CN1821721A - Precise decoupling detecting method for gyroscope scale factor and input shaft default angle - Google Patents

Precise decoupling detecting method for gyroscope scale factor and input shaft default angle Download PDF

Info

Publication number
CN1821721A
CN1821721A CN 200610011560 CN200610011560A CN1821721A CN 1821721 A CN1821721 A CN 1821721A CN 200610011560 CN200610011560 CN 200610011560 CN 200610011560 A CN200610011560 A CN 200610011560A CN 1821721 A CN1821721 A CN 1821721A
Authority
CN
China
Prior art keywords
gyroscope
msub
mrow
mtd
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610011560
Other languages
Chinese (zh)
Other versions
CN100367004C (en
Inventor
房建成
张海鹏
盛蔚
刘百奇
全伟
曹娟娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CNB2006100115602A priority Critical patent/CN100367004C/en
Publication of CN1821721A publication Critical patent/CN1821721A/en
Application granted granted Critical
Publication of CN100367004C publication Critical patent/CN100367004C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

This invention relates to an accurate uncoupling test method for gyro scale factor and input shaft distortion angle, which installs a gyro at state 1 to ensure the OY shaft of the gyro parallel to the swing table and regulates the OZ shaft to be in the angle of theta< i > to the swing table shaft, then sets rate of the input angle orderly to test and record the mean value out put by the gyro when the swing table is at rest before rotating, rotates positively, idle at stopping, reversal then rest after stopping and alters the theta< i > of step 1 to alter the states to 2,3 and 4, repeat steps of 1-3 of the gyro orderly then processes the tested data to realize the uncoupling of the scale factor and its input shaft distortion angle of a gyro.

