CN1820190A - 用光纤对熔化物的温度进行校准和测量的方法与装置 - Google Patents

用光纤对熔化物的温度进行校准和测量的方法与装置 Download PDF

Info

Publication number
CN1820190A
CN1820190A CNA2004800194711A CN200480019471A CN1820190A CN 1820190 A CN1820190 A CN 1820190A CN A2004800194711 A CNA2004800194711 A CN A2004800194711A CN 200480019471 A CN200480019471 A CN 200480019471A CN 1820190 A CN1820190 A CN 1820190A
Authority
CN
China
Prior art keywords
optical fiber
temperature
signal
melt
reference temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800194711A
Other languages
English (en)
Other versions
CN100458386C (zh
Inventor
简·屈佩尔
马克·施特雷滕曼斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Electro Nite International NV
Original Assignee
Heraeus Electro Nite International NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Electro Nite International NV filed Critical Heraeus Electro Nite International NV
Publication of CN1820190A publication Critical patent/CN1820190A/zh
Application granted granted Critical
Publication of CN100458386C publication Critical patent/CN100458386C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

本发明涉及一种运用光纤获取测量信号的方法,该方法包括在光纤的一端安置具有已知参照温度的参照材料,参照材料被加热到至少达到其参照温度,达到参照温度时被纤维接收的信号然后被作为校准信号提供给测量装置并在那里与参照温度的理论数值相比较,其差值用于校准。本发明还涉及相应的装置及其用于校准或用于测定光纤的衰减。

