CN1841885A - 大电流设备引线的自循环冷却回路 - Google Patents

大电流设备引线的自循环冷却回路 Download PDF

Info

Publication number
CN1841885A
CN1841885A CNA2005100114906A CN200510011490A CN1841885A CN 1841885 A CN1841885 A CN 1841885A CN A2005100114906 A CNA2005100114906 A CN A2005100114906A CN 200510011490 A CN200510011490 A CN 200510011490A CN 1841885 A CN1841885 A CN 1841885A
Authority
CN
China
Prior art keywords
hollow
conductor
liquid
root
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005100114906A
Other languages
English (en)
Other versions
CN1841885B (zh
Inventor
袁佳毅
顾国彪
田新东
阮琳
余顺周
宋福川
李振国
国建鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN2005100114906A priority Critical patent/CN1841885B/zh
Publication of CN1841885A publication Critical patent/CN1841885A/zh
Application granted granted Critical
Publication of CN1841885B publication Critical patent/CN1841885B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

一种大电流设备引线设备冷却回路。其特征在于包括大电流设备引线[10]和蒸发冷却循环系统;大电流设备引线[10]由实心导线和圆形或多边形的空心导线或空心管线组成,在空心线中灌入满足环保要求的蒸发冷却介质。由于电流引起损耗,绕组发热,其热量传递给空心线中的冷却介质,使其温度升高,当达到内部压力所对应的饱和温度时,绕组内空心线中的蒸发冷却介质汽化,形成沸腾换热,经冷凝器冷却再液化,如此循环。气液分离器[400]起到气液分离作用,更适合用于较长的处于水平状态的大电流引线冷却,在无外力作用的情况下,能够实现有序的低压、无泵自循环。本发明具有不燃、体积小、温升低、安全可靠、成本低、环保等优点。

