CN1792042A - 对传输信道的信道评估的确定 - Google Patents

对传输信道的信道评估的确定 Download PDF

Info

Publication number
CN1792042A
CN1792042A CNA2004800138105A CN200480013810A CN1792042A CN 1792042 A CN1792042 A CN 1792042A CN A2004800138105 A CNA2004800138105 A CN A2004800138105A CN 200480013810 A CN200480013810 A CN 200480013810A CN 1792042 A CN1792042 A CN 1792042A
Authority
CN
China
Prior art keywords
channel
channel estimating
transmission channel
dpch
assessment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800138105A
Other languages
English (en)
Other versions
CN100574128C (zh
Inventor
伊莱亚斯·琼森
约翰·尼尔松
本特·林多夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of CN1792042A publication Critical patent/CN1792042A/zh
Application granted granted Critical
Publication of CN100574128C publication Critical patent/CN100574128C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

一种用于确定对通信系统中的第一传输信道的信道评估的方法。所述方法包括以下步骤:根据通过所述第一传输信道接收的符号来推导第一组信道评估;根据通过所述通信系统中的第二传输信道接收的符号来推导第二组信道评估;根据最小平方误差准则来确定所述第一组信道评估与第二组信道评估之间的缩放系数;将对所述第一传输信道的信道评估确定为经所确定的缩放系数缩放的对所述第二传输信道的信道评估。

Description

对传输信道的信道评估的确定
技术领域
本发明涉及对传输信道的信道评估的确定。本发明进一步涉及基于信道评估对信扰比的确定。
背景技术
在数字通信系统中,在不同节点(例如基站、移动电话)等之间传输代表信息的数字码元,以交换信息。
通常被称为OSI(开放系统互连)模型的分层模型通常被用于描述通信系统。通常将该模型的最下层称为物理信道,在该层中传输由比特组成的信息流。物理信道根据结构提供预定质量的服务。在简化的描述中,物理信道包括将比特格式设置为预定格式、编码、交织、载波调制、通过介质进行传输、下变频、解调制、去交织、以及前向纠错。另外,还有正确操作所需的许多其他功能,例如时间和频率的同步、信道评估。导频符号(pilot symbol)通常在物理信道上的信息码中传输。随后在接收机处使用这些导频符号,以获得同步并进行信道评估。该信道评估描述了信道(包括调制、发送机(TX)前端、介质、接收机(RX)前端以及解调器)怎样影响所传输的符号,并被用于在接收机中重构信号。
物理信道的两种类型为专用信道和公用(例如广播)信道。专用物理信道发送给一个接收机,而公用物理信道旨在供多个接收机使用。
基站通常发送多个物理信道。在时分多址(TDMA)系统中,使用时间(如果使用多个载波则使用时间和频率)对来自同一基站的物理信道进行分离。在频分多址(FDMA)系统中,仅使用频率来分离不同的物理信道。在扩频CDMA系统中,使用码来区分不同的用户(如果使用多个载波则区分不同的用户和频率)。
由于各种原因,许多这些物理信道都包含可以用于评估信道性能的导频符号。导频信号通常是在自己的信道中进行传输或将其嵌入在其他信道中进行传输的一个或更多个预定的符号,并可以使用该信号进行监督、控制、均衡、连续、同步或基准的目的。
在宽带码分多址(WCDMA)系统中,从基站传输公用导频信道(CPICH)的导频符号和在专用物理信道(DPCH)中传输的导频。