Description

用光纤对熔化物的温度进行校准和测量的方法与装置
技术领域
本发明涉及一种用光纤获取校准测量信号的方法及其相应的测量装置。本发明还涉及一种用光纤测量熔融物质(熔化物)温度的方法,其测量装置及其应用。在此,熔化物应理解为纯金属熔体,如铁、铜、钢熔体或合金熔体,也可理解为冰晶石,盐或玻璃熔体。
背景技术
此类装置为已知的,在例如德国专利DE 119 34 229 A1中有所描述。文中,一辐射探测器被用于校准测量系统,一第二辐射探测器被用于测量由辐射源发出的辐射。
温度传感器的校准是已知的,在例如英国专利GB 2115 238 A和德国专利DE 195 32 077 A1中有所描述。文中,一个与热电偶尖端绝缘的参照材料被用于校准。这一必要的措施保证了热电偶的顺利运行并防止其毁坏。这种毁坏作用在例如美国专利US3,499,310中有所描述。文中清楚说明了热电偶用参照材料如涂层保护以防止其发生化学反应。
其他装置在例如日本专利JP 63-125906,美国专利US 4,576,486和US5,364,186中有所描述。
发明内容
本发明所要解决的问题是设计一种改进的用以平衡测量信号的方法,以及用于实现此方法的简单且性能可靠的相应装置。
本发明方法所遇到的问题解决如下,在光纤的一端安置一具有已知参照温度的参照材料,此参照材料被加热到至少达到其参照温度。当达到参照温度时,其信号被光纤接收,并作为标准信号被输入测量装置。在那里与参照温度的理论数值相对照,其差值用于校准。特别是,安置有参照材料的光纤的末端可浸没于熔化的金属,如熔化的钢或铁,来进行加热。原则上,信号接收经过已知途径进行。其中尤其是,校准信号由电压值转换为温度值并与参照温度的理论数值相对照。这里,参照材料直接安置于光纤的末端,即在光纤和参照材料间没有绝缘体,而此绝缘体在现有技术中是必需的。
本发明的温度测量方法包括,在本发明的校准过程之后或在校准过程之中,光纤浸没在熔化物中,所得光学信号作为熔化体的温度数值来估定。由于校准时间的紧凑,可得到高精度的温度测量结果。在每次温度测量前,不另增花费地进行校准是可能的。特别是,其优点在于,参照材料的参照温度比熔化物的熔点温度低,其有用性进一步体现于,参照材料被浸没于所测量的熔体,在那里被加热至参照材料的参照温度,之后测定熔体的温度。
有利的是,石英玻璃和/或蓝宝石可用来制作光纤。因此,可以在高温对熔化物进行测定。另外,将塑料纤维和/或石英玻璃纤维与蓝宝石纤维组合作为光纤是有用的。将塑料纤维与石英玻璃纤维组合也是可能的。
为防止熔化物产生过冷,例如,在冷却过程中,与参照材料相接触的纤维末端可被设置为处于振动。在熔化物冷却的过程中,此振动至少是间歇式的,优选在熔化物冷却的过程中一直振动。
本发明的方法可用于校准或用于确定光纤的衰减。
参照温度可以是纯金属的熔点温度,如果此材料被用作参照材料的话。如果用合金作为参照材料,则例如液相线温度,固相线温度或低共熔温度可用作参照温度。根据普朗克定律,可以外推校准曲线超过大于500℃。例如,使用银作为参照材料可在961.8℃进行校准,这样即使在大约1550℃的熔化铁中进行测量也可得到高精度。
根据本发明,用于平衡测量信号的装置包括一根光纤,一个纤维载体,一个与光纤相连接用以接收光纤的信号输出的测量装置;其特征是,一种已知其参照温度的参照材料被直接安置于光纤的一个末端,其特征还在于,测量装置配有一个比较器用于对参照材料处于参照温度时从纤维接收的信号输送给测量装置作为校准信号,与相应于参照温度理论值的信号作比较,还提供一个估定单元用于输出和/或处理二者的差值以达到校准。通过将参照材料直接安置于光纤末端,由简单构造可在测量中得到高精度。
运用光纤测量熔体温度的装置,其中根据本发明的平衡装置具有一个将光纤浸没于熔体的浸没端和用于估定作为温度数据被接收的光学和/或电信号的估测元件,装置的问题被解决。
对此装置,参照材料至少部分覆盖光纤的末端,其至少覆盖末端面和/或参照材料沿着光纤的末端安置是有用的。因为采用这种方式,可接收到光学信号。此外,光纤末端留有至少部分自由表面以接收辐射是有用的。尤其有利的是参照材料可制成如致密料,如线,如线网,或管子,光纤可由石英玻璃和/或蓝宝石制备。另外,光纤和塑料纤维和/或石英纤维组合使用也是有利的。
为防止熔化物产生过冷,一个振动器被安装于光纤或它的载体或纤维导向器上。光纤,特别是其与参照材料接触的末端可由此振动器提供振动。
根据此发明,此装置可用于校准或用于确定光纤的衰减(信号传播损失)。术语“平衡”在此处指校准或衰减确定。
本发明在下文通过实施例更详细地说明。
附图说明
图1为一个测量装置的安装示意图;
图2为通过光纤的详细横截面图;
图3为本发明的测量或校准装置的浸没端的横截面;以及
图4为测量曲线图。
具体实施方式
光纤1的一端与测量装置2连接。载体可以是纸板或其它材料如钢或陶瓷。测量装置2探测由光纤1导出的信号并可将信号与理论参照数值进行对比。据此,从安装于光纤1另一端的参照材料13产生的一个数值,该数值被与存储于测量装置2中的理论参照数值如参照温度进行对比。两个数值之间可能的差别被用于校准测量装置。相应的,测量装置2具有一个估定单元用于输出和/或处理数据。在此情况下,一种纯金属,例如银,可用作参照材料3,此金属的熔点温度,例如银为961.8℃,可用作参照温度。
光纤1由载体4托住并由此载体引导。对可自由移动的光纤1,其可被装穿在套环5内通到测量装置2。安置于光纤1的一个末端的参照材料3被浸没到熔化金属6(例如在精炼炉中)中。熔化金属6例如是熔化的铁或钢。在此情况下,参照材料3例如是银。参照温度是银的熔点温度。其熔点温度比熔化的铁或钢低。参照材料3的光纤1末端在载体4的帮助下被浸没入熔化金属6。在那里,参照材料3首先被加热到其熔点温度。以此方法,通过光纤1输送到测量装置2的信号与相应的理论信号数值进行对比并以此校准测量装置2。参照材料3被熔化后,进一步加热使温度达到溶化金属6的熔点温度。对由此而得的被光纤1传递到测量装置2的信号进行估定,例如转化为与温度相应的电信号,然后在测量装置2中进一步加工。电信号可被转化为光学显示的温度数值。据此,测量装置2首先被校准,然后溶化金属6的实际温度被测定。在图4中,通过这些连续处理步骤绘制了温度曲线。在这里,第一个达到的曲线平顶数值代表了参照材料3(银)的熔点温度,下一个曲线平顶数值代表了溶化金属6的温度。图中未示出的一个振动装置刚性安装在载体4上。此类振动装置是已知的,在例如德国专利DE 44 33 685 A1中有所叙述。
图2示出了意图被浸没入熔化金属的光纤1的末端的横截面。光纤1有一个套管(包壳)7和一个核芯8。在其末端,光纤1的侧面和末端面被参照材料3包围。参照材料3的放置方式对本领域的普通技术人员而言是公知的。实现托置的方法,例如,如图3所示的方式,在一个一段封闭的石英管9内,包围住浸没在参考材料3中的光纤1的末端。此处的光纤1通过一陶瓷管10,例如通过Alsint陶瓷管导入。陶瓷管10通过胶泥,例如LiSiO2胶泥14固定在另外两个同心安排的陶瓷管11,12中。这些陶瓷管也可由Alsint陶瓷管构成。陶瓷管10,11,12固定在接触块13上,通过它导入光纤1。接触块13与载管4(图3中未示出)连接。这里,陶瓷管12例如通过胶泥固定在载管4的开口端。陶瓷管12的开口末端用胶泥14,15粘结而被封闭。在陶瓷管11内,胶泥16也可被用于固定置于其中的元件。除其它作用外,接触块13及其连接的部件17亦提供光学连接。