Description

precise decoupling test method for gyroscope scale factor and input shaft misalignment angle
Technical Field
The invention relates to a precise decoupling test method for a gyroscope scale factor and an input shaft misalignment angle, belonging to the fields of navigation, guidance and control.
Background
During inertial navigation, the error caused by the inertial device usually accounts for more than 70% of the whole guidance error, which leads to higher and higher requirements on the inertial device. The accuracy of the inertial device can be improved by improving the processing technology, but the cost is huge and great difficulty is brought to mass production. Therefore, people pay more attention to the testing, calibration and compensation technology of the inertial device, wherein the inertial navigation testing technology is an emerging subject developed on the basis of the inertial navigation technology and comprises three aspects of inertial navigation testing equipment, a testing method and a data processing technology. Through the inertial navigation testing technology, people strive to accurately evaluate the performance and precision of the gyroscope, accurately test relevant parameters, and improve the precision of an inertial device through error compensation measures.
In a gyroscope, the gyroscope scale factor and the gyroscope input axis misalignment angle are just two very critical parameters that need to be tested to improve accuracy. The scaling factor K is the ratio of the output voltage magnitude V of the gyroscope to the input angular rate ω, and usually the axis perpendicular to the reference plane on which the gyroscope is mounted is called the input reference axis IR, as shown in fig. 1, and usually the sensitive axis of the gyroscope is called the input axis IA, and when the gyroscope rotates around this axis, the maximum output voltage magnitude will be caused; the input axis misalignment angle δ is the angle between the input axis IA and the input reference axis IR. Typically the gyroscope axes are specified as: the OZ axis coincides with the input reference axis IR, OX and OY are perpendicular to each other in the gyro mounting plane, and the positive directions of the three axes satisfy the specification of OX × OY ═ IA.
Although the current testing method for inertial devices (particularly gyros) varies depending on the testing conditions, those skilled in the art generally refer to the testing specifications of IEEE gyros in order to standardize the testing standards. In these test specifications, the scale factor test value is found by a rate experiment, at which time, the gyro input reference axis IR (coinciding with the OZ axis) is placed upward, parallel to the rate turntable axis of rotation (TI axis), as shown in fig. 2; when the misalignment angle test value of the gyro input shaft is obtained, the gyro input shaft (still coinciding with the OZ axis) is horizontally placed and is perpendicular to the rotation axis (TI axis) of the rate turntable, as shown in fig. 3(TI axis). As can be seen from the mechanics and kinematics involved in gyros, in the test method described above, the data processing models for the scale factor and the input axis misalignment angle are (for example, a single degree of freedom gyroscope):
V=V0+K·ω·cosδ (1)
V′=K·ω′·sinδT (2)
in the formula:
v is the output voltage value of the output shaft of the gyroscope when the scale factor is tested, and the unit is V;
v' is the output voltage value of the output shaft of the gyroscope when the misalignment angle of the input shaft is tested, and the unit is V;
V0the constant drift of a gyro output shaft is in V;
k is the scale factor of the gyro output axis, with the unit of V/(°/S);
when omega is used for testing the scale factor, the rotary table inputs the angular speed;
omega' I, the input angular speed of the rotary table when the misalignment angle of the input shaft is tested;
δ one gyro input axis misalignment angle;
δTa projection of a gyro input axis misalignment angle in a current test plane, where T ═ x or y;
it can be seen that the two parameters, gyro scale factor and gyro input axis misalignment angle, are coupled to each other <math> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&delta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&delta;</mi> </mtd> </mtr> </mtable> </mfenced> </math> The scale factor cannot be separated from the input axis misalignment angle in data processing using experimental data obtained in the above experimental method for the coupling coefficient, which is a two-dimensional column vector. Considering that the traditional gyroscope is precise in manufacturing, expensive in price, high in precision and small in misalignment angle delta, the above test standards approximately take:
cosδ≈1,sinδT≈δT (3)
for the traditional gyroscope, the introduced approximation error is small, the sacrificial navigation precision is small, and the equations (1) and (2) can be simplified as follows:
V=V0+K·ω (4)
V′=K·ω′·δT (5)
practice proves that although the test method brings approximate errors, the error value is smaller in an inertial navigation system with higher precision, and the requirements can be basically met under certain application environment and requirements.
However, since the 80 s in the 20 th century, many microminiature, low-cost and low-precision inertial measurement devices have prevailed, and particularly with the successful application of the optoelectronic technology and the micron/nanometer technology, the MEMS technology, the optoelectronic technology and the inertial technology are combined, so that a great revolution of the inertial technology is brought, and the optical fiber gyroscope and the MEMS gyroscope are paid great attention, and the microminiature, the light weight, the low cost, the simple structure and the convenient application have great application prospects. However, the misalignment angles of the input axes of the two are large, for example, the MEMS gyroscope is generally packaged by a chip, and when the MEMS gyroscope is applied, the MEMS gyroscope needs to be welded to a circuit board and can be used together with other electronic components such as a resistor and a capacitor, and the mounting accuracy of the circuit board is far lower than that of the conventional gyroscope, and particularly, in the manual welding process, a large error is caused to the parallelism and the perpendicularity of the sensitive axes of the devices, and some errors even reach more than 5 degrees, so the misalignment angle of the input axis of the MEMS gyroscope is large. At present, for the test of a microminiature, low-cost and low-precision gyroscope, reports are few, a unified and standardized test method is not available, basically, the test standard of the traditional gyroscope is applied by reference, a similar error value which is not negligible is generated by the formula (3), and great errors are brought to the improvement of the precision of the gyroscope, the subsequent strapdown solution and the combined navigation, so that the test of the gyroscope according to the data processing models expressed by the formulas (4) and (5) is very unscientific, and the following defects exist:
1. the scale factor K of the gyroscope calibrated by the test standard of the traditional gyroscope is inaccurate, the K of the tested gyroscope is actually K.cos delta, especially for low-precision optical fiber gyroscopes, quartz gyroscopes, micro-silicon MEMS gyroscopes and the like, delta is generally several degrees, even more than ten degrees, and the error caused by cos delta is very large;
2. the value delta of the misalignment angle of the input shaft of the gyroscope calibrated by the test standard of the traditional gyroscope is inaccurate, and delta is inProjection delta in the current test planeTThe calculation of (2) involves the value of K, whereas the disadvantage 1 indicates that the value of K is not accurate, so δTThe calculated value of is also inaccurate; while deltaTThe calculation of the value involves sin δT≈δTApproximation errors can be caused, particularly for low-precision optical fiber gyroscopes, quartz gyroscopes, micro-silicon MEMS gyroscopes and the like, the general misalignment angle delta is large, and the generated errors are also large;
3. in the traditional test standard of the gyroscope, a K value and a delta value need to be calibrated respectively in two steps, the calibration process of the gyroscope is generally long, the K value and the delta value are tested at different time, and the test result is also influenced by the difference of the test environment such as temperature, humidity, air pressure and the like.
Disclosure of Invention
The technical problem of the invention is solved: the method overcomes the defect of testing the scale factor and the misalignment angle of the input shaft of the gyroscope by the traditional method, provides a precise decoupling test method for the scale factor and the misalignment angle of the input shaft of the gyroscope, realizes the separation of two parameters, ensures the correctness and the precision of a test value, and reduces the influence of parameter errors on navigation precision.