Description

大电流设备引线的自循环冷却回路
技术领域
本发明涉及一种针对电工设备大电流设备引线的自循环冷却回路,尤其是水轮发电机和大电流变压器引线的自循环冷却回路。
背景技术
随着电工装备大型化的发展,因电流增大发热而引起的温升增高成为制约其发展的瓶颈。
依照冷却方式不同,通常引线的冷却方式分为空冷和水内冷两种。空冷方式通过增加并联支路数和增大过电流截面积,来减小电流密度,配合采取设置挡风板等措施,适当减少定子上端部过流面积,以增加引线处的风速,实现温升降低的目的,但增加了引线数量;水内冷方式采用空心铜管,在其内部通以处理过的纯水,通过系统内的泵作为动力,实现强迫循环,达到冷却目的,但因系统需要复杂的纯水供应和去离子设备,操作维护复杂,同时因冷却系统压力高,易发生冷却水泄漏,造成电气故障。
现有技术的立式结构的蒸发冷却回路,利用沸腾换热和流体密度的变化,形成了自循环动力;电流引线多为水平状态,液体气化后形成的气体运动方向带有某种随机性,又由于垂直高度小,流动压头小,不能采用立式结构的蒸发冷却回路建立自循环。
发明内容
为克服现有技术的缺点,本发明针对电流密度在2.5A/mm2以上的大电流引线提出一种自循环蒸发冷却回路,采用气液分离装置,利用气体的浮力以及流体因密度差而形成的动力,克服沿程流动阻力,在无外加动力干预的情况下,实现自循环。
本发明采用内冷式蒸发冷却方式,引线内部通以绝缘性能好、沸点合适的冷却介质,实现自循环冷却目的,它是低压、无泵的密闭系统,运行安全、简便,去除了空冷方式温度分布不均匀的现象,也无水内冷方式的堵和漏引发故障的潜患。适用于水平放置的大电流设备引线,如水轮发电机定子绕组的上端部连接线和跨极线、大功率变压器的母线等。
本发明克服了现有空冷和水内冷技术的缺陷,不需要外加动力,达到与水内冷相同的冷却效果。
本发明主要由大电流设备引线和蒸发冷却循环系统组成。
其中大电流设备引线为单根空心铜或铝管,或多支路并联的空实心结合的导线组成,内部空心管线可为空心不锈钢管线或空心的其他材料(如铜或铝等导热性能好的材料)制成的圆形或矩形导线;在空心导线或空心管线中灌入满足环保要求的蒸发冷却介质,蒸发冷却介质的数量根据绕组电流密度、二次冷却水流量等情况确定。其中多支路并联型引线中,由N根导线组成并联导线或组合导线(N根导线含有N-M根实心导线和M根空心导线或空心管线(1≤M≤N)),空心导线可根据实际需要将外形和截面形状加工成圆形、矩形或多边形,实心导线亦然;空心管线为圆形或多边形管状结构,其壁厚根据通过电流的大小、选用的电流密度、机械强度和空间的大小等因素确定。
本发明的蒸发冷却循环系统由连接接头、连接管、进液管、电流引线、气液分离器、回液管、出汽管、冷凝器、集液管、汇流管组成。电流引线的空心导线或空心管线上下端分别通过上电液分离接头和下电液分离接头或密封接头连接上绝缘引管和下绝缘引管,其中上绝缘引管通过密封接头与汇流管相连,汇流管再和冷凝器的冷却空间相连,冷凝器的冷却空间与回液管相连,回液管的下端连接外集液管,外集液管通过密封接头连接电流母线的入口。冷凝器壳体外上部安装上压力传感器、压力开关和减压电磁阀,冷凝器的内部装有金属冷却管束,管束中通二次冷却水,实现内外热交换的目的。气液分离器分别与电流引线、冷凝器和回液管相联。
当大电流设备引线发热时,因热传导和对流的作用,绕组内空心导线或空心管线中的蒸发冷却介质汽化,形成气液两相混合蒸发冷却介质,回液管和进气管间形成密度差,同时结合沸腾换热,在无需外力干预的情况下,两相流体经进气管流入冷凝器中,被冷凝器中的二次冷却水冷却后,回复为液态,流入回液管、绕组内空心导线或空心管线中。如此往复,形成了低压无泵自循环回路。
现有技术立式结构的蒸发冷却回路的原理,是利用吸热量和流体密度的变化形成自循环动力。水平放置的大电流设备引线由于冷却介质流动压头(维持自循环的原动力)仅为立式结构的1/4或更小,且循环回路中多为水平状态,在没有加装气液分离装置前,电流引线未加电流前,回路近似为“连通器”,即进气管和回液管中均充有冷却介质,且液面高度相同,当通有电流后,电流引线内部冷却介质因受热气化产生气泡,又因电流引线处于水平状态,此时气泡两端的受力是平衡的,故而气泡的流动是由于气泡间的扰动而引起的,并且运动方向是随机的,即气体可以从进气管和回液管进入至冷凝器,在无外力干预的情况下,形成的循环是无序的;加装气液分离装置后,通电流初期,冷却介质受热产生的气泡的流动方向仍是随机的,其流动方向有两种:气泡流至回液管时,可通过气液分离器直接进入冷凝器,而回液管可保持纯液态;气泡流至进气管时,则进气管中为气液混合态,此时在电流引线的两端就形成了密度差,使水平状态的电流引线内部的介质受力状态发生了改变,打破了原有的平衡状态,实现了气泡的有序流动,尽管此时的流动压头很小,但只需克服沿程流动阻力和局部流动阻力能够实现流动即可,使气体向进气管方向流动,再利用冷却介质气化后产生的浮力,从而实现有序的自循环。