Claims (18)

1.用光纤获取校准测量信号的方法,其特征在于,具有已知参照温度的参照材料(3)被安置于光纤(1)的一端,其中参考材料(3)被加热达到至少其参考温度,其中当达到参照温度时由纤维(1)接收的信号被传输入测量装置(2)作为校准信号,在那里与参考温度的理论数值作比较,其差值用于校准。
2.根据权利要求1所述的方法,其特征在于,所述的校准信号是将电压值被转换为温度数值后再与参考温度的理论数值相比较。
3.用光纤(1)测定熔化物温度的方法,其中在根据权利要求1和2所述的方法校准后,光纤(1)被浸没于熔化物(6)中,所得光学信号被估定为熔化物(6)的温度数值。
4.根据权利要求1至3的任何一项所述的方法,其特征在于,参照材料(3)的参照温度比熔化物(6)的熔点温度低。
5.根据权利要求3或4所述的方法,其特征在于,参照材料(3)被浸没于待测定的熔化物(6)中,在其中被加热至参照材料(3)的参照温度,然后测定熔化物(6)的温度。
6.根据权利要求1至5的任何一项所述的方法,其特征在于,石英玻璃或蓝宝石可用作光纤(1)。
7.根据权利要求1至5的任何一项所述的方法,其特征在于,塑料纤维和/或石英玻璃纤维与蓝宝石的组合可用于制作光纤(1)。
8.根据权利要求1至7的任何一项所述的方法,其特征在于,光纤的末端被施加至少是间歇式的振动。
9.根据权利要求1至8的任何一项所述的方法,其特征在于,此方法可用于校准或用于测定光纤的衰减。
10.用于平衡测量信号的装置,包括光纤,光纤载体,与光纤连接的用于接收光纤发出的信号的测量装置,其特征在于,具有已知参照温度的参照材料(3)被安置于光纤(1)的一端,测量装置(2)有一个比较器用于对参照材料(3)处于参照温度时从光纤(1)接收信号,此信号被输送到测量装置(2),与参照温度的理论数值相对应的信号做比较从而得到校准信号,还提供测定单元用于差值的输出和/或处理以实现校准。
11.用光纤测定熔化物温度的装置,其中根据权利要求10中的平衡装置,具有一用于将光纤(1)浸没于熔化体(6)的浸没端,和一个估定单元,用于估定所接收的光学和/或电信号作为温度的数值。
12.根据权利要求10或11所述的装置,其特征在于,参照材料(3)至少部分覆盖光纤(1)的末端,至少覆盖其末端面和/或参照材料(3)是沿着光纤(1)的末端设置的。
13.根据权利要求10至12的任何一项所述的装置,其特征在于,光纤(1)的末端至少具有部分自由表面。
14.根据权利要求10至13的任何一项所述的装置,其特征在于,参照材料(3)的构成形式可以是致密块,线,线网,或管子。
15.根据权利要求10至14的任何一项所述的装置,其特征在于,光纤(1)由石英玻璃或蓝宝石形成。
16.根据权利要求10至14的任何一项所述的装置,其特征在于,光纤(1)可以由塑料纤维和/或石英玻璃纤维与蓝宝石组合形成。
17.根据权利要求10至16的任何一项所述的装置,其特征在于,光纤与振动器连接。
18.根据权利要求10至17的任何一项所述的用途,用于校准或用于测定光纤的衰减。
CNB2004800194711A 2003-07-09 2004-06-24 用光纤对熔化物的温度进行校准和测量的方法与装置 Expired - Fee Related CN100458386C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10331125A DE10331125B3 (de) 2003-07-09 2003-07-09 Verfahren zum Abgleichen und Messen in Schmelzen mittels optischer Fasern sowie Vorrichtung dazu und deren Verwendung
DE10331125.4 2003-07-09