The technical solution of the invention is as follows: a precise decoupling test method for gyroscope scale factor and input shaft misalignment angle is characterized in that:
(1) mounting a gyroscope to enable a gyroscope mounting reference surface and the rotary table to form an initial inclination angle thetaiAnd the gyroscope can be sequentially arranged at different angles theta relative to the rotating shaft of the rotary tableiWhen the device is fixed on the rotary table, the OY axis is kept parallel to the surface of the rotary table, and the state is a first installation state;
(2) at the initial theta of said step (1)iUnder the angle, determining the input angular rate, and sequentially testing and recording the average value output by the gyroscope before rotation of the rotary table, when the rotary table rotates forwards, when the rotary table stops rotating and is static, when the rotary table rotates reversely, and when the rotary table stops rotating and is static;
(3) change theThe tilt angle theta of the gyroscope of step (1)iRepeating the experiment of the step (2);
(4) sequentially and respectively changing the installation state of the gyroscope into a second state, namely clockwise rotating the gyroscope in an installation plane by 180 degrees and a third state, namely clockwise rotating the gyroscope by 90 degrees and clockwise rotating the gyroscope by a fourth state, namely clockwise rotating the gyroscope by 180 degrees, and then repeating the experiments of the steps (1) to (3);
(5) the measured data is processed to determine values for the gyroscope scale factor and the input axis misalignment angle.
The parameter model used for data processing in the step (5) does not contain small-angle approximate errors, data in four states are processed in a combined mode, clamp errors are eliminated, and the specific data processing steps are as follows: the data processing comprises the following steps:
(1) collecting output data corresponding to the inclination angle and the input angular velocity of each gyroscope in the four installation states;
(2) under the excitation of each input angular rate, subtracting the average value of output data of the gyroscope acquired when the rotary table rotates from the average value of output data acquired when the angular speed is input and the rotary table is static, and using the average value as an output value for calculating the gyroscope when the parameter model is applied to calculation;
(3) according to the establishment of a gyroscope input-output relation model, fitting a slope representation between the output voltage and the input angular rate at each inclination angle by adopting a least square method;
(4) establishing a linear matrix model representing the inclination angle, the coupling coefficient and the slope of each gyroscope, and fitting the coupling coefficient value in the whole experiment;
(5) decoupling calculation is carried out, and a scale factor and an input shaft misalignment angle are separated;
(6) combining the calculation results of the four states, eliminating the fixture error and calculating the actual parameter value.
The principle of the invention is as follows: the relation between the gyroscope scale factor K and the input axis misalignment angle δ strictly satisfies equation (1), and therefore it can be known that the scale factor K and the input axis misalignment angle δ are coupled with each other, and the conversion of equation (1) can be derived:
K·cosδ=(V-V0)/ω (6)
if artificially based on the input-axis misalignment angle delta, a set of different tilt angles theta are applied to the gyroscopeiWhile maintaining the inclination angle thetaiWithout change, giving angular velocity ωjExcitation, we can get:
K·cos(δ+θi)=(Vij-V0i)/ωj (7)
the value (V) to the right of the equal sign in the formula (7)ij-V0i)/ωjCan be obtained by experimental data processing, wherein VijThe angle of inclination of the gyroscope is thetaiAngular velocity of the turntable is omegajWhen the voltage is measured, the output voltage value of the output shaft of the gyroscope,
<math> <mrow> <msub> <mi>V</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>J</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>V</mi> <mi>ij</mi> </msub> <mo>-</mo> <mfrac> <mi>K</mi> <mi>J</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>&omega;</mi> <mi>ij</mi> </msub> <mo>,</mo> </mrow> </math> to correspond to the tilt angle theta of the gyroscopeiAt this time, the corresponding output voltage V is setijWith input angular rate omegajThe slope between is represented by the letter "Ki"denotes, then KiComprises the following steps:
<math> <mrow> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> </mrow> </math>
<math> <mrow> <mo>=</mo> <mi>K</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&delta;</mi> <mo>+</mo> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mi>K</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&delta;</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>K</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&delta;</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mo>&lsqb;</mo> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>&rsqb;</mo> <mo>&CenterDot;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&delta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&delta;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, <math> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&delta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&delta;</mi> </mtd> </mtr> </mtable> </mfenced> </math> integrating all applied tilt angles theta for coupling coefficients between a gyroscope scale factor K and an input axis misalignment angle deltaiIn the case of (1), n are provided, and:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>M</mi> </mtd> <mtd> <mi>M</mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&delta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&delta;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>M</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>n</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
order:
<math> <mrow> <mi>H</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mn>12</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mn>22</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>M</mi> </mtd> <mtd> <mi>M</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <msub> <mrow> <mi>&theta;</mi> </mrow> <mn>1</mn> </msub> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>M</mi> </mtd> <mtd> <mi>M</mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
<math> <mrow> <mi>X</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&delta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&delta;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
Z = K 1 K 2 M K n
then
HX=Z (10)
Fitting by a least square method to obtain:
X=(HTH)-1HTZ (11)
to this end, the scale factor K and the input axis misalignment angle δ may be decoupled, and the values of K, δ determined:
<math> <mrow> <mi>&delta;</mi> <mo>=</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>K</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&delta;</mi> </mrow> <mrow> <mi>K</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&delta;</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>x</mi> <mn>2</mn> </msub> <msub> <mi>x</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>K</mi> <mo>=</mo> <msqrt> <msup> <mrow> <mo>(</mo> <mi>K</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&delta;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>K</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&delta;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>=</mo> <msqrt> <msup> <msub> <mi>x</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>x</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
the above is a mathematical principle of decoupling two parameters of the scale factor K and the input shaft misalignment angle δ, and is also a theoretical basis of design experiments.
However, in practical use, as shown in fig. 4, it is not known before the experiment in which direction the actual input axis misalignment angle δ is deviated from the input reference axis, and it is difficult to tilt the gyroscope by the angle θiExactly along the direction of the input axis misalignment angle delta. Therefore, in practical experiments, a coordinate system is arbitrarily selected on the gyroscope, and it is generally recommended that the axes of the gyroscope form the coordinate system: the OZ axis coincides with the input reference axis IR, OX and OY are perpendicular to each other in the gyro mounting plane, and the positive directions of the three axes satisfy OX × OY ═ IA. Then, as shown in fig. 4, the gyroscope input axis misalignment angle δ is projected onto two perpendicular coordinate planes XOZ, YOZ to obtain the projection angles δxAnd deltayFrom the coordinate system, two projection angles δ can be determinedxAnd deltayAccording to the decoupling principle of the scale factor and the misalignment angle of the input shaft, at two projection angles delta respectivelyxAnd deltayIn the direction of (a) is superimposed with a gyroscope inclination angle thetaiThe scale factor K and the projection angle delta can be respectively setxScale factor K and projection angle deltayDecoupling, finally according to two projection angles deltaxAnd deltayCalculating a gyroscope input axis misalignment angle delta; meanwhile, in order to effectively eliminate the fixture error, after the projection angle is tested, the gyroscope needs to be rotated by 180 degrees for repeated testing, and the two results are added, so that the fixture error can be eliminated.
