CN110912069A - 超导直流输电/液化天然气一体化能源管道终端 - Google Patents

超导直流输电/液化天然气一体化能源管道终端 Download PDF

Info

Publication number
CN110912069A
CN110912069A CN201911131459.4A CN201911131459A CN110912069A CN 110912069 A CN110912069 A CN 110912069A CN 201911131459 A CN201911131459 A CN 201911131459A CN 110912069 A CN110912069 A CN 110912069A
Authority
CN
China
Prior art keywords
wall
low
temperature
heat insulation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911131459.4A
Other languages
English (en)
Inventor
桑文举
于国鹏
毛杭银
徐晨博
夏红鑫
罗朝志
邱清泉
陈建辉
李振明
陈盼盼
靖立伟
宋乃浩
滕玉平
张国民
肖立业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Engineering Inc
State Grid Corp of China SGCC
Institute of Electrical Engineering of CAS
State Grid Zhejiang Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
Original Assignee
Sinopec Engineering Inc
State Grid Corp of China SGCC
Institute of Electrical Engineering of CAS
State Grid Zhejiang Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Engineering Inc, State Grid Corp of China SGCC, Institute of Electrical Engineering of CAS, State Grid Zhejiang Electric Power Co Ltd, China Electric Power Research Institute Co Ltd CEPRI filed Critical Sinopec Engineering Inc
Priority to CN201911131459.4A priority Critical patent/CN110912069A/zh
Publication of CN110912069A publication Critical patent/CN110912069A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/02Cable terminations
    • H02G15/06Cable terminating boxes, frames or other structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Thermal Insulation (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

一种超导直流输电/液化天然气一体化能源管道终端,为卧式结构。低温杜瓦(16)为圆柱形,水平放置;绝热支撑(7)垂直焊接在低温杜瓦(16)上;人行孔(14)安装于低温杜瓦(16)的左侧;真空插接口(17)焊接于低温杜瓦(16)的右端;屏蔽层电流引线出口(8)垂直焊接在低温杜瓦(16)上;燃料输入口(12)焊接在低温杜瓦(16)的左端。低温高压套管(2)通过法兰及其配套金属均压环(4)竖直安装在绝热支撑(7)上。燃料输入口(12)焊接有波纹管(13)。保护泄压系统(11)安装在绝热支撑(7)上。本发明可以实现液化天然气输入,以及超导直流电缆低温向室温、从超导到常导、从高压向低压过渡的重要功能。