不管使用什么信道,由于在传输介质中通过所受到的影响,所接收的信号与发送的信号存在着各种方式的差异。在介质中,这种对射频信号的影响主要包括多径衰落、来自通过该介质的其他信号的干扰、以及热噪声。衰落是由信号与自身的反射或回波的相互作用引起的,并可能导致信号的巨大且高度局部的振幅和相位偏移。在无线电环境中,干扰通常是由不希望出现的其他无线电信号造成的。这些其他信号可以与所期望的信号使用相同的信道(有时称为共信道干扰),或使用相邻的信道(有时称为相邻信道干扰)。热噪声出现在所有的通信信道中,并导致所传输的信号的附加失真。因此,在接收机处接收的信号可以被认为是包括所期望的分量和有害分量(impairment component)的合成信号。该有害分量代表了从介质中穿过受到的影响,例如干扰和噪声。
在WCDMA中,由于公用导频信道(CPICH)通常非常强,所以在解调中通常被用作相位基准,从而获得精确的信道评估。然而,专用物理信道(DPCH)上的导频是信扰比(SIR)评估所必须的,例如在功控环、瑞克(RAKE)指部选择过程(特别是在与不同基站的软切换情况下)中使用,并且还用于信号强度测量,例如“同步(in-of-synch)”、“非同步(out-of-synch)”测量。由于DPCH是功率受控的,并且在DPCH上只有相对较少的导频符号,因此所获得的信道评估以及由此获得的SIR评估是有噪声的。
现有技术的系统主要基于使用信道评估用专用导频和干扰评估用导频信道的SIR评估。
这种现有技术系统通常要遭受有噪声的信道评估,该噪声信道评估导致系统性能在信道评估的精度和准确度方面下降,并因此导致系统性能在SIR评估的精度和准确度方面下降。低精度和准确度的SIR评估进而显著地影响通信系统的功率控制性能,并因此影响通信系统的容量。
发明内容
通过一种确定通信系统中的第一传输信道的信道评估的方法来解决上述和其他问题,该方法包括以下步骤:
a)根据通过所述第一传输信道接收的符号来推导第一组信道评估;
b)根据通过所述通信系统中的第二传输信道接收的符号来推导第二组信道评估;
c)根据最小平方误差准则确定所述第一组信道评估与第二组信道评估之间的缩放系数(scale factor);
d)将对所述第一传输信道的信道评估确定为经所确定的缩放系数缩放的对所述第二传输信道的信道评估。
因此,通过使用对两个信道的评估,并确定与两个信道的信道评估相关的缩放系数,改进了对于所述信道中的一个信道的信道评估。因此,该方法利用这样的事实:信道之间的差异基本可以由缩放系数(也可称为增益补偿)描述。结果,通过确定对缩放系数的评估,可以提供改进的对信道评估的评估。
通过采用最小平方误差准则来评估缩放系数,可以获得高精度的评估。本方法的进一步的优点是它仅需要很低的计算复杂性,并可以以节约成本、提高功效的方式来实现它,例如作为数字信号处理(DSP)实现。
具体地,由于为满足功率控制定时的要求,通常应该非常快地进行SIR评估,所以有利地可以在SIR评估的情况中使用确定信道评估的低复杂性的方法。
应该注意,上述方法提供了独立于任何干扰评估的评估,但在某些实施例中,可以使用干扰评估以获得优势。
此外,应该注意,上述基于最小二乘法的方法也可以借助于线性运算实现,从而显著减少所需的复杂性。
在一个实施例中,第一传输信道和第二传输信道是无线电传输信道,但本领域技术人员应该意识到,这些信道可以是其他传输信道。传输信道的示例包括电话传输信道、移动电话传输信道、局域网传输信道等。该信道还可以是与相位阵列天线(phased array antenna)元件或来自波束成形器的波束有关的无线电信道。
具体地,本发明人已经意识到将本发明应用于WCDMA中的下行链路DPCH的信道评估是有优势的。因而,在优选实施例中,第一传输信道是WCDMA系统中的专用物理信道(DPCH),第二传输信道是WCDMA系统中的公用导频信道(CPICH)。
在优选实施例中,确定缩放系数的步骤进一步包括确定目标函数的最小值,该目标函数包括误差项,所述误差项包括平方误差分布(各自对应于多个传播延迟中的一个)的和,各所述误差分布对应于通过利用经缩放系数缩放的第二传输信道的信道评估替换第一传输信道的信道评估而引入的误差。因此,由于缩放系数是根据用于单个传播延迟或瑞克接收机中的指部的多个单独信道评估而评估的,因而优点是信道评估是高精度地确定的。应注意,信道之间的缩放系数基本上独立于传播延迟。
在更优选的实施例中,各所述误差分布由各自的加权系数进行了加权。优选地,所述加权系数是响应于对应传播延迟的干扰分布而选出的。
此外应注意,在许多通信系统中,由信道载运的信息被组织在多个时隙(其被分组成连续的帧)中。各时隙可由有效载荷和包括导频符号、传输功率控制(TPC)命令等的附加信息组成。在一个示例性通信系统中,取决于时隙的类型,时隙可以具有0.625毫秒的时长,并包括可变的位数。两个相邻时隙之间的增益补偿取决于接收机在先前时隙期间传输的TPC命令。因此,可以并入该知识以提高增益补偿评估,并因此提高SIR评估性能。因而,在另一优选实施例中,目标函数还包括依从于为先前时隙确定的增益补偿和依从于在先前时隙期间传输的TPC命令的第二项。
