样;具有良好的可溶和熔融的加工性;具有良好的耐腐蚀性、光电性能、电磁性能、气体鉴别和分离性能;用途广,功能多,使用方便,发展潜力极大。

Description

一种抗菌材料
技术领域:
本发明涉及材料技术,特别提供了一种抗菌材料。
背景技术:
抗菌材料是指具有杀灭和抑制微生物生长繁殖及其活性的一类新型功能材料。随着人们抗菌意识的不断提高,抗菌材料的开发与应用,已经成为举世关注的社会持续性发展课题的不可缺少的内容之一。
抗菌材料包括天然抗菌材料、有机(高分子)抗菌材料、无机抗菌材料(包括光催化纳米抗菌材料)、有机-无机复合抗菌材料。其中,天然抗菌材料主要为动植物的提取物,目前已很难满足市场多用途和大用量的需求。而80年代开发出的无机抗菌材料具有无毒、广谱抗菌、抗菌时效长、不产生耐药性等特点。特别是纳米抗菌材料(包括光催化纳米抗菌材料)大大拓宽了抗菌材料的应用范围。但光催化抗菌材料的抗菌效果仅局限在自然光或紫外光条件下。
有机抗菌材料包括除菌剂、杀菌剂、防腐剂、防霉剂、除藻剂等。有机抗菌剂的优点是:初始杀菌力强、杀菌效果和抗菌广谱性好,无论是粉状或液态,都能比较容易地分散使用;价格也相对便宜。但是通常的有机抗菌材料也有诸多致命弱点,比如:化学稳定性差,不耐热,遇热、光或水等容易挥发,难以实现长效;在许多高聚物的高温、高压、高剪切加工条件下易分解失效甚至可能产生有毒的分解产物,特别是在塑料中使用时易迁移,导致抗菌寿命短(使用寿命只有2-3年),成本高。另外,普通抗菌材料功能单一,适应性差;人们期待新型多功能抗菌材料的出现和使用,以满足很多情况下的需求。
发明内容:
本发明的目的是将聚苯胺用于制作抗菌材料。具体内容可以理解如下:用于制作抗菌材料的可以是高纯度的聚苯胺材料,也可以是聚苯胺与其他物质成分制成的复合材料,它们都具有优良的抗菌性能。
本发明提供了一种抗菌材料,所述材料是聚苯胺导电高分子材料及其相关复合材料;其在自然光、弱光或无光的条件下都具有明显的抗菌性。其中,不仅高纯度的聚苯胺材料具有抗菌性能,聚苯胺与其他物质成分复合制成的材料也具有优良的抗菌性能。
本发明一种抗菌材料,其特征在于:所述抗菌材料具有微米、亚微米和纳米尺度的微观结构;所述材料具有颗粒、纤维和膜三种宏观形态;所述材料聚合度约为100~10000。我们可以将其制成粉末材料、膜材料或块体材料。根据不同的使用情况,我们可以进行灵活选用。
本发明一种抗菌材料,其特征在于:所述抗菌材料是具有共轭π键的高分子材料——这是导电高分子的通常特征,其具有导电性,电导率范围是10-9~104S/cm。所述材料的电导率可以在绝缘体到金属态之间的较宽范围内变化。其导电性非常优良,具有极大的潜在应用价值。
本发明一种抗菌材料,其特征在于:所述抗菌材料经化学或电化学“掺杂”后可以改变其导电率范围,所述抗菌材料可由绝缘体(本征态)转变为导体(掺杂态)。这就使得本材料的导电性可以根据需要进行方便灵活的应用。
本发明一种抗菌材料,其特征在于:所述抗菌材料具有良好的可溶和熔融的加工性。这为使用带来了极大的方便。
本发明一种抗菌材料,其特征在于:所述新型多功能抗菌材料可以应用在自然光、弱光或无光条件下作抗菌材料。同时,本发明多功能抗菌材料,还具有良好的耐腐蚀性及电磁屏蔽性能;其具有良好的导电性能、光电性能、电磁性能、气体鉴别和分离性能。
本发明一种抗菌材料,具有如下优点:
1、作为抗菌材料的环境适应性极好:其在自然光、弱光或无光的条件下都具有明显的抗菌性;