Description

超导直流输电/液化天然气一体化能源管道终端
技术领域
本发明涉及一种超导直流输电/液化天然气一体化能源管道终端。
背景技术
我国资源分布不均,由于西电东送与西气东输、近海风电与液化天然气(LNG)站等能源工程的加速建设,使能源输送损耗大、效率低,因此低损耗、大容量、高效率的能源输送方式的开发越显紧迫。超导直流电缆具有传输容量大、电磁污染小、损耗低等优点,LNG是低温绝缘介质,利用LNG代替液氮冷却超导直流电缆,构建超导直流、LNG共用能源通道,实现电力/LNG一体化输送,可以极大提高能源输送整体效率,降低综合成本。其中超导直流输电/液化天然气一体化能源管道终端作为能源管道的重要组成部分,承担着燃料输入、超导电缆从超导到常导、从高压到低压、从低温到高温过度的重要功能。
所述的超导直流输电/液化天然气一体化能源管道终端适用于超导直流输电/液化天然气一体化能源管道的电流引出、高压隔离、燃料输入、液位测量以及从超导通电导体向常规通电导体的过渡。
《低温与超导》2003,vol 31,No 4等文献“高温超导电缆终端的研究与开发”涉及一种室温绝缘超导电缆终端,采用承插式连接的终端恒温器,与电缆本体同处于高电位,故终端恒温器工作在高压状态,与导体之间不需要绝缘。现有室温绝缘高温超导电缆终端具有低温容器无法工作在零电位状态、绝热性能差、无屏蔽层电流引线出口等缺点,无法直接应用于超导直流输电/液化天然气一体化能源管道。
发明内容
为克服现有室温绝缘高温超导电缆终端的缺点,本发明在深入分析室温绝缘高温超导电缆终端工作原理基础上,根据超导直流输电/液化天然气一体化能源管道的工作特点,提出一种超导直流输电/液化天然气一体化能源管道终端。本发明超导直流输电/液化天然气一体化能源管道终端的低温杜瓦工作在零电位,适用于直流输电/液化天然气一体化能源管道,可实现超导直流输电/液化天然气一体化能源管道燃料的输入、液位测量,超导电缆端部的电流引出、高压隔离,以及从超导通电导体向常规通电导体的过渡等功能。
本发明采用的技术方案如下述。
本发明直流输电/液化天然气一体化能源管道终端由低温高压套管、绝热支撑、低温杜瓦、燃料输入口、保护泄压系统、测量引线出口、屏蔽层电流引线出口、人行孔、真空插接口等部分组成。
所述的直流输电/液化天然气一体化能源管道终端为卧式结构。低温杜瓦为圆柱形,水平放置,绝热支撑垂直焊接在低温杜瓦上,屏蔽层电流引线出口垂直焊接在低温杜瓦的上表面,真空插接口位于低温杜瓦的右端,水平布置;真空抽嘴垂直焊接在低温杜瓦右侧上壁;人行孔位于低温杜瓦左侧内壁。燃料输入口焊接于低温杜瓦左端。保护泄压系统焊接在绝热支撑上。绝热支撑上开有测量引线出口。
低温高压套管的下端套装在绝热支撑内部,绝热支撑和低温杜瓦为互通结构,低温高压套管的下端工作在低温杜瓦内的低温环境中,低温套管的上端工作在室温空气环境中。
所述的低温高压套管由电流引线、主绝缘、法兰及其配套金属均压环和非金属绝热层组成。电流引线为金属圆柱或圆管型导体,主绝缘紧密包覆在电流引线外周;法兰及其配套金属均压环套装在主绝缘外表面并与主绝缘粘结固定为一体;低温高压套管通过法兰及其配套金属均压环与低温杜瓦连接在一起;法兰及其配套金属均压环的制作材料为无磁不锈钢,金属均压环套装在法兰上面。非金属绝热层位于法兰及其配套金属均压环下面,非金属绝热层的上表面与法兰及其配套金属均压环的下表面粘合为整体,以防止法兰结冰。所述的低温高压套管通过所述的法兰与所述的低温杜瓦固连。电流引线绕包有多层纸,每隔几层纸加入一层金属箔,金属箔形成浮动电极,多层金属箔的电容基本相等,如此使得每一对金属箔的电压降都相等,进而获得理想的电场分布。
所述的低温杜瓦为卧式双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料,内壁包围的空腔为燃料流动层。低温杜瓦的左侧外壁套装有伸缩节,以避免热循环过程中产生的应力造成的损伤。