Publications (2)

Publication Number Publication Date
CN1820190A true CN1820190A (zh) 2006-08-16
CN100458386C CN100458386C (zh) 2009-02-04

Family

ID=32864518

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800194711A Expired - Fee Related CN100458386C (zh) 2003-07-09 2004-06-24 用光纤对熔化物的温度进行校准和测量的方法与装置

Country Status (14)

Country Link
US (1) US7197199B2 (zh)
EP (1) EP1642102B1 (zh)
JP (1) JP4677404B2 (zh)
KR (1) KR101050179B1 (zh)
CN (1) CN100458386C (zh)
AT (1) ATE528629T1 (zh)
AU (1) AU2004256174B2 (zh)
BR (1) BRPI0412384A (zh)
CA (1) CA2522366C (zh)
DE (1) DE10331125B3 (zh)
ES (1) ES2374269T3 (zh)
RU (1) RU2339923C2 (zh)
UA (1) UA82243C2 (zh)
WO (1) WO2005005946A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335729A (zh) * 2013-07-06 2013-10-02 哈尔滨威克科技有限公司 高精度红外测温传感器
CN103459996A (zh) * 2011-02-09 2013-12-18 西门子能量股份有限公司 对高温燃烧环境中的涡轮机部件进行温度测绘的设备及方法
CN103907002A (zh) * 2011-09-09 2014-07-02 法国国家放射性废物管理局 用于校准温度的设备和用于校准光纤温度传感器的温度以及定位光纤温度传感器的方法
CN106687782A (zh) * 2014-09-01 2017-05-17 明康有限公司 用于熔化的金属的光学的温度确定的方法以及用于执行这种方法的退绕装置
CN110763370A (zh) * 2018-07-26 2020-02-07 中国科学院金属研究所 一种用于金属熔体测温的W-Re电偶的校准方法
CN111551254A (zh) * 2019-02-11 2020-08-18 莫铂桑(北京)科技有限公司 一种精确定温的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005061675B3 (de) * 2005-12-21 2007-07-26 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Konverter mit einem Behälter zur Aufnahme geschmolzenen Metalls und einer Messvorrichtung zur optischen Temperaturbestimmung des geschmolzenen Metalls
GB2438214A (en) * 2006-05-19 2007-11-21 Heraeus Electro Nite Int Measuring a parameter of a molten bath
KR100810729B1 (ko) * 2006-08-16 2008-03-07 오리온광통신(주) 액체 온도 측정장치
DE102010020715A1 (de) 2010-05-17 2011-11-17 Heraeus Electro-Nite International N.V. Sensoranordnung zur Temperaturmessung sowie Verfahren zum Messen
DE102011012174B4 (de) 2011-02-23 2018-02-08 Heraeus Electro-Nite International N.V. Messgerät zur Messung von Parametern in Schmelzen
EP2538187A1 (en) * 2011-06-24 2012-12-26 Jyoti Goda An immersion type sensor for measuring temperature of molten metals and the like
US9574949B2 (en) 2012-02-17 2017-02-21 Roctest Ltd Automated system and method for testing the efficacy and reliability of distributed temperature sensing systems
US10145983B2 (en) * 2014-09-30 2018-12-04 Alstom Transport Technologies Vibration monitoring system and method
EP3051264B1 (en) * 2015-01-28 2017-11-15 Heraeus Electro-Nite International N.V. Immersion device for an optical fiber for measuring the temperature of a melt
AU2016203095B2 (en) * 2015-05-14 2020-10-22 Alstom Holdings Vibration monitoring system and method
US10324067B2 (en) 2015-05-14 2019-06-18 Alstom Transport Technologies Vibration monitoring system and method
GB2543319A (en) 2015-10-14 2017-04-19 Heraeus Electro Nite Int Cored wire, method and device for the production
US10520371B2 (en) * 2015-10-22 2019-12-31 Applied Materials, Inc. Optical fiber temperature sensors, temperature monitoring apparatus, and manufacturing methods
CN111765991A (zh) * 2020-06-18 2020-10-13 国家电网有限公司 压力型主变温度表指示检查装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499310A (en) * 1968-05-27 1970-03-10 Alcor Aviat Self-calibrating temperature sensing probe and probe - indicator combination