在优选的实施例中,缩放系数包括功率增量参数,并且其中所述方法还包括根据所述第一传输信道的信道评估并根据干扰评估来评估所述功率增量参数。
此外,应意识到,本发明所获得的性能增益可能取决于当前的无线电接入载体(RAB)。例如,对于具有低平均DPCH功率(暗示了较大的扩频系数)以及具有很少DPCH导频的RAB,性能增益较大。因此,在优选实施例中,根据从较高层(例如当前RAB)接收的信息执行上述步骤,从而使评估方法适应于当前RAB以减少复杂性,并从而减少功耗。
因而,在优选实施例中,该方法进一步包括以下步骤:
—从分层通信系统的较高层接收信息;以及
—根据所接收的信息,至少激活步骤d)。
根据另一优选实施例,该方法进一步包括响应于关于当前RAB的信息调整所述目标函数的至少一个参数的步骤。根据另一优选实施例,利用各自的加权系数来加权目标函数的误差项的各个所述误差分布,并且其中响应于从分层通信系统的较高层接收的信息(优选地,关于无线电接入载体的信息)来确定所述加权系数。
在从属权利要求中公开了另外的优选实施例。
根据另一方面,本发明的目的是解决提供用于通信系统的传输信道的改进SIR评估器的问题。
通过一种对通信系统中的第一传输信道的信扰比(SIR)进行确定的方法来解决上述问题,该方法包括以下步骤:
—通过执行最先描述的方法来确定所述第一传输信道的信道评估;
—确定干扰评估;以及
—根据所确定的信道评估和所确定的干扰评估来推导信扰比。
应注意,上述和以下描述的方法的特征可以以软件实现,并可以在通过执行程序代码手段(例如计算机可执行指令)而引起的数据处理系统或其他处理装置上执行。此处和下文中,术语“处理装置”包括适于执行上述功能的任何电路和/或装置。具体地,上述术语包括通用或专用可编程微处理器、数字信号处理器(DSP)、特定用途集成电路(ASIC)、可编程逻辑阵列(PLA)、场可编程门阵列(FPGA)、专用电子电路等或它们的组合。
例如,可以将程序代码手段通过计算机网络从存储介质或从其他计算机加载在存储器(例如RAM)中。另选地,所述特征可以由取代软件的硬连线电路或其与软件的组合来实现。
本发明可以以不同的方式实现,包括以上和下面描述的方法、通信装置以及进一步的产品装置,分别产生结合最先描述的方法描述的好处和优点中的一个或更多个,并分别具有与结合最先描述的方法描述的并在从属权利要求中公开的优选实施例相对应的一个或更多个优选实施例。
本发明还涉及一种用于通过传输信道接收通信信号的通信装置,所述通信装置包括:
—用于根据通过第一传输信道接收的符号来推导第一组信道评估的装置;
—用于根据通过通信系统中的第二传输信道接收的符号来推导第二组信道评估的装置;
—用于根据最小平方误差准则来确定所述第一组信道评估与第二组信道评估之间的缩放系数的装置;以及
—用于将所述第一传输信道的信道评估确定为经所确定的缩放系数缩放的所述第二传输信道的信道评估的装置。
术语“通信装置”包括含有用于接收和/或发送通信信号(例如无线电通信信号)的适当电路以促进数据通信的任何装置。这种装置的示例包括便携式无线电通信装置和其他手持或便携式装置。术语“便携式无线电通信装置”包括诸如移动电话、寻呼机、通信机(即电子组织器(electronic organiser)、智能电话、个人数字助理(PDA)、手持计算机等)的所有装置。
通信装置的另外的示例包括固定通信装置,例如固定计算机或包括无线通信接口的其他电子装置。在一个实施例中,这些装置之一可能是网络装置,例如蜂窝电信网的基站。
附图说明
通过以下参照附图描述的实施例,本发明的上述和其他方面将变得明确和清晰,在附图中:
图1示意性地示出了数字通信系统的方框图;
图2示意性地示出了包括用于评估SIR的结构的接收机的第一实施例的方框图;
图3示出了对信道评估进行评估的方法的实施例的流程图;
图4示意性地示出了包括用于评估SIR的结构的接收机的第二实施例的方框图;
图5示出了对信道评估进行评估的方法的另一实施例的流程图;以及
图6示意性地示出了包括用于评估SIR的结构的接收机的第三实施例的方框图。
在这些附图中,对于类似和对应的部件、步骤等使用类似的附图标记。
具体实施方式
图1示意性地示出了数字通信系统的方框图。该通信系统包括通过通信信道103进行通信的发送通信装置101和接收通信装置102。例如,在实际的实现中,该发送通信装置可以是蜂窝射频(RF)通信系统的基站,接收通信装置是移动终端,反之亦然。移动终端和基站通过经由空中接口(air interface)传输的通信信号相互通信。应该理解,在大多数通信系统中,一些或所有通信装置是既发送又接收的通信装置。为了以下说明的目的,认为发送通信装置101包括发射机单元105,所述发射机单元105对信号进行必要的调制,从而可以通过通信信道来发送该信号。该接收通信装置包括接收机106,接收机106进行与发射机单元105进行的调制功能相对应的解调过程,从而使得可以根据所接收的信号恢复原始发送的信息。