Therefore, in the present invention, four states are generally required to be tested, a certain inclination angle between the gyroscope mounting reference plane and the turntable plane is defined, the OY axis is kept parallel to the turntable plane, the state is a first state, the gyroscope is rotated clockwise 180 ° in the mounting plane to be a second state, then rotated clockwise 90 ° to be a third state, and rotated clockwise 180 ° to be a fourth state, and the scale factors corresponding to the first, second, third and fourth states are respectively set to be Kone、Ktwo、Kthree、KfourInput axis misalignment angle deltaone、δtwo、δthree、δfourThe value of the gyro scaling factor K is then finally calculated:
K = K one + K two + K three + K four 4 - - - ( 14 )
calculating the value of the gyroscope input axis misalignment angle δ: as shown in FIG. 4, the projection of the gyroscope input axis misalignment angle δ in the XOZ plane is δxProjection in the YOZ plane is δyAnd then:
<math> <mrow> <msub> <mi>&delta;</mi> <mi>x</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>one</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>two</mi> </msub> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>&delta;</mi> <mi>y</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>three</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>four</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
the final available gyroscope input axis misalignment angle δ then has the value:
<math> <mrow> <mi>&delta;</mi> <mo>=</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <msqrt> <msup> <mrow> <mo>(</mo> <mi>tan</mi> <msub> <mi>&delta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>tan</mi> <msub> <mi>&delta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
compared with the prior art, the invention has the advantages that:
(1) the data processing model applied by the invention is not subjected to small-angle approximation, the relation between parameters is strict, no approximation error is contained, the error caused by cos delta 1 and sin delta is avoided, and the precision of the tested parameters is very high. The method is particularly suitable for gyroscopes with lower precision, such as microminiature, low-cost silicon micro-gyroscopes, quartz gyroscopes, low-precision optical fiber gyroscopes and the like.
(2) Four installation states of the gyroscope are utilized in the experiment, and the positioning error of the clamp can be effectively eliminated.
(3) The method has strong operability, can simultaneously decouple and calculate two parameters of the scale factor K and the input shaft misalignment angle delta in one experiment, saves the experiment preparation work and preparation time, and ensures that the test environments of the K value and the delta value, such as temperature, air pressure, humidity and the like, are the same.
Drawings
FIG. 1 is a schematic illustration of the gyroscope axes and input axis misalignment angle specified under test in accordance with the present invention;
FIG. 2 is a schematic diagram of the mounting of a gyroscope for IEEE standard scale factor testing;
FIG. 3 is a schematic view of the mounting of a gyroscope for IEEE standard testing of input axis misalignment angles;
FIG. 4 is a schematic illustration of the mounting of a gyroscope for testing scale factors and input axis misalignment angles in accordance with the present invention;
FIG. 5 is a flow chart of the test of the present invention.
Detailed Description
The specific implementation method of the present invention is described in detail below with reference to fig. 4 and 5:
the test method comprises two parts of turntable experiment and data processing. The axes of the gyroscope are specified as: the OZ axis is coincident with the input reference axis IR, OX and OY are mutually perpendicular in a gyroscope mounting plane, generally OX is parallel to the output shaft, and the positive directions of three axes meet the regulation that OX multiplied by OY is IA;
the turntable experiment of the test method can utilize a three-axis turntable and also can utilize a single-axis rate turntable to cooperate with equipment capable of providing an inclination angle, and the preparation work comprises the following steps: the environmental temperature is required to be within 15-35 ℃, the relative stability is kept, the temperature variation does not exceed +/-2 ℃, the relative humidity is within 20-80 percent, and the atmospheric pressure is not abnormal; the test workbench is required to be installed on an independent foundation and has an accurate geographic latitude angle and a geographic north reference; the frequency and amplitude of the base vibration, the magnetic field of the environment should meet the requirements of the tested specification. The gyroscope is arranged in a fixture on the test rotary table, and the positioning precision in each test is ensured by the precision of the test workbench and the mounting fixture. The axis of the turntable is parallel to the ground vertical line, the alignment precision is within a plurality of angular divisions, and the gyroscope can be fixed on the turntable through a mounting fixture. If said turntable is a single axis turntable, the mounting fixture is required to have the following functions: firstly, the gyroscope can be fixed on the rotary table, secondly, the included angle theta relative to the rotary shaft of the rotary table can be adjusted in a quite large range, such as 90 degreesiThirdly, the clamp can rotate by 90 degrees in the gyroscope installation plane, and the functions of the first step and the second step are repeated; if the turret is a two-axis or three-axis turretOnly the gyroscope needs to be fixed on the turntable by the fixture, and the inclination angle thetaiThe adjustment of (2) is realized by the inner frame of the rotary table. The turntable experiment comprises the following specific steps:
(1) mounting a gyroscope by using a single-axis turntable and a clamp or a three-axis turntable so that a gyroscope mounting reference plane and a turntable surface form a thetaiAt an angle of inclination of 5 DEG and allowing the gyroscope to be sequentially displaced at different angles theta with respect to the axis of rotation of the turntableiFixed on a turntable when thetaiWhen the change is carried out, the OY axis is kept parallel to the surface of the turntable, and the state is defined as a state I;
(2) setting sampling interval time and sampling times, switching on a power supply of the gyroscope, preheating for 20 minutes, starting to test data after the working state of the gyroscope is stable, keeping the gyroscope in the working state in the whole experiment process, and powering off until the experiment is finished;
(3) selecting thetaiValue of (a), thetaiGenerally greater than 5 DEG and less than 75 DEG, when thetaiSmaller, take θiShould be close, i.e. thetaiThe spacing is smaller when thetaiWhen larger, take thetaiShould be sparse, i.e. thetaiThe interval is larger, and usually 9 theta are takeniA value of (d);
(4) calculating the maximum input angular velocity omega bearable by a gyroscopemax=ωm/cosθiWherein ω ismIs the range of the gyroscope. At negative maximum input angular velocity (-omega)max) Maximum input angular velocity to positive (+ ω)max) Between the input angular rates omegajGenerally, when the speed is low, the selected dense rate is selected, when the speed is high, the selected sparse rate is selected, and in the range of the input angular rate in the forward rotation direction and the reverse rotation direction, not less than 11 angular rate gears are respectively selected, wherein the maximum input angular rate which can be borne by a gyroscope is included;
(5) before the rotary table rotates, testing the average value output by the gyroscope when the rotary table is static; the turntable positively rotates, the output of the gyroscope is tested and recorded, the gyroscope stops rotating, and the average value of the output when the gyroscope is static is tested; and (4) reversely rotating the rotary table, testing and recording the output of the gyroscope, stopping the rotation, and testing the average value output when the gyroscope is static. The input angular rate of the rotary table is changed from small to large;
(6) calculating the average value of the gyroscope output when the turntable is static before and after the start and the end of the test of each input angular velocity, removing the average value from the actually measured output average value of the gyroscope corresponding to the input angular velocity, and storing the average value as the gyroscope output value applied during data processing;