2、独特的化学和电化学性能:其具有良好的导电性能,其电导率可以在10-9~104S/cm的较宽范围内变化;经化学或电化学“掺杂”后可由绝缘体(本征态)转变为导体(掺杂态);
3、材料尺度和形态多样:所述抗菌材料具有微米、亚微米和纳米尺度,可以具有颗粒、纤维和膜三种形态;
4、具有良好的可溶和熔融的加工性;
5、具有良好的耐腐蚀性;
6、具有良好的光电性能、电磁性能、气体鉴别和分离性能;
7、本材料用途广,功能多,使用方便,发展潜力极大。
附图说明:
图1亚微米(直径)尺度聚苯胺纤维材料示意图;
图2纳米(直径)尺度聚苯胺纤维材料示意图;
图3颗粒形貌聚苯胺材料示意图;
图4混合法制备的聚苯胺/聚乙烯醇膜示意图;
图5混合法制备的聚苯胺/聚苯乙烯复合膜示意图;
图6聚苯胺粉末样品的抗菌实验(抑菌环法)效果示意图一;
图7聚苯胺粉末样品的抗菌实验(抑菌环法)效果示意图二;
图8聚苯胺复合膜抗大肠杠菌实验(覆膜法)效果示意图;
图9聚苯胺复合膜的抗金黄色葡萄球菌实验(覆膜法)效果示意图。
具体实施方式:
实施例1高纯度聚苯胺及其复合材料的制备
其一,高纯度的聚苯胺材料制备:
微米(直径,以下同)聚苯胺纤维(棒)材料的制备见文献[1]J.Huang,M.Wan.In situ doping polymerization of polyaniline microtubules in thepresence of β-naphthalenesulfonic acid.J Polym Sci A:Polym Chem.,1999,37:151~157;
附图1所示为亚微米尺度聚苯胺纤维(棒)材料,具体制备方法见文献[2]Xuemei GUO,Kun LUO and Nanlin SHI.Preparation andCharacterization of Polyaniline Nanofibers by Template-free Method.J.Mater.Sci.Tech..2005,21(2)(179~182);
而纳米尺度聚苯胺纤维材料参照文献[3]J.Huang,S.Virji,B.H.Weiller,R.B.Kaner.Polyaniline nanofibers:facile synthesis and chemical sensors.J.Am.Chem.Soc.2003,125,314~315;
附图3所示参照文献[4]J.Stejskal,R.G.Gilbert,Polyaniline:preparation of a conducting polymer.Pure Appl.Chem.,2002,74(5):857~867可以合成无定型态聚苯胺材料;
膜态聚苯胺的制备参照文献[5]李永明,万梅香。浸渍聚合法制备透明导电聚苯胺薄膜的研究。高分子学报,1998,2:177~183.制备;
其二,聚苯胺与其他物质成分的复合材料制备方法:
方法一,采用混合法制备聚苯胺/聚乙烯醇复合膜(参见附图4)。以水做溶剂,取一定量聚苯胺(1~10wt%)和聚乙烯醇(平均相对分子量为1750±50)混合,加热至聚乙烯醇完全溶解,然后浇铸成膜(见附图4)。
方法二,采用混合法制备聚苯胺/聚苯乙烯复合材料。取一定量聚苯胺(1~10wt%)和聚苯乙烯(从市售产品购买得到)混合溶解,浇膜,即得聚苯胺/聚苯乙烯复合材料(见附图5)。
相应实验结果表明(见表1,2中及附图6~8),自然光和无光条件下,聚苯胺材料抗大肠杆菌和金黄色葡萄球菌率大于99.99%,
实施例2自然光条件下聚苯胺复合膜及空白试样对大肠杆菌的抗菌性能试验(参见所附表1)