在3GPP系统中,使用不同的信号来发送专用信道和公用信道,通常将这些信道称为物理信道。因而,传输信道103包括多条物理信道107和108。物理信道由信道化码和/或时间复用来进行分离。然而,取决于基站的结构,这些信号可以通过相同的介质进行传输,从而经历相同的多径传播。
接收通信装置102可通过例如瑞克接收机的不同指部同时接收分别来自DPCH信道107和CPICH信道108的信号。通过使用特别的信道化码并且在不进行功率控制的情况下,在蜂窝电信网的各小区中广播CPICH。CPICH的功率被选择为,即使移动体在小区边界之外也能收到它。因而,在很多情况下,CPICH的功率会比DPCH的功率高很多。另外,在大多数情况下将使用功率控制来传输DPCH,功率控制用于将各单个的DPCH所使用的功率限制到各移动体接收各DPCH所需的程度。因而,在大多数情况下,各DPCH和CPICH上的传输功率存在着移动体所不知道的差异量。在下文中,将传输功率的比率称为增益补偿。应注意,该增益补偿会因功率控制而随时间变化。
可以使用基站的同一前端和同一天线来传输DHCP和CPICH,从而使这两个信道经历相同的介质响应。因此,应意识到,基于CPICH和DPCH的信道评估对于提供良好的信道系数评估都是有用的。
在通信信号的传输期间,由于建筑物和其他障碍物的反射导致了衰减和散射。散射可导致取决于物理信道上的符号率和散射的严重程度的多径传播。由于自干扰信号是时间色散(time dispersed)的并因此可以相互干扰并导致干扰衰减,所以多径传播通常是不利的。然而,多径传播也可以是有益的。所反射的信号传输与主信号相同的信息。当衰减导致主信号自身的严重衰减时,可以通过时间色散的结构性添加来重构或放大主信号,即信号被分集放大(diversity amplified)。
在接收通信装置102中,接收机106处理所接收的信号,以获得数字抽样的序列或流,可以将这些抽样表示为复数。例如,接收机可以对所接收的信号进行处理,包括滤波、放大、使用同相和正交本地振荡器下混频至基带、模数(A/D)转换和同步等,产生所接收抽样的流。
接收机106通常根据发送通信装置101的发射机单元105所施加的调制,对所接收的抽样流施加某种形式的基带信号处理,以恢复(或检测)由所接收的抽样流所代表的信息符号。这种基带信号处理可以基于传输介质模型。例如,传输介质可以被建模为具有多个信道分接系数(channel tap coefficient)的滤波器,该滤波器的输入是所发送的数字信号,而该滤波器的输出是所接收信号的期望信号分量。如果b(n)代表所发送的数字信号,那么,期望的信号分量抽样s(n)被给出为:
s(n)=h(0)b(n)+h(1)b(n-1)…+h(K-1)b(n-K+1)
其中h(k)是信道分接系数,其是具有实部和虚部的复数值。
可以使用各种信道分接评估技术来确定信道分接系数的评估。信道分接评估(或信道跟踪)是本领域所公知的,并在例如“DigitalCommunications”4th Edition,by John G.Proakis、McGraw-hill,2000中进行了讨论。可以使用公知的技术,根据同步信号相关值或最小平方评估来获得最初的信道分接评估。
图2示意性地示出了包括用于评估SIR的结构的接收机的第一实施例的方框图。该接收机(由106一般性地表示)包括前端接收机202,其对所接收的无线电信号进行下变频和抽样为数字基带信号Yt。接收机106还包括专用信道评估单元207、公用导频评估单元204和瑞克接收机203,每一个都接收数字基带信号Yt。瑞克接收机使用瑞克接收机的所谓的指部中的几个基带相关器,以根据对应的传播延迟和信道评估来个别地处理几个信号多径分量。对该相关器输出进行组合,以提高通信可靠性和性能(例如,参见“Digital Communications”4th Edition,by John G.Proakis、McGraw-hill,2000)。瑞克接收机生成将送入解码器205的信号符号Du
信道评估单元204和207分别接收所接收的无线电信号的数字基带表示Yt,并基于通过各信道107、108传输的导频提供传输信道103的评估。具体地,信道评估单元分别针对物理信道CH根据对应的信道评估 h ^ f CH , f ∈ F b 来识别多个无线电路径,其中Fh是对于给定小区b的瑞克接收机的指部延迟集,而指部延迟集由f索引。在典型的示例中,各小区有3至4个指部。然而,本方法也可应用于具有不同数量的指部的情况。
根据传输信道的模型,可以将信道评估表达为:
h ^ f CH = h f + e f
其中hf代表实际信道,ef代表噪声。该噪声可以根据具有方差If的给定噪声分布来建模。例如,该噪声可以被建模为不相关、零均值、复数高斯分布噪声。该信道评估单元204还针对各指部f提供了干扰功率If的评估。然而,应该理解,可以另选地根据DPCH来确定干扰功率。
通常,以时隙为基础计算信道评估,即信道评估
Figure A20048001381000143
代表实际信道在时隙j的均值。下面,用
Figure A20048001381000144
来表示通过用于CPICH信道的评估单元204确定的信道评估,而用
Figure A20048001381000145
来表示通过用于DPCH的信道评估单元207确定的信道评估。
评估单元可以实现本领域已知的任何合适的信道评估技术,例如在“Digital Communications”4th Edition,by John G.Proakis、McGraw-hill,2000中描述的技术。将由用于CPICH的信道评估单元204为所有瑞克指部所确定的信道评估
Figure A20048001381000151
送入瑞克接收机203,并随后在解码器205进行的解调处理中使用。
还将CPICH和DPCH信道评估 以及干扰评估If送入附加的信道评估单元208,该信道评估单元208计算改进了的DPCH信道评估209。随后改进的DPCH信道评估送入SIR评估单元210,该SIR评估单元210将SIR评估为改进的DPCH信道评估的绝对值的平方除以干扰,从而提供改进了的DPCH信扰比211。
图3示出了对信道评估进行评估的方法的实施例的流程图。在步骤301中,如上所述地对时隙j的CPICH信道评估
Figure A20048001381000154
进行确定。在步骤302中,如上所述地对时隙j的DPCH信道评估 进行确定。在随后的步骤303中,确定DPCH信道与CPICH信道之间的增益补偿和缩放系数。下面,由小区b的gj (b)表示时隙j中DPCH与CPICH之间的增益补偿,即
E ( h ^ j , f DPCH ) = g j ( b ) E ( E ^ j , f CPICH ) , F ∈ F b
其中E(.)表示各信道评估的期望值。为本说明的目的,假定信道评估相对于传播信道评估是无偏的。为针对各小区评估gj (b),该过程确定最小平方误差评估。具体地,该过程确定下面的目标函数的最小值
min g j ( b ) Σ f ∈ F b α f | h ^ j , f DPCH - g j ( b ) h ^ j , f CPICH | 2 ,
即通过将DPCH信道评估建模为经缩放的CPICH信道评估而针对各指部引入的平方误差在所有瑞克指部的加权和。此处αf是允许对不同的指部分配不同的权重的加权系数。应该注意,该增益补偿不依赖于不同瑞克指部的传播延迟。然而,由于上述目标函数使用了所有指部的信道评估,因而可以获得改善了的增益补偿的评估。
在一个实施例中,与指部f的干扰成反比地选择加权系数,即αf=1/If,从而将对其评估干涉为较小的指部加权得相对强于具有强的评估干扰的指部。然而,加权系数的其他选择同样也是可以的。例如,在一个实施例中,所有指部可以等强加权,即αf=1f,从而提供特别简单的实现。
上述表达式的最小值,即所确定的增益补偿由下面的公式给出:
此处,()*表示复数共扼。因此,由于上述目标函数的最小值可以以上面闭式确定,因此避免了任何的数值求最小值(numeric minimisation)过程。此外,根据上述公式确定增益补偿仅需要相加、复数相乘、除以及复数共扼运算,从而可以在例如DSP中有效地实现。
应该理解,另选于上述目标函数,可以使用其他目标函数。例如,在一个实施例中,该过程最小化
min g j ( b ) Σ f ∈ F b α f | | h ^ j , f DPCH | - g J ( B ) | h ^ j , f CPICH | | 2 ,
用闭式解
Figure A20048001381000163
因此,在该实施例中,目标函数包括(复数)信道评估的绝对值的误差的平方误差和。因此,根据该实施例的增益补偿的确定仅涉及与实数有关的运算,从而进一步减少了运算复杂度。将在下面描述目标函数的另一示例。
在步骤304中,该过程通过采用
Figure A20048001381000164
(即经评估出的缩放系数缩放的CPICH信道评估)作为对DPCH的信道评估,确定改进了的DPCH信道评估。根据该改进了的DPCH信道评估,可以通过获得该改进了的DPCH信道评估的绝对值的平方并且将其除以干扰If,来计算改进了的DPCHSIR。
SIR f = | g j ( b ) h ^ j , f CPICH | 2 I f .