本发明的气液分离装置分别与电流引线、冷凝器和回液管相联,其工作原理与三通接头相类似。气液分离装置的实质是提供一个回液管气体流通的路径,因为气液混合态的冷却介质中的气体总是流向流阻最小的地方,气液分离装置——冷凝器与气液分离装置——回液管相比,前者的流阻更小,因而大部分的气体会从这一路径流至冷凝器,同时保证了后者管中的冷却介质为液态,在重力的作用下流至电流引线,实现了对蒸发冷却系统的循环起到有序的引导作用。
本发明使用的蒸发冷却介质是高绝缘性能、低沸点、物化性能稳定,且符合环保要求的介质,如Fla、VXF4310、AE3000等。
本发明蒸发冷却循环系统的测量与检测装置由压力传感器、压力开关、减压电磁阀、二次冷却水泄漏检测报警仪组成。
本发明中的回液管通过连接管与磁性浮子液位计相连,实现液位检测。
本发明利用冷却介质汽化潜热实现热量交换,冷却效果优于空冷和水内冷方式,且电流引线温度分布均匀,不存在局部过热点,即使当负荷超过额定值时,电流引线温升仍在正常范围内,有效防止了绝缘材料的老化,保证了绝缘材料的耐电压强度。由于采用内冷式蒸发冷却方式,与空冷方式比,减小了引线用铜量和空间体积,与水内冷方式比,系统内部压力显著降低,无堵和漏引发故障的隐患,引线结构更加简单。同时,冷却介质具有良好的防火、灭电弧性能,具有更好的安全效果。
附图说明
图1a、b分别为本发明的具体实施方式主、俯视示意图。图中:10电流引线(内部是110实心导线与120空心导线或管线结合方式,或仅为120空心厚壁管线),80冷凝器,130上电液分离接头,140上绝缘引管,150密封接头,160集气管,170回液管,180连接管,190磁性浮子液位计,200压力传感器,210进气管,220连接管,230集液管,240下绝缘引管,250下电液分离接头,260密封接头,280压力传感器,290压力开关,300减压电磁阀,310电极,320冷凝器冷却管束,400气液分离器。
图2为本发明引线具体实施方式的剖面示意图。图中:350实心导线,360(圆形或多边形)空心导线或管线,370外绝缘。
图3为本发明引线具体实施方式的剖面示意图。图中:410(圆形或多边形)空心导线或管线,420外绝缘。
图4为本发明引线具体实施方式的剖面示意图。图中:510外绝缘,520(圆形或多边形)空心导线或管线,530实心导线。
图5为本发明400气液分离装置的示意图。图中:601至电流引线侧接头,602至冷凝器接头,603至回液管接头,箭头方向为冷却介质流动方向。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的描述。
如图1所示,为空心厚壁管状线的实施例。大电流设备引线10由1根截面为圆形厚壁空心管线120组成,水平放置。出线端通过上电液分离接头130和上绝缘引管140相连。上绝缘引管140通过密封接头150与集气管160相连。集气管160通过进气管210进入冷凝器80的冷却空间。冷凝器80与回液管170相连。磁性浮子液位计190通过联接管180与回液管170相连。液位计190下端装有一只压力传感器200,回液管170的下端与集液管230相连,再通过下电液分离接头250、密封接头230与下绝缘引管240相连。下绝缘引管240与电流引线10(110,120)相连,形成冷却回路。回路中的冷却介质应灌至不小于回液管170长度的1/2,当大电流设备引线工作时,冷却介质受热,因含有气体成分,体积会膨胀,此时的液位会升高,甚至上升到冷凝器内,这样既可以增大蒸发冷却回路内部的流动压头,又可以减少介质的使用量;同时,为方便实际使用过程中的操作,回路中的未灌液部分不需要抽真空,只在灌液后首次工作时,由于气态冷却介质中混有空气,而空气不能被冷凝成液体,引起压力升高,利用减压电磁阀300动作,将回路中的空气排出。此后,蒸发冷却循环回路将维持在零压或负压状态下工作。