所述的绝热支撑为双层结构。绝热支撑的内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁的外表面绕包有多层绝热材料。绝热支撑的内壁、外壁分别与低温杜瓦的内壁和外壁对应焊接,连接为整体。低温杜瓦的真空层与绝热支撑的真空层为整体互通结构。
所述的燃料输入口为双层结构,其内壁与外壁均为无磁不锈钢材料,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料,燃料输入口一端的内壁、外壁分别与低温杜瓦的内壁和外壁对应焊接,连接为整体,其真空层与低温杜瓦真空层为整体互通结构。燃料输入口的外壁焊接有波纹管。
所述的屏蔽层电流引线出口通过其内腔引出超导电缆金属屏蔽层感应电流引线。屏蔽层电流引线出口为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁的外表面绕包有多层绝热材料,屏蔽层电流引线出口端的内壁、外壁分别与低温杜瓦的内壁和外壁对应焊接连接为整体,屏蔽层电流引线的真空层与低温杜瓦真空层为整体互通结构。
所述的测量引线出口与绝热支撑连接。测量引线出口为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料,测量引线出口一端的内壁、外壁分别与绝热支撑的内壁、外壁对应焊接连接为整体,其真空层与绝热支撑真空层为整体互通结构。
所述的保护泄压系统通过绝热管道与绝热支撑连接,绝热管道为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料。绝热管道一端的内壁、外壁分别与绝热支撑的内壁和外壁对应焊接连接为整体,绝热管道的真空层与绝热支撑真空层为整体互通结构。
所述的人行孔位于低温杜瓦内的左端,人行孔内壁法兰和人行孔外壁法兰分别与低温杜瓦内壁、外壁对应焊接密封,人行孔与低温杜瓦内壁的法兰密封为低温真空密封,以保证在低温条件下无燃料泄漏至低温杜瓦内壁与外壁之间的真空层。
所述的真空插接口位于低温杜瓦的右端,水平布置。真空插接口为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料。真空插接口的内壁、外壁分别与低温杜瓦的内壁和外壁对应焊接连接为整体,其真空层与绝热支撑的真空层为整体互通结构。真空插接口和能源管道本体焊接,实现了能源管道终端和能源管道本体的连接。
附图说明
图1是超导直流输电/液化天然气一体化能源管道终端示意图。图中:1电流引线、2低温高压套管、3主绝缘、4法兰及其配套金属均压环、5非金属绝热层、6测量引线出口、7绝热支撑、8屏蔽层电流引线出口、9屏蔽层电流引线出口波纹型伸缩节、10真空抽嘴、11保护泄压系统、12燃料输入口、13波纹管、14人行孔、15波纹型伸缩节、16低温杜瓦、17真空插接口、18超导电缆屏蔽层。
具体实施方式
下面结合附图和具体实施方式进一步说明本发明。
所述的低温绝缘高温超导电缆高压终端为卧式结构;低温杜瓦16为圆柱形,水平放置;绝热支撑7垂直焊接在低温杜瓦16上;屏蔽层电流引线出口8垂直焊接在低温杜瓦16上表面;真空插接口17焊接于低温杜瓦16的右端,水平布置;人行孔14位于低温杜瓦16的左端;低温高压套管2通过法兰及其配套金属均压环4竖直安装在绝热支撑7上;燃料输入口12焊接在低温杜瓦左端;真空抽嘴10垂直焊接在低温杜瓦16右侧上壁;保护泄压系统11焊接在绝热支撑7上,绝热支撑7上开有测量引线出口6。
所述的低温高压套管2的下端套装在绝热支撑7内部。低温高压套管2的外形为翅状长管,由电流引线1、主绝缘3、法兰及其配套金属均压环4和非金属绝热层5组成。电流引线1为金属圆柱或圆管型导体,主绝缘3紧密包覆在电流引线1外周上;法兰及其配套金属均压环4套装在主绝缘3的外表面,并与主绝缘3粘结固定为一体;所述的低温高压套管2通过所述的法兰及其配套金属均压环4与所述的绝热支撑7连接在一起;所述法兰及其配套金属均压环4的制作材料为无磁不锈钢。非金属绝热层5位于法兰及其配套金属均压环4的下表面,非金属绝热层5的上表面与法兰及其配套金属均压环4的下表面粘合为整体。所述的低温高压套管2的下端工作在低温环境中,上端工作在室温空气环境中。