图4示意性地示出了包括用于评估SIR的结构的接收机的第二实施例的方框图。根据该实施例,信道评估还基于功控环的功控命令。根据本实施例的接收机与结合图2描述的接收机类似。该接收机还包括功控单元401。功控单元实现功率(接收机在该功率接收DPCH上的通信信号)的闭环功控。具体地,相对前一时隙j-1,在时隙j中的在DPCH上的传输功率改变了因子10ΔTPCTPCj-1。此处ΔTPC是由网络设置的固定的功率增长,即ΔTPC确定功率以什么量增长。在某些通信网络中,将ΔTPC的值信号告知接收机。然而,在另一些系统中,情况可能不是这样。此外,TPCj-τ表示由接收机针对时隙j-τ确定的功控命令,并且将其发送给基站。该功控命令可以采用两个值:正1(“+1”)或负1(“-1”),取决于在时隙j中功率应增加还是减少。功控单元401接收由SIR单元210确定的SIR评估211,并确定对应的TPC命令,作为DPCH上的闭环功控的结果。这种闭环功控是本领域公知的,并例如如“WCDMA for UMTS Radio Access forThird Generation Mobile Communication”by H.Holma and A.Toskal,(Eds.),Wiley,2000中所描绘的那样执行。如箭头403所指示的,将TPC命令返回发送机,并在稍后时隙控制对传输功率的调节。还将该TPC送入信道评估单元208。为了获得将TPC发送到发送机、发送机对TPC进行作用、用调节后的功率传输的信号到达接收机所需的时间,通过延迟电路402将TPC延迟。该延迟参数τ指明在基站中考虑该TPC命令之前的延迟。可以使用例如在国际专利申请WO 02/054637中描述的方法来进行评估,通过引用将该申请的全部内容合并在本文中。
信道评估单元208在考虑了关于传输功率调节的信息的情况下,执行最小平方误差评估,将参照图5对其进行更详细的描述。
图5示出了对信道评估进行评估的方法的另一实施例的流程图。在步骤301中,如上所述地确定时隙j的CPICH信道评估
Figure A20048001381000171
在步骤302中,如上所述地确定时隙j的DPCH信道评估
如上所述,可以以信号地形式将功率增长因子ΔTPC告知给接收机。如果不是这种情况,则该过程在步骤501中对其进行评估。具体地,可以根据DPCH信道评估和干扰评估来评估时隙j的增长因子,例如根据:
Δ ^ j , TPC = Σ f ∈ F b I f Σ f ∈ F b I f | log 10 | h ^ j , f DPCH h ^ j - 1 , f DPCH | |
优选地,对根据上述公式确定的值进行滤波以减小噪声。在给定的系统中,增长因子的值不发生变化。因此,可以使滤波非常强大。令时隙j中的经滤波的值由
Figure A20048001381000182
表示。在WCDMA系统中,ΔTPC可以仅取若干离散值,例如4个离散值0.5、1、1.5和2dB。此处,将ΔTPC的最终评估选为这些离散值中最接近
Figure A20048001381000183
的值。
应该理解,如果接收机已经知道ΔTPC的实际值,则可以省略上述步骤。
在随后的步骤503中,如上所述地将DPCH信道与CPICH信道之间的增益补偿gj (b)确定为最小平方误差评估。然而,在本实施例中,将被最小化的目标函数给出如下:
min g j ( b ) Σ f ∈ F b α f | h ^ j , f DPCH - g j ( b ) h ^ j , f CPICH | 2 + α g | g j ( b ) - g j - 1 ( b ) 10 Δ TPC TP C j - r | 2
因此,除结合图3描述的误差项之外,该目标函数还包括取决于功控参数的第二项。该第二项反映了响应于先前时隙j-τ的TPC命令TPCj-τ而预期从时隙j到时隙j-1的增益补偿发生改变。改变的大小被预期为10ΔTPCTPCj-τ,在上面的目标函数中,αg是根据在先的TPC信息被加权得有多强而选择的常数。应该注意,传输功率的实际改变可能不会按照接收机基于所发出的TPC所预期的那样改变。例如,这可能是由于TPC解码中的可能错误。在某些通信系统中,这种错误导致TPC命令的3-4%被不正确地解码,从而降低了用于确定增益补偿的目的的先前的TPC信息的可靠性。例如,αg可以选择为小于0.3,优选地小于0.2,例如,αg=0.1或αg=0.2。可以看出图2和图3的实施例对应于选择αg=0。
上述目标函数的最小值由下面的公式给出:
g j ( b ) = 2 α g g j - 1 ( b ) 1 0 Δ TPC TPC j - r + Σ f ∈ F b α f ( h ^ j , f CPICH ( h ^ j , f DPCH ) * + ( h ^ j , f CPICH ) * h ^ j , f DPCH ) 2 α g + 2 Σ f ∈ F b α f | h ^ j , f CPICH | 2 .