(7) varying thetaiRepeating steps 4 to 8;
(8) the gyroscope is rotated clockwise 180 degrees in the installation plane of the gyroscope, and the gyroscope can be sequentially rotated by different angles theta relative to the rotating shaft of the turntableiFixing on the turntable, keeping the OX axis parallel to the surface of the turntable, defining the state as a state II, and repeating the steps 4 to 9;
(9) rotating the gyroscope 90 DEG clockwise in the mounting plane thereof and enabling the gyroscope to rotate in sequence at different angles theta relative to the axis of rotation of the turntableiFixing on the turntable, keeping the OY axis parallel to the surface of the turntable, defining the state as state three, and repeating the steps 4 to 9;
(10) the gyroscope is rotated clockwise 180 degrees in the installation plane of the gyroscope, and the gyroscope can be sequentially rotated by different angles theta relative to the rotating shaft of the turntableiFixing on the turntable, keeping the OX axis parallel to the turntable surface, defining the state as state four, and repeating the steps 4 to 9;
(11) processing data according to recorded different tilt angles theta of gyroscopeiOutput voltage VijWith input angular rate omegajThe values of the gyroscope scale factor K and the input axis misalignment angle δ are accurately solved.
After data acquisition, a specific implementation method of a data processing algorithm is realized by using a computer, and the steps of data processing are described in detail in conjunction with fig. 4 and 5 as follows:
(1) collecting data corresponding to a first state;
(2) collecting a first tilt angle theta corresponding to the current stateiThe data packet of (1);
(3) calculating the current tilt angle thetaiLower jth input angular rate ωijAverage value of time-of-flight gyroscope output
<math> <mrow> <mover> <msub> <mi>V</mi> <mi>ij</mi> </msub> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>P</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>V</mi> <mi>jP</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula:
Vjp-the pth output of the gyroscope;
n-number of samples.
(4) And adding the average value output by the gyroscope at the beginning of the test and the average value output by the gyroscope at the end of the test to average, and determining the average value output by the gyroscope when the rotary table is static:
<math> <mrow> <mover> <msub> <mi>V</mi> <mi>r</mi> </msub> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mover> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>&OverBar;</mo> </mover> <mo>+</mo> <mover> <msub> <mi>V</mi> <mi>e</mi> </msub> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula:
Figure A20061001156000134
-average value of gyroscope output when the turret is stationary;
Figure A20061001156000141
-average value of gyroscope output when the turret is stationary before rotation;
-average value of gyroscope output when the turntable is stationary after rotation;
(5) the average value of the output is used for subtracting the average value of the output of the gyroscope when the rotary table is static, and the inclination angle theta of the gyroscope is calculatediAt the j input angular rate ωijTime of flight output value vij
<math> <mrow> <msub> <mi>V</mi> <mi>ij</mi> </msub> <mo>=</mo> <mover> <msub> <mi>V</mi> <mi>ij</mi> </msub> <mo>&OverBar;</mo> </mover> <mo>-</mo> <mo>-</mo> <mover> <msub> <mi>V</mi> <mi>r</mi> </msub> <mo>&OverBar;</mo> </mover> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula:
-for the jth input angular rate ωjOutput value of time gyro
(6) The established gyroscope input and output relation model is as follows:
Vij=Ki·ωij+V0i (21)
in the formula:
Ki-angle of inclination θiSlope representation of corresponding output voltage versus input angular velocity
V0iCorresponding to the gyroscope tilt angle thetaiFitting zero position of
Fitting the current inclination angle theta by using a least square methodiLower, corresponding output voltage magnitude VijWith input angular rate omegaijThe slope therebetween represents KiI.e. the magnitude of the ratio. Solving for K by least square methodi、V0iObtaining:
<math> <mrow> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>&omega;</mi> <mi>ij</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>V</mi> <mi>ij</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mi>J</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>&omega;</mi> <mi>ij</mi> </msub> <mo>&CenterDot;</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>V</mi> <mi>ij</mi> </msub> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msubsup> <mi>&omega;</mi> <mi>ij</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mfrac> <mn>1</mn> <mi>J</mi> </mfrac> <msup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>&omega;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>V</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>J</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>V</mi> <mi>ij</mi> </msub> <mo>-</mo> <mfrac> <mi>K</mi> <mi>J</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>&omega;</mi> <mi>ij</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula:
j-number of input angular rates
(7) Collecting data corresponding to other tilt angles thetaiRepeating steps 3 to 6, and fitting the data packet at each inclination angle theta by using a least square methodiCorresponding output voltage magnitude VijWith input angular rate omegajThe slope therebetween represents Ki
(8) Considering that the values of the actual scale factor K and the input axis misalignment angle delta of the gyroscope are stable and unchanged, according to a derivation calculation formula: k is a radical ofi=k·cosδ·cosθi-k·sinδ·sinθiEach slope obtained in step 7 represents KiEstablishing information about the utilization of the respective inclination angles thetaiTrigonometric function pair [ cos θ ]i -sinθi]Composed matrix
<math> <mrow> <mi>H</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mn>12</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mn>22</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>M</mi> </mtd> <mtd> <mi>M</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>M</mi> </mtd> <mtd> <mi>M</mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>`</mo> </mrow> </math> Scaling factor to input shaft misalignment angle coupling coefficient
<math> <mrow> <mi>X</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&delta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&delta;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>`</mo> </mrow> </math> Matrix with slope representing composition Z = K 1 K 2 M K n Fitting the linear matrix model of the three components by least square methodShown in the course of an experiment <math> <mrow> <mi>X</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&delta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&delta;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math> A stable value of (d);
(9) by <math> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>cos</mi> <mi>&delta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>K</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&delta;</mi> </mtd> </mtr> </mtable> </mfenced> </math> Solving the equation to calculate the scaling factor K corresponding to the first stateoneAnd input shaft misalignment angle deltaoneA value of (d);
(10) collecting data of the second state, repeating the steps 2 to 9, solving the equation to calculate the scale factor K corresponding to the first statetwoAnd input shaft misalignment angle deltatwoA value of (d);
(11) collecting data of state three, repeating steps 2 to 9, solving equation to calculate scale factor K corresponding to first statethreeAnd input shaft misalignment angle deltathreeA value of (d);
(12) collecting data of state four, repeating steps 2 to 9, solving equation to calculate scale factor K corresponding to first statefourAnd input shaft misalignment angle deltafourA value of (d);
(13) calculating the value of the gyroscope scale factor K:
K = K one + K two + K three + K four 4 - - - ( 14 )
(14) calculating the value of the gyroscope input axis misalignment angle δ: as shown in FIG. 4, the projection of the gyroscope input axis misalignment angle δ in the XOZ plane is δxProjection in the YOZ plane is δyThen, then
<math> <mrow> <msub> <mi>&delta;</mi> <mi>x</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>one</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>two</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>&delta;</mi> <mi>y</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>three</mi> </msub> <mo>+</mo> <msub> <mi>&delta;</mi> <mi>four</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
The final value of the gyroscope input axis misalignment angle δ is then:
<math> <mrow> <mi>&delta;</mi> <mo>=</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <msqrt> <msup> <mrow> <mo>(</mo> <mi>tan</mi> <msub> <mi>&delta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mrow> <mi>tan</mi> <mi>&delta;</mi> </mrow> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>