回路中气液分离器400起到气液分离作用,其上部与冷凝器80上部相连,下部一侧通过220连接管与集液管230连接,另一侧与回液管170相连。气液分离器400的实质是提供一个与回液管170并联排出气体的路径。在回路工作时,气液混合态的冷却介质中的气体受浮力作用,总是流向流阻最小的地方。从结构上看,两条路径:气液分离器400——冷凝器80与气液分离器400——回液管170是并联的;从流阻的角度看,前者的流阻更小。装置起始工作时随即运动的气体在进入气液分离器400后,大部分的气体会从“气液分离器400——冷凝器80”这一路径流至冷凝器,这就保证了“气液分离器400——回液管170”管路中的冷却介质为液态,此时回液管170侧为液相冷却介质,与进气管210侧气液混合冷却介质,因密度不同,形成压力差,在重力的作用下流至电流引线,打破了冷却回路内部的受力平衡状态,成为自循环动力,并实现了对蒸发冷却系统的自循环起到了有序的引导作用,同时由于两者并联且流动方向一致,不会造成循环回路中冷却介质流动短路情况的发生。为保证自循环能够建立,要求气液分离器400与冷凝器80连接的管径应不小于进气管210的管径,以使气体顺畅进入冷凝器80。
本发明中,对于水平状态电流引线10的单根长度应不大于30米(对应交流电密5.5A/mm2),上述情况为实验室试验结果。实际使用当热负荷大于上述数据时,可减小电流引线长度或降低电流密度;对于非水平状态电流引线10,将较低的一端加装气液分离器400后,通过连接管220与集液管230连接,较高的一端与进气管160连接,即可实现自循环,这种情况下的实现原理除利用上述气液分离器400作用外,还可利用立式自循环回路的工作原理。另外,对于非水平状态的异形电流引线,如含有“几”字形弯,或上述水平与非水平状态组合的电流引线情况,则需计算引线沿程流动阻力、局部流动阻力和流动压头后,确定冷凝器至电流引线最低点的中心高程;对于多支路电流引线串并联的情况,也需通过上述计算,确定出单根引线的流阻数量,并根据流阻对多支路进行串并联匹配,以保证最终各并联支路阻力近似相当。有关流阻的计算方法,可根据实际使用中管路的类型,参照流体力学中的有关计算公式。
本发明冷凝器上部安装上压力传感器280,压力开关290和减压电磁阀300。还装有二次冷却水泄漏检测和报警仪的电极310,即插入冷凝器冷却空间底部的一对电极T1,T2。冷凝器的内部装有冷却管束320,其中流通二次冷却水。绕组中的空心导体,回液管及与其连通的部件内部注入适量的蒸发冷却介质。
本发明电流引线10在工作情况下产生能量损耗,绕组发热,热量传递给空心导线中的冷却介质,温度升高,当达到冷却介质空间压力所对应的饱和温度时,开始汽化形成气相和液相的混合物。在气液分离器400作用下,回路中产生密度差,形成克服流动路程中沿程和局部流阻的循环动力,在无外力作用的情况下,利用沸腾换热,冷却介质实现有序的自循环流动,气相和液相混合的两相流体流向冷凝器80的冷却空间与冷凝器80内部的二次冷却水进行热交换。冷却介质气体被冷凝成液体,重新流回到回液管中,形成自循环回路。循环过程可随着负荷的变化自行调整蒸发点的位置。负荷高,则蒸发点靠前即气液两相段较长;负荷低,气液两相段较短,甚至不出现气液两相段而变成全液相,利用比热传热达到冷却目的。
冷凝器80上安装的压力传感器反映冷凝器80冷却空间压力,用它可以控制减压电磁阀300以调节冷却介质的蒸发温度。压力开关检测冷凝器80冷却空间的极限压力,当压力大于设定的上限阈值时,减压电磁阀300动作,降低冷凝器冷却空间的压力,确保系统安全运行。回液管170上连接的磁性浮子液位计190能直观显示系统中的冷却介质的灌液高度。液位计190下端安装的压力传感器200与冷凝器80上安装的压力传感器280共同作用,实现液位信号的远程传送。安装在冷凝器80上的二次冷却水泄漏检测和报警仪的检测电极可将漏水信号远程传输。
图2为电流引线中4根并联导线中含有1根空心导线或空心管线的示意图。
4根并联导线由3根实心导线350和1根空心导线或空心管线360组成,外包绝缘370。该结构可扩展到N根并联导线中含有M(1≤M≤N)根空心导线或空心管线360的情况。
图3为电流引线中空心管线的示意图。由单根(圆形或多边形)空心导线或空心管线410组成,外包有外绝缘420。该结构可扩展到N根空心导线组成的组合导线中含有M(1≤M≤N)根(圆形或多边形)空心导线或管线的情况。
图4为电流引线中带有换位的空心导线或空心管线和实心导线组合引线。换位导线由12根实心导线530,以及3根空心导线或空心管线520组成,导线外包有外绝缘510。该结构可扩展到N根换位导线组成的含有M(1≤M≤N)根空心导线或空心管线。
本发明实验进行了单根25米空心圆铜管(外径Φ44.5,内径Φ25.4)最大直流5000安的大电流试验,使用冷却介质为R-113(沸点47℃),圆铜管沿程埋设测温铂电阻,并使用红外热像仪对装置整体进行温度分布的监测,测量结果显示:蒸发冷却循环回路在无外力干预的情况下能够实现无泵自循环,铜管管壁温度最高不超过55℃,且沿程及空心铜管电流引线整体温度分布均匀。