如上所述,在另选的实施例中,可以使用另一目标函数,例如基于绝对值的目标函数,从而避免了涉及复数的运算,在一个实施例中,目标函数为:
min g j ( b ) Σ f ∈ F b α f | | h ^ j , f DPCH | - g j ( b ) | h ^ j , f CPICH | | 2 + α g | g j ( b ) - g j - 1 ( b ) 10 Δ TPC TPC j - r | 2
其闭式解为:
g j ( b ) = α g g j - 1 ( b ) 10 Δ TPC TPC j - r + Σ f ∈ F b α f | h ^ j , f CPICH | | h ^ j , f DPCH | α g Σ f ∈ F b α f | h ^ j , f CPICH | 2
最后,在步骤304中,该过程通过采用
Figure A20048001381000193
作为对DPCH的信道评估,计算改善了的DPCH信道评估。
图6示意性地示出了包括用于评估SIR的结构的接收机的第三实施例的方框图。根据本实施例的接收机类似于结合图2描述的接收机。根据本实施例,该接收机还包括控制单元601,所述控制单元601从由接收机实现的通信模型的较高层(未明确示出)接收信息602。在一个实施例中,该控制单元接收关于当前无线电接入载体(RAB)的信息,例如关于时隙格式的信息、关于专用信道中的导频符号的数量的信息、关于扩频因子的信息等。基于该信息,控制单元生成控制信号603,将该控制信号603送入信道评估块208,以控制信道评估和/或随后的SIR评估处理。
例如,如果使用具有高扩频因子和少量DPCH导频符号的低速数据信道,则可以使用结合图3和图5的实施例之一描述的SIR评估方法。如果使用具有低扩频因子和大量DPCH导频符号的高速数据信道,则使用较简单的SIR评估,例如仅基于用于信号功率评估的DPCH导频的SIR评估。例如,控制单元601可以控制使多个评估单元(各评估单元实现不同的评估方法)之一被激活的切换器(未明确示出)。例如,在一个实施例中,如果信道评估器207根据所接收的信息602生成的信道评估是充分的,则控制单元可以使块208的改进信道评估旁路。
另选或附加地,控制单元601可以确定信道评估器208的一个或更多个参数。在一个实施例中,该控制单元可以根据无线电接入载体来控制加权系数αf和/或αg。例如,对于语音信号,可以如上所述地根据评估干扰来选择加权系数,而对于较高速率的信号,例如视频传输,可以将所有的加权系数选择为等于1。因此,根据本实施例,可以根据不同通信情况的不同需要,来优化SIR评估复杂度和质量。
应该注意,在另一实施例中,可以将结合图6描述的控制单元与图2而不是图4中的实施例相组合。
还应注意,可以使用本发明来改善通信系统中的功控的性能。具体地,仿真已经表明良好的SIR评估可以在降低下行链路中的所需DPCH功率的均值(和方差)方面提高功控性能。例如,假定理想的SIR评估,对于WCDMA语音无线电接入载体(RAB)来说,与基于DPCH导频的SIR评估相比,可以实现将平均DPCH功率减小大约1.5-2dB。即使在实际实现中不能获得理论情况下的理想SIR评估,上述结果也表明,通过改善功控环中的SIR评估可以实现系统容量方面的大的性能增益。例如,平均下行链路DPCH功率低1dB意味着系统中的大约25%的更多的容量。此外,良好的SIR评估还可以提高测量性能,这反过来改进了下行链路性能。
还应该注意到,还可以将根据本发明确定的改善了的信道评估用于其他目的,例如用于提高随后的信号处理中的软值(soft value)计算。
应该强调,术语“包括(comprise)/包含(comprising)”在本说明书中使用时用于指出所描述的特征、整体(integer)、步骤或部件的存在,但并不排除一个或更多个其他特征、整体、步骤、部件或其组群的存在或附加。
虽然已经示出并描述了本发明的优选实施例,但是本发明并不限于这些实施例,而是还可以在以下的权利要求中所限定的主题范围内以其他方式来具体实现。
本发明可以利用包括几种分开部件的硬件来实现,或利用适当编程的计算机实现。在例举了几种装置的装置权利要求中,这些装置中的一些可以由一个和相同的硬件具体实现,例如适当编程的微处理器或计算机、一个或更多个用户接口、和/或如本文所描述的一个或更多个通信接口。在相互不同的从属权利要求中叙述了或在不同实施例中描述了特定措施的纯粹事实不表示不能够使用这些措施的组合来获得益处。

Claims (23)

1、一种确定对通信系统中的第一传输信道的信道评估的方法,所述方法包括以下步骤:
a)根据通过所述第一传输信道接收的符号,来推导第一组信道评估;
b)根据通过所述通信系统中的第二传输信道接收的符号,来推导第二组信道评估;
c)根据最小平方误差准则确定所述第一组信道评估与第二组信道评估之间的缩放系数;以及
d)将对所述第一传输信道的信道评估确定为经所确定的缩放系数缩放的对所述第二传输信道的信道评估。
2、根据权利要求1所述的方法,其中,所述第一传输信道是宽带码分多址系统中的专用物理信道(DPCH),第二传输信道是宽带码分多址系统中的公用导频信道(CPICH)。
3、根据权利要求1或2所述的方法,其中,确定所述缩放系数的步骤进一步包括确定目标函数的最小值的步骤,该目标函数包括误差项,所述误差项包括分别对应于多个传播延迟中的一个的误差分布的和,所述误差分布中的每一个对应于通过用经缩放系数缩放了的对第二传输信道的信道评估来替换对第一传输信道的信道评估而引入的误差。
4、根据权利要求3所述的方法,其中,所述误差分布中的每一个由对应的加权系数加权。
5、根据权利要求4所述的方法,其中,所述加权系数是响应于对应传播延迟的干扰分布而选出的。