所述的低温杜瓦16为圆柱形,水平放置,所述的低温杜瓦16为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料,内壁包围的空腔为燃料流动层。低温杜瓦16左侧安装有人行孔14。低温杜瓦16的左侧外壁靠近人行孔的位置上套装有波纹型伸缩节15。
所述的绝热支撑7为双层结构。绝热支撑7的内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层;绝热支撑7的内壁外表面绕包有多层绝热材料;绝热支撑7的内壁和外壁分别与低温杜瓦16的内壁和外壁对应焊接连接为整体,低温杜瓦16的真空层与绝热支撑的真空层为整体互通结构。
所述的燃料输入口12位于低温杜瓦的左端,和低温杜瓦管左端的开口对应焊接为一体。所述的燃料输入口12为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层;燃料输入口12的内壁外表面绕包有多层绝热材料;燃料输入口12一端的内壁、外壁分别与低温杜瓦16的内壁和外壁对应焊接连接为整体,燃料输入口12的真空层与低温杜瓦16的真空层为整体互通结构。燃料输入口12的外壁焊接有15m的波纹管。
所述的屏蔽层电流引线出口8为双层结构,超导电缆金属屏蔽层感应电流引线通过其内腔引出,屏蔽层电流引线出口8的内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料;屏蔽层电流引线出口8一端的内壁和外壁分别与低温杜瓦16的内壁和外壁对应焊接连接为整体,屏蔽层电流引线出口8的真空层与低温杜瓦16的真空层为整体互通结构。
所述的测量引线出口6为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料;测量引线出口6一端的内壁、外壁分别与绝热支撑7的内壁和外壁对应焊接连接为整体,测量引线出口6的真空层与绝热支撑7的真空层为整体互通结构。
所述的保护泄压系统11通过绝热管道与绝热支撑7连接;绝热管道为双层结构,其内壁与外壁均为无磁不锈钢材料,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料;绝热管道一端的内壁、外壁分别与绝热支撑7的内壁和外壁对应焊接连接为整体,绝热管道真空层与绝热支撑7的真空层为整体互通结构。
所述的人行孔14通过人行孔内壁和人行孔外壁与低温杜瓦16的内壁及外壁对应焊接密封。
所述的真空插接口17为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料;真空插接口17的内壁和外壁分别与低温杜瓦16的内壁和外壁对应焊接连接为整体,真空插接口17的真空层与低温杜瓦16的真空层为整体互通结构。真空插接口17和能源管道焊接,实现了能源管道终端和能源管道本体的连接。
本发明工作过程如下:
超导直流输电/液化天然气一体化能源管道终端开始运行时,首先通过真空抽嘴10对低温杜瓦的真空层抽真空,然后经燃料输入口12实现向终端输送液化天然气,对与之连接的能源管道本体中的超导电缆导体进行冷却,低温杜瓦可防止热量散失,保持温度恒定,使超导电缆导体进入并维持在超导态。通过测量引线出口6引出液位、温度等信息,当燃料液位、温度达到设定值时,电流引线1通入直流电,电流引线1通过传导连接实现低温向高温的自然过渡,同时实现超导供电向常导供电的转变,主绝缘3实现了电流引线的高压隔离,通过真空插接口17将直流电、液化天然气分别输送出去。超导直流输电/液化天然气一体化能源管道终端结束运行时,首先电流引线停止通直流电,然后燃料输入口停止输入液化天然气,保护泄压系统11启动泄压。
本发明装置具有耐压等级高、通流能力强、绝热性能好等优点,适用于超导直流输电/液化天然气一体化能源管道燃料的输入和输出、液位测量、温度测量,超导直流电缆的高压隔离、电流引出以及超导直流电缆从超导通电导体向常规通电导体的过渡。