菌种:大肠杆菌(中国生物药品检定所提供)
实验条件:自然光,覆膜法抗菌检测(参照QB/T 2591-2003标准)。
相关说明:1#、2#、3#、4#为聚苯胺/聚乙烯醇复合膜;5#膜态聚苯胺;6#为聚苯胺/聚苯乙烯复合膜(实施例1);7#为空白试样。
表1聚苯胺复合膜及空白试样对大肠杆菌的抗菌功能结果
                                         检测结果:活菌数(cfu/ml)
  细菌浓度(cfu/ml) 2×102 2×101 2×100 2×10-1
  样品1#   0   0   0   0   0   0   0   0   0   0   0   0
  2#   4   0   0   0   0   0   0   0   0   0   0   0
  3#   0   0   0   0   0   0   0   0   0   0   0   0
  4#   0   0   0   0   0   0   0   0   0   0   0   0
  5#   1   0   0   0   0   0   0   0   0   0   0   0
  6#   0   0   0   0   0   0   0   0   0   0   0   0
  7#对照        无法计数        无法计数   108   150   99   12   12   17
从表1的聚苯胺复合膜及空白试样对大肠杆菌的抗菌功能结果可以初步得到以下结论:在自然光条件下,1-6#样品几乎没有细菌生长,只有在高细菌浓度下2×102cfu/ml下有1~4个菌落生长,聚苯胺对大肠杆菌抗菌率大于99.9%(见附图8),这说明聚苯胺复合膜具有很好的抗菌性能。
实施例3聚苯胺粉末样品抑菌环法的抗菌实验(参见图6、7)
实验菌种:大肠杆菌(中国生物药品检定所提供);
实验条件:黑暗无光条件下,抑菌环法(细菌浓度为8×108cfu/ml)。
样品相关说明:1#、(按实施例1所述制备方法合成);2#合成是将微纤维态的聚苯胺(实施例1合成)经10%的氨水溶液处理后,过滤洗涤,烘干。
实验结果效果分析:1#(图6)具有13~33mm抑菌环;2#(图7)具有2mm的抑菌环;反映了不同聚苯胺样品在无光条件下具有不同的抗菌效果和抗菌机理。1#样品具有最强的抗大肠杆菌的效果。
实施例4无光条件下聚苯胺抗金黄色葡萄球菌试验(参见表2)
相关说明:1#、2#为聚苯胺(见实施例3的2#)/聚乙烯醇复合膜;3#空白对照样:纯聚乙烯醇膜。
使用菌种:金黄色葡萄球菌(中国生物药品检定所提供);
实验条件:无光、覆膜法抗菌检测(参照QB/T 2591-2003标准)
试验结果说明,在无光条件下,聚苯胺抗金黄色葡萄球菌率大于99.99%(见图9)。
表2聚苯胺复合膜在无光条件下抗金黄色葡萄球菌效果
                                             检测结果:活菌数(cfu/ml)
  细菌浓度(cfu/ml) 2×102 2×101 2×100 2×10-1
  样品编号   1#   0   0   0   0   0   0   0   0   0   0   0   0
  2#   0   0   0   0   0   0   0   0   0   0   0   0
  3#对照 无法计数 750 802 786 123 134 120 5 9 8