Claims (3)

1. A precise decoupling test method for gyroscope scale factor and input axis misalignment angle is characterized in that:
(1) mounting a gyroscope to enable a gyroscope mounting reference surface and the rotary table to form an initial inclination angle thetaiAnd the gyroscope can be sequentially arranged at different angles theta relative to the rotating shaft of the rotary tableiWhen the device is fixed on the rotary table, the OY axis is kept parallel to the surface of the rotary table, and the state is a first installation state;
(2) at the initial theta of said step (1)iUnder the angle, determining the input angular rate, sequentially testing and recording the static time before the rotation of the rotary table,Average values of gyroscope outputs when the rotary table rotates forwards, stops rotating and stands still, rotates reversely and stands still;
(3) changing the tilt angle theta of the gyroscope of the step (1)iRepeating the experiment of the step (2);
(4) sequentially and respectively changing the installation state of the gyroscope into a second state, namely clockwise rotating the gyroscope in an installation plane by 180 degrees and a third state, namely clockwise rotating the gyroscope by 90 degrees and clockwise rotating the gyroscope by a fourth state, namely clockwise rotating the gyroscope by 180 degrees, and then repeating the experiments of the steps (1) to (3);
(5) the measured data is processed to determine values for the gyroscope scale factor and the input axis misalignment angle.
2. The method of claim 1 for accurate decoupled testing of gyroscope scale factor and input axis misalignment angle, wherein: the parameter model used for data processing in the step (5) does not contain small-angle approximate errors, data in four states are processed in a combined mode, clamp errors can be eliminated, and the data processing specifically comprises the following steps:
(1) collecting output data corresponding to the inclination angle and the input angular velocity of each gyroscope in the four installation states;
(2) under the excitation of each input angular rate, subtracting the average value of output data of the gyroscope acquired when the rotary table rotates from the average value of output data acquired when the angular speed is input and the rotary table is static, and using the average value as an output value for calculating the gyroscope when the parameter model is applied to calculation;
(3) according to the establishment of a gyroscope input-output relation model, fitting a slope representation between the output voltage and the input angular rate at each inclination angle by adopting a least square method;
(4) establishing a linear matrix model representing the inclination angle, the coupling coefficient and the slope of each gyroscope, and fitting the coupling coefficient value in the whole experiment;
(5) decoupling calculation is carried out, and a scale factor and an input shaft misalignment angle are separated;
(6) combining the calculation results of the four states, eliminating the fixture error and calculating the actual parameter value.
3. A method of accurately decoupling testing of gyroscope scale factors and input axis misalignment angles as claimed in claim 1, characterized in that: the gyroscope inclination fixing method comprises the following steps: the gyroscope is inclined and fixed on the single-shaft turntable to rotate by using the inclined plane fixture; or the gyroscope is fixed on the three-axis turntable, and then the inner frame of the three-axis turntable is utilized to enable the gyroscope to incline and rotate around the rotating shaft of the outer frame of the three-axis turntable.
CNB2006100115602A 2006-03-27 2006-03-27 Precise decoupling detecting method for gyroscope scale factor and input shaft default angle Expired - Fee Related CN100367004C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100115602A CN100367004C (en) 2006-03-27 2006-03-27 Precise decoupling detecting method for gyroscope scale factor and input shaft default angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100115602A CN100367004C (en) 2006-03-27 2006-03-27 Precise decoupling detecting method for gyroscope scale factor and input shaft default angle