Claims (10)

1.一种超导直流输电/液化天然气一体化能源管道终端,其特征在于:所述的超导直流输电/液化天然气一体化能源管道终端包括低温高压套管(2)、绝热支撑(7)、低温杜瓦(16)、燃料输入口(12)、保护泄压系统(11)、测量引线出口(6)、人行孔(14)、屏蔽层电流引线出口(8),以及真空插接口(17);
超导直流输电/液化天然气一体化能源管道终端为卧式结构,低温杜瓦(16)为圆柱形,水平放置,绝热支撑(7)垂直焊接在低温杜瓦(16)上,人行孔(14)安装于低温杜瓦的左侧,屏蔽层电流引线出口(8)垂直焊接在低温杜瓦(16)上,真空插接口(17)焊接于低温杜瓦(16)的右端,水平布置;低温高压套管(2)竖直安装在绝热支撑(7)上;真空抽嘴(10)垂直焊接于低温杜瓦(16)右侧上壁;燃料输入口(12)焊接于低温杜瓦(16)的左端。保护泄压系统(11)和测量引线出口(6)焊接在绝热支撑(7)上。
2.根据权利要求1所述的超导直流输电/液化天然气一体化能源管道终端,其特征在于:所述低温高压套管(2)的下端套装在绝热支撑(7)内部;低温高压套管(2)的外形为翅状长管,由电流引线(1)、主绝缘(3)、法兰及其配套金属均压环(4)、非金属绝热层(5)组成;电流引线(1)为金属圆柱或圆管型导体,主绝缘紧密包覆在电流引线(1)上,法兰及其配套金属均压环(4)套装在主绝缘的外表面,并与主绝缘粘结固定为一体;法兰及其配套金属均压环(4)的制作材料为无磁不锈钢,非金属绝热层(5)位于法兰及其配套金属均压环(4)的下表面,非金属绝热层(5)的上表面与法兰及其配套金属均压环(4)的下表面粘合为整体;所述的低温高压套管(2)的下端工作在低温环境中,上端工作在室温空气环境中。
3.根据权利要求1所述的超导直流输电/液化天然气一体化能源管道终端,其特征在于:所述的低温杜瓦(16)为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料,左侧外壁上套有波纹型伸缩节(15)。
4.根据权利要求1所述的低温绝缘高温超导电缆高压终端,其特征在于:所述的人行孔(14)通过人行孔内壁和人行孔外壁与低温杜瓦(16)的内壁及外壁对应焊接密封。
5.根据权利要求1所述的超导直流输电/液化天然气一体化能源管道终端,其特征在于:所述的绝热支撑(7)为双层结构。绝热支撑(7)的内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层;绝热支撑的内壁外表面绕包有多层绝热材料;绝热支撑(7)的内壁和外壁分别与低温杜瓦(16)的内壁和外壁对应焊接连接为整体,低温杜瓦(16)的真空层与绝热支撑(7)的真空层为整体互通结构。
6.根据权利要求1所述的超导直流输电/液化天然气一体化能源管道终端,其特征在于:所述的燃料输入口(12)为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层;燃料输入口(12)的内壁外表面绕包有多层绝热材料;燃料输入口(12)一端的内壁、外壁分别与低温杜瓦(16)的内壁和外壁对应焊接连接为整体,燃料输入口(12)的真空层与低温杜瓦(16)的真空层为整体互通结构,燃料输入口(12)的外壁焊接有不锈钢波纹管(13)。
7.根据权利要求1所述的超导直流输电/液化天然气一体化能源管道终端,其特征在于:所述的屏蔽层电流引线出口(8)为双层结构,超导电缆金属屏蔽层感应电流引线通过其内腔引出;屏蔽层电流引线出口(8)的内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料;屏蔽层电流引线出口(8)一端的内壁和外壁分别与低温杜瓦(16)的内壁和外壁对应焊接连接为整体,屏蔽层电流引线出口(8)的真空层与低温杜瓦(16)的真空层为整体互通结构。
8.根据权利要求1所述的超导直流输电/液化天然气一体化能源管道终端,其特征在于:所述的测量引线出口(6)为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料;测量引线出口(6)一端的内壁、外壁分别与绝热支撑(7)的内壁和外壁对应焊接连接为整体,测量引线出口(6)的真空层与绝热支撑(7)的真空层为整体互通结构。
9.根据权利要求1所述的超导直流输电/液化天然气一体化能源管道终端,其特征在于:所述的保护泄压系统(11)为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料;保护泄压系统(11)一端的内壁、外壁分别与绝热支撑(7)的内壁和外壁对应焊接连接为整体,保护泄压系统(11)与绝热支撑(7)为整体互通结构。
10.根据权利要求1所述的超导直流输电/液化天然气一体化能源管道终端,其特征在于:所述的真空插接口(17)为双层结构,其内壁与外壁均为无磁不锈钢材料制作,内壁与外壁之间为真空层,内壁外表面绕包有多层绝热材料;真空插接口(17)的内壁和外壁分别与低温杜瓦(16)的内壁和外壁对应焊接连接为整体,真空插接口(17)的真空层与低温杜瓦(16)的真空层为整体互通结构。
CN201911131459.4A 2019-11-19 2019-11-19 超导直流输电/液化天然气一体化能源管道终端 Pending CN110912069A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911131459.4A CN110912069A (zh) 2019-11-19 2019-11-19 超导直流输电/液化天然气一体化能源管道终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911131459.4A CN110912069A (zh) 2019-11-19 2019-11-19 超导直流输电/液化天然气一体化能源管道终端

Publications (1)

Publication Number Publication Date
CN110912069A true CN110912069A (zh) 2020-03-24