DE2758084A1 (de) * 1977-12-24 1979-06-28 Inst Fuer Kerntechnik & Energ Temperaturmessfuehler
US4576486A (en) * 1983-08-23 1986-03-18 The United States Of America As Represented By The Secretary Of Commerce Optical fiber thermometer
GB2155238B (en) * 1984-02-29 1987-11-25 Isothermal Tech Ltd Temperature sensing device with in-built calibration arrangement
JPS63125906A (ja) 1986-11-17 1988-05-30 Nippon Telegr & Teleph Corp <Ntt> 光フアイバカツプラの検査方法
CN2046210U (zh) * 1989-01-12 1989-10-18 清华大学 光纤黑体腔温度传感器
JP2897496B2 (ja) * 1991-11-15 1999-05-31 日本鋼管株式会社 消耗形光ファイバ温度計
US5364186A (en) * 1992-04-28 1994-11-15 Luxtron Corporation Apparatus and method for monitoring a temperature using a thermally fused composite ceramic blackbody temperature probe
CN2135776Y (zh) * 1992-07-28 1993-06-09 武汉工业大学 光纤温度传感器
JP2976781B2 (ja) * 1993-11-19 1999-11-10 日本鋼管株式会社 溶融金属温度計測方法及び装置
US6004031A (en) * 1993-11-30 1999-12-21 Nkk Corporation Temperature measuring device
US5403746A (en) * 1993-11-30 1995-04-04 Minnesota Mining And Manufacturing Company Sensor with improved drift stability
DE4433685C2 (de) * 1994-09-21 1997-02-13 Heraeus Electro Nite Int Sensoranordnung zur Temperaturmessung, Temperaturmeßeinrichtung und - verfahren
US5582170A (en) * 1994-12-01 1996-12-10 University Of Massachusetts Medical Center Fiber optic sensor for in vivo measurement of nitric oxide
CN2229658Y (zh) * 1994-12-08 1996-06-19 西安交通大学 光纤锁相温度传感器
DE19532077A1 (de) * 1995-08-31 1997-03-06 Harald Lehmann Miniaturisierte Fixpunktzelle aus Keramik zur in-situ-Kalibration von Temperatursensoren
DE19934299C2 (de) * 1998-07-28 2003-04-03 Steag Ast Elektronik Gmbh Verfahren und Vorrichtung zum Kalibrieren von emissivitätsunabhängigen Temperaturmessungen
CN2414407Y (zh) * 2000-03-22 2001-01-10 广东省化学工业学校 半导体吸收式光纤温度检测线性化实验装置
US6807324B2 (en) * 2002-05-21 2004-10-19 Weatherford/Lamb, Inc. Method and apparatus for calibrating a distributed temperature sensing system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459996A (zh) * 2011-02-09 2013-12-18 西门子能量股份有限公司 对高温燃烧环境中的涡轮机部件进行温度测绘的设备及方法
CN109990903A (zh) * 2011-02-09 2019-07-09 西门子能量股份有限公司 对高温燃烧环境中的涡轮机部件温度测绘的设备及方法
CN103907002A (zh) * 2011-09-09 2014-07-02 法国国家放射性废物管理局 用于校准温度的设备和用于校准光纤温度传感器的温度以及定位光纤温度传感器的方法
CN103907002B (zh) * 2011-09-09 2016-12-21 法国国家放射性废物管理局 用于校准温度的设备和用于校准光纤温度传感器的温度以及定位光纤温度传感器的方法
US9797786B2 (en) 2011-09-09 2017-10-24 Agence Nationale Pour La Gestion Des Dechets Radioactifs Device for calibrating temperature, and methods for calibrating the temperature of and positioning a fiber-optic temperature sensor
CN103335729A (zh) * 2013-07-06 2013-10-02 哈尔滨威克科技有限公司 高精度红外测温传感器
CN106687782A (zh) * 2014-09-01 2017-05-17 明康有限公司 用于熔化的金属的光学的温度确定的方法以及用于执行这种方法的退绕装置
US10228288B2 (en) 2014-09-01 2019-03-12 Minkon GmbH Method for optically determining the temperature of a molten metal, and reeling device for carrying out said method
CN106687782B (zh) * 2014-09-01 2019-08-20 明康有限公司 用于熔化的金属的光学的温度确定的方法以及用于执行这种方法的退绕装置
CN110763370A (zh) * 2018-07-26 2020-02-07 中国科学院金属研究所 一种用于金属熔体测温的W-Re电偶的校准方法
CN111551254A (zh) * 2019-02-11 2020-08-18 莫铂桑(北京)科技有限公司 一种精确定温的方法