Claims (3)

1、一种大电流设备引线的自循环冷却回路,其特征在于:包括大电流设备引线[10]和蒸发冷却循环系统;蒸发冷却循环系统包括连接管[180]、进液管、气液分离器、回液管[170]、出汽管、冷凝器[80]、集液管[230]、汇流管;大电流设备引线[10]出线端通过上电液分离接头[130]和上绝缘引管[140]相连,上绝缘引管[140]通过密封接头[150]与集气管[160]相连,集气管[160]通过进气管[210]进入冷凝器[80]的冷却空间,冷凝器[80]与回液管[170]相连;磁性浮子液位计[190]通过连接管[180]与回液管[170]相连;液位计[190]下端装有一只压力传感器[200],回液管[170]的下端与集液管[230]相连,再通过下电液分离接头[250]、密封接头[230]与下绝缘引管[240]相连;下绝缘引管[240]与电流引线[10]相连,形成冷却回路;回路中的冷却介质灌至不小于回液管170长度的1/2;气液分离器[400]上部与冷凝器[80]上部相连,下部与集液管[230]连接;冷凝器[80]外上部安装上压力传感器[280],压力开关[290]和减压电磁阀[300],冷凝器[80]的内部装有金属冷却管束[320],管束中流通二次冷却水。
2、根据权利要求1所述的大电流设备引线的自循环冷却回路,其特征在于:大电流设备引线[10]为单根空心铜或铝管,或由多支路并联的空实心结合的导线组成,内部空心管线可为空心不锈钢管线或空心的其他材料制成的圆形或矩形导线;在空心导线或空心管线中灌入满足环保要求的蒸发冷却介质。
3、根据权利要求1或2所述的大电流设备引线的自循环冷却回路,其特征在于:所述的多支路并联型大电流设备引线[10]中,由N根导线组成并联导线、组合或换位导线,N根导线含有N-M根实心导线和M根空心导线或空心管线(1≤M≤N);空心导线和实心导线的外形和截面形状为圆形、矩形或多边形;空心管线为圆形或多边形管状结构,其壁厚根据通过电流的大小、选用的电流密度、机械强度和空间的大小等因素确定;电流引线[10]中的N根并联导线含有M(1≤M≤N)根(圆形或多边形)空心导线或管线,即N根并联导线由N-M根实心导线和M根空心导线或空心管线组成,N根并联导线组成的大电流引线外包主绝缘[370],组合导线外包有外绝缘[410],换位导线组合大电流设备引线外包有外绝缘[510]。
CN2005100114906A 2005-03-29 2005-03-29 大电流设备引线的自循环冷却回路 Expired - Fee Related CN1841885B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2005100114906A CN1841885B (zh) 2005-03-29 2005-03-29 大电流设备引线的自循环冷却回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2005100114906A CN1841885B (zh) 2005-03-29 2005-03-29 大电流设备引线的自循环冷却回路

Publications (2)

Publication Number Publication Date
CN1841885A true CN1841885A (zh) 2006-10-04
CN1841885B CN1841885B (zh) 2010-10-27

Family

ID=37030767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005100114906A Expired - Fee Related CN1841885B (zh) 2005-03-29 2005-03-29 大电流设备引线的自循环冷却回路

Country Status (1)