Family

ID=69817960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911131459.4A Pending CN110912069A (zh) 2019-11-19 2019-11-19 超导直流输电/液化天然气一体化能源管道终端

Country Status (1)

Country Link
CN (1) CN110912069A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112489877A (zh) * 2020-11-24 2021-03-12 西安交通大学 一种低温冷能循环利用的电力高温超导输送系统
CN114992514A (zh) * 2021-03-01 2022-09-02 中国石化工程建设有限公司 一种液化天然气与超导能源同输系统的终端结构
CN114992516A (zh) * 2021-03-01 2022-09-02 中国石化工程建设有限公司 一种lng与超导能源同输系统的终端结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679152A (zh) * 2012-04-20 2012-09-19 西安交通大学 一种液化天然气和高温超导电能联合远程输送系统
CN105047303A (zh) * 2015-07-17 2015-11-11 中国科学院电工研究所 低温绝缘高温超导电缆高压终端
CN105116243A (zh) * 2015-07-17 2015-12-02 中国科学院电工研究所 低温绝缘高温超导电缆通电导体电气特性实验装置
CN107610835A (zh) * 2017-08-22 2018-01-19 中国科学院电工研究所 液化天然气冷却cf4保护的超导能源管道

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679152A (zh) * 2012-04-20 2012-09-19 西安交通大学 一种液化天然气和高温超导电能联合远程输送系统
CN105047303A (zh) * 2015-07-17 2015-11-11 中国科学院电工研究所 低温绝缘高温超导电缆高压终端
CN105116243A (zh) * 2015-07-17 2015-12-02 中国科学院电工研究所 低温绝缘高温超导电缆通电导体电气特性实验装置
CN107610835A (zh) * 2017-08-22 2018-01-19 中国科学院电工研究所 液化天然气冷却cf4保护的超导能源管道

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112489877A (zh) * 2020-11-24 2021-03-12 西安交通大学 一种低温冷能循环利用的电力高温超导输送系统
CN112489877B (zh) * 2020-11-24 2022-04-05 西安交通大学 一种低温冷能循环利用的电力高温超导输送系统
CN114992514A (zh) * 2021-03-01 2022-09-02 中国石化工程建设有限公司 一种液化天然气与超导能源同输系统的终端结构
CN114992516A (zh) * 2021-03-01 2022-09-02 中国石化工程建设有限公司 一种lng与超导能源同输系统的终端结构

Similar Documents

Publication Publication Date Title
CN110912069A (zh) 超导直流输电/液化天然气一体化能源管道终端
KR101118374B1 (ko) 초전도 케이블 선로
CN103307380B (zh) 一种具备电位隔离功能的低温流体输送管接头
CN103456455B (zh) 一种超导磁体电流引线
CN103453932B (zh) 一种低温液体温度压力测量引线装置
CN201717792U (zh) 架空线路取能电源
CN105047303A (zh) 低温绝缘高温超导电缆高压终端
CN102253319B (zh) 用于高电压低温帕邢条件下固体绝缘耐电压性能测试系统
CN105116243A (zh) 低温绝缘高温超导电缆通电导体电气特性实验装置
CN110518376A (zh) 一种高温超导电力电缆多通接头
CN105355319A (zh) 一种用于超导电缆的低温恒温器
CN100477018C (zh) 高温超导电力电缆用高压隔离器
WO2022077568A1 (zh) 一种用于超导电缆的单端顺流制冷系统
CN103322357B (zh) 一种具备电位隔离功能的复合型液氮液氦输送管接头
CN205645471U (zh) 变压器的线圈散热装置
CN208834834U (zh) 一种超导磁体用常温电流引线连接装置
CN112271052A (zh) 一种超导磁体低温系统
Jin et al. Research on the temperature and flow velocity characteristic of GIL based on multi-field coupling
CN103022739B (zh) 一种超导装置用交流套管
CN202816589U (zh) 智能电力变压器用电连接器
CN220821180U (zh) 一种安全运输的高温超导电缆
CN215451002U (zh) 空冷电缆接头结构
CN112951490A (zh) 一种高温超导直流电缆
CN215183469U (zh) 一种带均压结构的电压互感器
CN202817657U (zh) 全连式主导体全浇注离相母线

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200324