Claims (2)

1、聚苯胺用于制作抗菌材料。
2、一种抗菌材料,其特征在于:
所述材料是聚苯胺导电高分子材料及其相关复合材料;其在自然光、弱光或无光的条件下都具有明显的抗菌性。
CN 200510046183 2005-04-06 2005-04-06 一种抗菌材料 Pending CN1844245A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510046183 CN1844245A (zh) 2005-04-06 2005-04-06 一种抗菌材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510046183 CN1844245A (zh) 2005-04-06 2005-04-06 一种抗菌材料

Publications (1)

Publication Number Publication Date
CN1844245A true CN1844245A (zh) 2006-10-11

Family

ID=37063215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510046183 Pending CN1844245A (zh) 2005-04-06 2005-04-06 一种抗菌材料

Country Status (1)

Country Link
CN (1) CN1844245A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2190285A1 (en) * 2007-09-28 2010-06-02 Auckland Uniservices Limited Bioactive aniline copolymers
CN102079837A (zh) * 2010-11-11 2011-06-01 天津工业大学 卤代聚苯胺共混杀菌膜及其制备方法
CN102669158A (zh) * 2012-04-13 2012-09-19 昆明理工大学 一种亚锡盐配合物抗菌材料及其制备方法
CN109485888A (zh) * 2018-10-22 2019-03-19 湖南工业大学 一种聚乳酸-聚吡咯复合抗菌薄膜及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2190285A1 (en) * 2007-09-28 2010-06-02 Auckland Uniservices Limited Bioactive aniline copolymers
JP2010540514A (ja) * 2007-09-28 2010-12-24 オークランド ユニサービシズ リミテッド 生物活性アニリンコポリマー
EP2190285A4 (en) * 2007-09-28 2013-12-11 Auckland Uniservices Ltd BIOLOGICAL ACTIVE ANILINE COPOLYMERS
CN102079837A (zh) * 2010-11-11 2011-06-01 天津工业大学 卤代聚苯胺共混杀菌膜及其制备方法
CN102669158A (zh) * 2012-04-13 2012-09-19 昆明理工大学 一种亚锡盐配合物抗菌材料及其制备方法
CN109485888A (zh) * 2018-10-22 2019-03-19 湖南工业大学 一种聚乳酸-聚吡咯复合抗菌薄膜及其制备方法

Similar Documents

Publication Publication Date Title
Makaremi et al. Electrospun functionalized polyacrylonitrile–chitosan Bi-layer membranes for water filtration applications
Hosseini et al. Lightweight aerogels based on bacterial cellulose/silver nanoparticles/polyaniline with tuning morphology of polyaniline and application in soft tissue engineering
Wen et al. Filtration and electrochemical disinfection performance of PAN/PANI/AgNWs-CC composite nanofiber membrane
Li et al. Protein corona-induced aggregation of differently sized nanoplastics: impacts of protein type and concentration
Mohammadnejad et al. Graphene oxide/silver nanohybrid: Optimization, antibacterial activity and its impregnation on bacterial cellulose as a potential wound dressing based on GO‐Ag nanocomposite‐coated BC
CN104353366A (zh) 一种具有防污抗菌功能的聚合物膜及其制备方法
KR101556466B1 (ko) 수처리용 나노복합재 분리막 및 그 제조 방법
Yashas et al. Potentiality of polymer nanocomposites for sustainable environmental applications: A review of recent advances
Hussein et al. Efficient water disinfection using hybrid polyaniline/graphene/carbon nanotube nanocomposites
Kriegel et al. Nanofibers as carrier systems for antimicrobial microemulsions. II. Release characteristics and antimicrobial activity
CN1844245A (zh) 一种抗菌材料
Liu et al. Concurrent filtration and inactivation of bacteria using poly (vinyl alcohol-co-ethylene) nanofibrous membrane facilely modified using chitosan and graphene oxide
Lei et al. Conjugated microporous polymers bearing isocyanurate moiety as efficient antibacterial membrane and aerogels
Tan et al. Novel AgNWs-PAN/TPU membrane for point-of-use drinking water electrochemical disinfection
Li et al. Nanofiber membrane of graphene oxide/polyacrylonitrile with highly efficient antibacterial activity
Zhu et al. Inactivation of bacteria by electric current in the presence of carbon nanotubes embedded within a polymeric membrane
Khan et al. Polyvinylpyrrolidone and chitosan-doped lanthanum oxide nanostructures used as anti-bacterial agents and nano-catalyst
Shehab et al. Virus and bacterial removal ability of TiO2 nanowire-based self-supported hybrid membranes
Ma et al. High-efficiency solid-phase microextraction performance of polypyrrole enhanced titania nanoparticles for sensitive determination of polar chlorophenols and triclosan in environmental water samples
Bai et al. Polyvinyl alcohol/chitosan nanofiber membranes loaded with oxygenated graphitic carbon nitride nanosheets for enhanced photocatalytic bacteriostasis
Ni et al. Micro-structured P–N junction surfaces: large-scale preparation, antifouling properties, and a synergistic antibacterial mechanism
Prakash et al. Preparation, characterization and application of curcumin based polymeric bio-composite for efficient removal of endotoxins and bacterial cells from therapeutic preparations
Espinoza-Ibarra et al. Preparation and characterization of cotton fibers coated with AA-IA hydrogel containing silver/graphene or graphene oxide nanoparticles
Yalcinkaya et al. Preparation and characterization of polyvinyl butyral nanofibers containing silver nanoparticles
Sadiq et al. Fabrication and characterisation of novel chitosan-based polymer inclusion membranes and their application in environmental remediation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20061011