Publications (2)

Publication Number Publication Date
CN1821721A true CN1821721A (en) 2006-08-23
CN100367004C CN100367004C (en) 2008-02-06

Family

ID=36923198

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100115602A Expired - Fee Related CN100367004C (en) 2006-03-27 2006-03-27 Precise decoupling detecting method for gyroscope scale factor and input shaft default angle

Country Status (1)

Country Link
CN (1) CN100367004C (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256078B (en) * 2008-03-25 2010-07-14 浙江大学 Method for eliminating acceleration effect of optic fiber gyroscope graduation factor
CN101246024B (en) * 2008-03-26 2010-09-01 北京航空航天大学 Method for external field fast calibrating miniature multi-sensor combined navigation system
CN102003968A (en) * 2010-09-03 2011-04-06 哈尔滨工程大学 Single-axle table calibration method for fiber optic gyro strapdown inertial navigation system
CN101424543B (en) * 2008-12-09 2011-04-20 中国科学院长春光学精密机械与物理研究所 Measuring set and method of gyroscope phase response
CN102062589A (en) * 2010-12-16 2011-05-18 浙江省计量科学研究院 Fiber-optic gyroscope based angular displacement measuring device and method
CN101568801B (en) * 2006-12-20 2011-09-14 萨甘安全防护公司 Method for calibrating a scale factor in an axisymmetrical vibrating gyrometer
CN102353384A (en) * 2011-05-24 2012-02-15 北京大学 Measuring method and system for bandwidth and scale factors of micromechanical gyro
CN102393210A (en) * 2011-08-23 2012-03-28 北京航空航天大学 Temperature calibration method of laser gyro inertia measurement unit
CN102538822A (en) * 2011-12-20 2012-07-04 东南大学 Method for fast testing and calibrating dynamic characteristic of fiber optic gyroscope
CN102564456A (en) * 2011-12-29 2012-07-11 深迪半导体(上海)有限公司 Device and method for testing three-axis micro gyroscope
CN102749477A (en) * 2012-07-11 2012-10-24 浙江大学 Method for measuring angular deviation between surface and rotating shaft of turntable by utilizing fiber-optic gyroscope
CN103091662A (en) * 2013-01-09 2013-05-08 上海大唐移动通信设备有限公司 Positioning method and drive test terminal and hand-held terminal
CN103389112A (en) * 2013-07-16 2013-11-13 安徽北方芯动联科微系统技术有限公司 Testing device and testing method of mini triaxial gyroscope
CN103925930A (en) * 2014-04-17 2014-07-16 哈尔滨工程大学 Compensation method for gravity meter biax gyrostabilized platform course error effect
CN104713572A (en) * 2013-12-11 2015-06-17 中国航空工业第六一八研究所 Inertial navigation system dynamic testing method
CN105588583A (en) * 2016-03-18 2016-05-18 北京信息科技大学 Coupling error compensation method for double-shaft angular rate gyroscope
CN105841715A (en) * 2016-03-18 2016-08-10 北京信息科技大学 High-dynamic dual-axis angular-rate gyroscope, and error compensation for zero offset and scale factor
CN108168574A (en) * 2017-11-23 2018-06-15 东南大学 A kind of 8 position Strapdown Inertial Navigation System grade scaling methods based on speed observation
CN109813296A (en) * 2019-03-24 2019-05-28 浙江大学 A kind of angle measurement unit and method for eliminating optic fiber gyroscope graduation factor error
CN111230817A (en) * 2019-12-25 2020-06-05 中国航空工业集团公司北京航空精密机械研究所 Lock mechanism for single-shaft temperature control rotary table
CN111486871A (en) * 2020-04-27 2020-08-04 新石器慧通(北京)科技有限公司 Sensor detection method, sensor detection device, detection equipment and readable storage medium
CN112325901A (en) * 2020-09-28 2021-02-05 中国船舶重工集团公司第七0七研究所 Method for calculating azimuth gyroscope scale in platform type inertial navigation mooring state
CN112697168A (en) * 2020-11-27 2021-04-23 浙江大学 Measuring device and method for simultaneously measuring scale factor and misalignment angle of fiber-optic gyroscope
CN112762964A (en) * 2021-01-27 2021-05-07 广州小马智行科技有限公司 Calibration method, device and system for inertia measurement unit of automatic driving vehicle
CN113899324A (en) * 2021-11-08 2022-01-07 中国计量科学研究院 Multi-axis turntable perpendicularity error detection method based on single-axis laser gyro goniometer
CN113984088A (en) * 2021-10-11 2022-01-28 北京信息科技大学 Multi-position automatic calibration method, device and system for MEMS (micro electro mechanical System) inertial sensor
CN114061617A (en) * 2020-08-05 2022-02-18 上海傲世控制科技股份有限公司 Non-orthogonal dynamic calibration method for optical fiber gyroscope
CN115451932A (en) * 2022-09-16 2022-12-09 湖南航天机电设备与特种材料研究所 Multichannel gyroscope data synchronous acquisition and calculation method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975585B (en) * 2010-09-08 2012-02-01 北京航空航天大学 Strap-down inertial navigation system large azimuth misalignment angle initial alignment method based on MRUPF (Multi-resolution Unscented Particle Filter)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238216A (en) * 1991-01-23 1992-08-26 Sumitomo Electric Ind Ltd Calculating method for scale factor of gyroscope
US5076694A (en) * 1991-02-11 1991-12-31 Rockwell International Corporation In-flight scale factor calibration of ring laser gyro systems
US6778924B2 (en) * 2001-11-06 2004-08-17 Honeywell International Inc. Self-calibrating inertial measurement system method and apparatus