Country Link
CN (1) CN1841885B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055283A (zh) * 2011-01-18 2011-05-11 北京鹏发欣光电力电子科技有限公司 蒸发冷却永磁电机
CN102510172A (zh) * 2011-11-21 2012-06-20 哈尔滨电机厂有限责任公司 水轮发电机二次冷却系统
CN102969838A (zh) * 2012-10-31 2013-03-13 中国科学院电工研究所 水轮发电机定子汇流排的强迫循环蒸发冷却装置
CN104409135A (zh) * 2014-12-01 2015-03-11 国网上海市电力公司 电力母排冷却安全降阻节能系统
CN107947402A (zh) * 2017-11-21 2018-04-20 中国航发沈阳发动机研究所 电机定子冷却结构及具有其的多电发动机
CN108092462A (zh) * 2018-01-11 2018-05-29 西华大学 一种凸极同步电机汇流环形引线铜环内外冷却结构
CN108494173A (zh) * 2018-06-12 2018-09-04 中国科学院电工研究所 一种立式电机的转子蒸发冷却装置
CN109120105A (zh) * 2018-09-29 2019-01-01 东方电机控制设备有限公司 一种发电机定子冷却水系统防虹吸装置
CN111162640A (zh) * 2019-10-15 2020-05-15 李居强 一种马达定子散热结构
CN113904482A (zh) * 2021-11-11 2022-01-07 华能伊敏煤电有限责任公司汇流河热电分公司 一种空气内冷发电机定子引出线结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3796045A (en) * 1971-07-15 1974-03-12 Turbo Dev Inc Method and apparatus for increasing power output and/or thermal efficiency of a gas turbine power plant
FR2645365B1 (fr) * 1989-03-31 1991-09-20 Alsthom Gec Dispositif de refroidissement de barres d'enroulements statoriques de machines electriques
CN1186872C (zh) * 2001-10-31 2005-01-26 中国科学院电工研究所 水轮发电机定子绕组的蒸发冷却装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055283A (zh) * 2011-01-18 2011-05-11 北京鹏发欣光电力电子科技有限公司 蒸发冷却永磁电机
CN102510172A (zh) * 2011-11-21 2012-06-20 哈尔滨电机厂有限责任公司 水轮发电机二次冷却系统
CN102969838A (zh) * 2012-10-31 2013-03-13 中国科学院电工研究所 水轮发电机定子汇流排的强迫循环蒸发冷却装置
CN104409135A (zh) * 2014-12-01 2015-03-11 国网上海市电力公司 电力母排冷却安全降阻节能系统
CN107947402A (zh) * 2017-11-21 2018-04-20 中国航发沈阳发动机研究所 电机定子冷却结构及具有其的多电发动机
CN108092462A (zh) * 2018-01-11 2018-05-29 西华大学 一种凸极同步电机汇流环形引线铜环内外冷却结构
CN108092462B (zh) * 2018-01-11 2023-07-28 西华大学 一种凸极同步电机汇流环形引线铜环内外冷却结构
CN108494173A (zh) * 2018-06-12 2018-09-04 中国科学院电工研究所 一种立式电机的转子蒸发冷却装置
CN109120105A (zh) * 2018-09-29 2019-01-01 东方电机控制设备有限公司 一种发电机定子冷却水系统防虹吸装置
CN109120105B (zh) * 2018-09-29 2024-02-20 东方电气自动控制工程有限公司 一种发电机定子冷却水系统防虹吸装置
CN111162640A (zh) * 2019-10-15 2020-05-15 李居强 一种马达定子散热结构
CN113904482A (zh) * 2021-11-11 2022-01-07 华能伊敏煤电有限责任公司汇流河热电分公司 一种空气内冷发电机定子引出线结构

Also Published As

Publication number Publication date
CN1841885B (zh) 2010-10-27

Similar Documents

Publication Publication Date Title
CN1841885B (zh) 大电流设备引线的自循环冷却回路
CN104969409B (zh) 流体槽制冷的能量存储系统
CN106870938B (zh) 一种管翅式中间介质气化器
CN203950620U (zh) 电气绝缘体套管以及可拆卸的热导管
CN100573753C (zh) 一种蒸发冷却变压器
CN102969838B (zh) 水轮发电机定子汇流排的强迫循环蒸发冷却装置
CN101042287A (zh) 一种新型复合热管载流体
Reid et al. A comparison of augmentation techniques during in-tube evaporation of R-113
JP2023552970A (ja) 超伝導電力伝送線路の冷却のためのシステム及び方法
CN202362044U (zh) 一种超导磁体用复合式超导液位计
CN1186872C (zh) 水轮发电机定子绕组的蒸发冷却装置
CN110912069A (zh) 超导直流输电/液化天然气一体化能源管道终端
CN104653789A (zh) 一种带泄漏检测的电加热液态金属阀门
CN209216689U (zh) 一种避免油位过高的低压变压器
RU2400944C1 (ru) Вихревой индукционный нагреватель и устройство обогрева для помещения
CN1293691C (zh) 水轮发电机定子绕组的强迫循环蒸发冷却装置
US10560984B2 (en) Inductive heater for fluids
CN115056668A (zh) 一种电动汽车充电设备功率单元的冷却系统
CN112271027A (zh) 一种用于超导电缆的单端顺流制冷系统
CN100466892C (zh) 等电位连接方法及在电力电子装置的水冷却系统中的应用
CN102931770A (zh) 混合励磁制动结构的冷却装置
CN210532697U (zh) 一种采用环氧板加工制作的电极加热芯体
CN205090808U (zh) 紧凑型高电压组合式电阻炉
CN202957709U (zh) 一种混合励磁制动结构的冷却装置
CN218820289U (zh) 热媒蒸汽发生器以及采用热媒加热的加热系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101027

Termination date: 20200329