Also Published As

Publication number Publication date
EP1642102B1 (de) 2011-10-12
UA82243C2 (uk) 2008-03-25
US7197199B2 (en) 2007-03-27
ES2374269T3 (es) 2012-02-15
JP4677404B2 (ja) 2011-04-27
US20060115205A1 (en) 2006-06-01
KR101050179B1 (ko) 2011-07-19
RU2339923C2 (ru) 2008-11-27
BRPI0412384A (pt) 2006-09-19
AU2004256174A1 (en) 2005-01-20
KR20060034275A (ko) 2006-04-21
JP2009513933A (ja) 2009-04-02
DE10331125B3 (de) 2004-09-16
EP1642102A1 (de) 2006-04-05
RU2006103789A (ru) 2006-06-10
ATE528629T1 (de) 2011-10-15
WO2005005946A1 (de) 2005-01-20
CA2522366C (en) 2011-11-01
CA2522366A1 (en) 2005-01-20
CN100458386C (zh) 2009-02-04
AU2004256174B2 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
CN100458386C (zh) 用光纤对熔化物的温度进行校准和测量的方法与装置
US6139180A (en) Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
US5360269A (en) Immersion-type temperature measuring apparatus using thermocouple
DE10331124B3 (de) Verfahren und Vorrichtung zum Messen der Abkühlkurve von Schmelzenproben und/oder der Aufheizkurve von Schmelzenproben sowie deren Verwendung
Napolitano et al. Viscosity of a standard soda-lime-silica glass
KR20080038455A (ko) 용융된 강철의 온도를 연속적으로 측정하는 방법 및, 온도측정용 파이프
US4995733A (en) Measurement sensor for the detection of temperatures in metal or alloy melts
US4647222A (en) Temperature measuring arrangement for a cast metal furnace
CN102192922A (zh) 高温材料导热系数测量装置
EP0515171A1 (en) Coated optical fibre
JP2897496B2 (ja) 消耗形光ファイバ温度計
KR19990082256A (ko) 용융용기에서 용융온도를 측정하기 위한 방법 및 장치
US4355907A (en) Apparatus for picking up a molten test sample of metal or metal alloys and measuring the cooling curve of said sample
Yagi et al. Temperature dependence of the refractive index of Al 2 O 3-Na 2 O-SiO 2 melts: Role of electronic polarizability of oxygon controlled by network structure
Jansson et al. The rheological properties of AgI and Li 2 SO 4 solid electrolytes, I.
KR20120128645A (ko) 금속 용융로의 전극 지지 암
CN1106574C (zh) 在玻璃熔液或盐熔液中进行电化学测量所用的装置
CA2102969C (en) Immersion-type temperature measuring apparatus using thermocouple
RU2029259C1 (ru) Устройство для измерения температуры расплава в тигле и способ измерения температуры расплава в тигле
Nellen et al. Mechanical and optical reliability of fiber Bragg grating strain and temperature sensors at high temperature
CN113740374A (zh) 一种基于电导率测量高温熔渣开始析晶温度的装置和方法
KR101577809B1 (ko) 용융금속 내 슬래그 두께 측정이 가능한 복합 프로브
DE102010034663A1 (de) Verfahren und Vorrichtung zur faseroptischen Füllstandsmessung von flüssigen Medien, insbesondere bei hohen Temperaturen, wie zum Beispiel flüssigen Metallen, in Behältern, wie zum Beispiel Schmelzöfen
SU1223107A1 (ru) Преобразователь деформаций дл пол ризационно-оптических дилатометров
CN118392342A (zh) 一种基于光栅光纤的炉管测温结构及其工作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090204

Termination date: 20210624

CF01 Termination of patent right due to non-payment of annual fee