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568801B (en) * 2006-12-20 2011-09-14 萨甘安全防护公司 Method for calibrating a scale factor in an axisymmetrical vibrating gyrometer
CN101256078B (en) * 2008-03-25 2010-07-14 浙江大学 Method for eliminating acceleration effect of optic fiber gyroscope graduation factor
CN101246024B (en) * 2008-03-26 2010-09-01 北京航空航天大学 Method for external field fast calibrating miniature multi-sensor combined navigation system
CN101424543B (en) * 2008-12-09 2011-04-20 中国科学院长春光学精密机械与物理研究所 Measuring set and method of gyroscope phase response
CN102003968A (en) * 2010-09-03 2011-04-06 哈尔滨工程大学 Single-axle table calibration method for fiber optic gyro strapdown inertial navigation system
CN102003968B (en) * 2010-09-03 2012-03-14 哈尔滨工程大学 Single-axle table calibration method for fiber optic gyro strapdown inertial navigation system
CN102062589B (en) * 2010-12-16 2012-11-14 浙江省计量科学研究院 Fiber-optic gyroscope based angular displacement measuring device and method
CN102062589A (en) * 2010-12-16 2011-05-18 浙江省计量科学研究院 Fiber-optic gyroscope based angular displacement measuring device and method
CN102353384A (en) * 2011-05-24 2012-02-15 北京大学 Measuring method and system for bandwidth and scale factors of micromechanical gyro
CN102393210A (en) * 2011-08-23 2012-03-28 北京航空航天大学 Temperature calibration method of laser gyro inertia measurement unit
CN102393210B (en) * 2011-08-23 2014-07-02 北京航空航天大学 Temperature calibration method of laser gyro inertia measurement unit
CN102538822A (en) * 2011-12-20 2012-07-04 东南大学 Method for fast testing and calibrating dynamic characteristic of fiber optic gyroscope
CN102564456A (en) * 2011-12-29 2012-07-11 深迪半导体(上海)有限公司 Device and method for testing three-axis micro gyroscope
CN102564456B (en) * 2011-12-29 2014-12-03 深迪半导体(上海)有限公司 Device and method for testing three-axis micro gyroscope
CN102749477B (en) * 2012-07-11 2014-04-16 浙江大学 Method for measuring angular deviation between surface and rotating shaft of turntable by utilizing fiber-optic gyroscope
CN102749477A (en) * 2012-07-11 2012-10-24 浙江大学 Method for measuring angular deviation between surface and rotating shaft of turntable by utilizing fiber-optic gyroscope
CN103091662A (en) * 2013-01-09 2013-05-08 上海大唐移动通信设备有限公司 Positioning method and drive test terminal and hand-held terminal
CN103091662B (en) * 2013-01-09 2015-08-05 上海大唐移动通信设备有限公司 Localization method, drive test terminal and handheld terminal
CN103389112A (en) * 2013-07-16 2013-11-13 安徽北方芯动联科微系统技术有限公司 Testing device and testing method of mini triaxial gyroscope
CN104713572A (en) * 2013-12-11 2015-06-17 中国航空工业第六一八研究所 Inertial navigation system dynamic testing method
CN104713572B (en) * 2013-12-11 2017-10-27 中国航空工业第六一八研究所 A kind of inertial navigation system dynamic testing method
CN103925930A (en) * 2014-04-17 2014-07-16 哈尔滨工程大学 Compensation method for gravity meter biax gyrostabilized platform course error effect
CN103925930B (en) * 2014-04-17 2016-08-17 哈尔滨工程大学 A kind of compensation method of gravimeter biax gyrostabilized platform course error effect
CN105841715A (en) * 2016-03-18 2016-08-10 北京信息科技大学 High-dynamic dual-axis angular-rate gyroscope, and error compensation for zero offset and scale factor
CN105588583A (en) * 2016-03-18 2016-05-18 北京信息科技大学 Coupling error compensation method for double-shaft angular rate gyroscope
CN108168574A (en) * 2017-11-23 2018-06-15 东南大学 A kind of 8 position Strapdown Inertial Navigation System grade scaling methods based on speed observation
CN108168574B (en) * 2017-11-23 2022-02-11 东南大学 8-position strapdown inertial navigation system-level calibration method based on speed observation
CN109813296A (en) * 2019-03-24 2019-05-28 浙江大学 A kind of angle measurement unit and method for eliminating optic fiber gyroscope graduation factor error
CN109813296B (en) * 2019-03-24 2020-12-15 浙江大学 Angle measuring device and method for eliminating scale factor error of fiber-optic gyroscope
CN111230817A (en) * 2019-12-25 2020-06-05 中国航空工业集团公司北京航空精密机械研究所 Lock mechanism for single-shaft temperature control rotary table
CN111486871A (en) * 2020-04-27 2020-08-04 新石器慧通(北京)科技有限公司 Sensor detection method, sensor detection device, detection equipment and readable storage medium
CN114061617B (en) * 2020-08-05 2024-04-09 上海傲世控制科技股份有限公司 Non-orthogonal dynamic calibration method for fiber-optic gyroscope
CN114061617A (en) * 2020-08-05 2022-02-18 上海傲世控制科技股份有限公司 Non-orthogonal dynamic calibration method for optical fiber gyroscope
CN112325901A (en) * 2020-09-28 2021-02-05 中国船舶重工集团公司第七0七研究所 Method for calculating azimuth gyroscope scale in platform type inertial navigation mooring state
CN112325901B (en) * 2020-09-28 2022-09-16 中国船舶重工集团公司第七0七研究所 Method for calculating azimuth gyroscope scale in platform type inertial navigation mooring state
CN112697168A (en) * 2020-11-27 2021-04-23 浙江大学 Measuring device and method for simultaneously measuring scale factor and misalignment angle of fiber-optic gyroscope
CN112762964A (en) * 2021-01-27 2021-05-07 广州小马智行科技有限公司 Calibration method, device and system for inertia measurement unit of automatic driving vehicle
CN112762964B (en) * 2021-01-27 2024-03-15 广州小马智行科技有限公司 Calibration method, device and system of inertia measurement unit of automatic driving vehicle
CN113984088A (en) * 2021-10-11 2022-01-28 北京信息科技大学 Multi-position automatic calibration method, device and system for MEMS (micro electro mechanical System) inertial sensor
CN113984088B (en) * 2021-10-11 2024-01-26 北京信息科技大学 Multi-position automatic calibration method, device and system for MEMS inertial sensor
CN113899324B (en) * 2021-11-08 2023-09-05 中国计量科学研究院 Multi-axis turntable perpendicularity error detection method based on single-axis laser gyro goniometer
CN113899324A (en) * 2021-11-08 2022-01-07 中国计量科学研究院 Multi-axis turntable perpendicularity error detection method based on single-axis laser gyro goniometer
CN115451932A (en) * 2022-09-16 2022-12-09 湖南航天机电设备与特种材料研究所 Multichannel gyroscope data synchronous acquisition and calculation method and system
CN115451932B (en) * 2022-09-16 2024-05-24 湖南航天机电设备与特种材料研究所 Multichannel gyroscope data synchronous acquisition and calculation method and system

Also Published As

Publication number Publication date
CN100367004C (en) 2008-02-06

Similar Documents

Publication Publication Date Title
CN1821721A (en) Precise decoupling detecting method for gyroscope scale factor and input shaft default angle
CN101029902A (en) Non-oriented multi-position and high-precision calibrating method for inertial measuring unit
CN1818555A (en) Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling
CN1763477A (en) Mixed calibration method for Inertial measurement unit capable of eliminating gyro constant drift
CN101067628A (en) Vector correcting method for non-gyro accelerometer array mounting error
CN1145014C (en) Orientation angle detector
CN101029833A (en) Method for calibrating connected MEMS gyro dynamic error
CN108613686B (en) Automatic trimming method for vibrating gyroscope
CN1851406A (en) Gasture estimation and interfusion method based on strapdown inertial nevigation system
CN1934411A (en) Stage device
CN109813343B (en) Method for measuring initial alignment error of centrifugal machine
CN1862222A (en) Laser self-collimation zero reference error angle measuring method
CN106767902B (en) Star sensor principal point measuring device and method thereof
CN107631738B (en) Method for identifying imbalance of gyro flywheel couple
CN107741238B (en) Angular rate gyro testing device
CN1834606A (en) Method of measuring decentering of lens
CN101029828A (en) Positioning device, method of controlling positioning device, positioning control program, and computer-readable recording medium
CN107102653A (en) A kind of apparatus and method for the carry equipment angle over the ground for controlling unmanned plane
CN1854763A (en) Method of compensating tilt using two-axis geomagnetic sensor and acceleration sensor, and apparatus thereof
CN109959390B (en) Dual-position installation deviation compensation method for rotary modulation system
CN108645392B (en) Camera installation posture calibration method and device
CN1566914A (en) Dynamic balancing measuring method and high-frequency ratio hard support dynamic balancing arrangement
JP7300718B2 (en) Controllers, systems, methods and programs
CN1419116A (en) Method and device of horizontal rotary drop method for measuring contact angle
CN109405853B (en) Star sensor integrated calibration device and method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080206