6、根据权利要求4所述的方法,其中,所述加权系数响应于从分层通信系统的较高层接收的信息来确定。
7、根据权利要求3到6中的任一项所述的方法,其中,所述目标函数还包括第二项,所述第二项取决于对先前时隙确定的缩放系数并取决于在先前时隙期间传输的传输功率控制命令。
8、根据权利要求7所述的方法,其中,所述缩放系数包括功率增长参数,并且其中所述方法还包括根据对所述第一传输信道的信道评估并根据干扰评估来评估所述功率增长参数的步骤。
9、根据权利要求8所述的方法,其中,根据
Δ ^ j , TPC = Σ f ∈ F b I f Σ f ∈ F b I f | log 10 | h ^ j , f DPCH h ^ j - 1 , f DPCH | |
来评估所述功率增长参数,其中时隙j的功率增长参数的评估由j,TPC表示,干扰评估由If表示,瑞克接收机的指部f的时隙j和j-1的信道评估分别由
Figure A2004800138100003C3
表示;并且其中所述和包括在瑞克接收机的指部延迟的集合上的总和。
10、根据权利要求1到9中的任一项所述的方法,还包括:
-从分层通信系统的较高层接收信息;以及
-根据所接收的信息,至少激活步骤d)。
11、一种确定通信系统中的第一传输信道的信扰比(SIR)的方法,所述方法包括以下步骤:
-通过执行根据权利要求1到10中的任一项的方法的步骤来确定对所述第一传输信道的信道评估;
-确定干扰评估;以及
-根据所确定的信道评估和所确定的干扰评估来推导信扰比。
12、一种通信装置,用于通过传输信道来接收通信信号,所述通信装置包括:
-用于根据通过第一传输信道接收的符号来推导第一组信道评估的装置;
-用于根据通过通信系统中的第二传输信道接收的符号来推导第二组信道评估的装置;
-用于根据最小平方误差准则来确定所述第一组信道评估与第二组信道评估之间的缩放系数的装置;以及
-用于将对所述第一传输信道的信道评估确定为经所确定的缩放系数缩放的对所述第二传输信道的信道评估的装置。
13、根据权利要求12所述的通信装置,还包括:
-用于确定干扰评估的装置;以及
-用于根据所确定的信道评估和所确定的干扰评估来推导信扰比的装置。
14、根据权利要求12或13所述的通信装置,其中,所述第一传输信道是宽带码分多址系统中的专用物理信道(DPCH),所述第二传输信道是宽带码分多址系统中的公用导频信道(CPICH)。
15、根据权利要求12到14中的任一项所述的通信装置,其中,用于确定所述缩放系数的装置适于确定目标函数的最小值,该目标函数包括误差项,所述误差项包括分别对应于多个传播延迟中的一个的误差分布的和,所述误差分布中的每一个对应于通过用经缩放系数缩放的对第二传输信道的信道评估来替换对第一传输信道的信道评估而引入的误差。
16、根据权利要求15所述的通信装置,其中,所述误差分布中的每一个由对应的加权系数进行加权。
17、根据权利要求16所述的通信装置,其中,所述加权系数是响应于对应传播延迟的干扰分布而选出的。
18、根据权利要求16所述的通信装置,其中,所述加权系数响应于从分层通信系统的较高层接收的信息来确定。
19、根据权利要求15到18中的任一项所述的通信装置,其中,所述目标函数还包括第二项,所述第二项取决于对先前时隙确定的缩放系数并取决于在先前时隙期间传输的传输功率控制命令。
20、根据权利要求19所述的通信装置,其中,所述缩放系数包括功率增长参数,并且其中所述通信装置还包括用于根据对所述第一传输信道的信道评估并根据干扰评估来评估所述功率增长参数的装置。
21、根据权利要求20所述的通信装置,其中,根据
Δ ^ j , TPC = Σ f ∈ F b I f Σ f ∈ F b I f | log 10 | h ^ j , f DPCH h ^ j - 1 , f DPCH | |
来评估所述功率增长参数,其中时隙j的功率增长参数的评估由j,TPC表示,干扰评估由If表示,瑞克接收机的指部f的时隙j和j-1的信道评估分别由 表示;并且其中所述和包括在瑞克接收机的指部延迟的集合上的总和。
22、根据权利要求12到21中的任一项所述的通信装置,还包括适于以下处理的控制装置:
-从分层通信系统的较高层接收信息;以及
-根据所接收的信息,选择性地至少激活用于将对所述第一传输信道的信道评估确定为对所述第二传输信道的信道评估的装置。
23、一种计算机程序产品,包括适于使处理器执行根据权利要求1到11中的任一项的方法的步骤的程序代码手段。
CNB2004800138105A 2003-05-19 2004-04-09 一种确定传输信道的信道评估的方法和装置 Expired - Fee Related CN100574128C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DKPA200300748 2003-05-19
DKPA200300748 2003-05-19
US60/472,483 2003-05-21
EP03388067.5 2003-10-13

Publications (2)

Publication Number Publication Date
CN1792042A true CN1792042A (zh) 2006-06-21
CN100574128C CN100574128C (zh) 2009-12-23

Family

ID=34973304

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800138105A Expired - Fee Related CN100574128C (zh) 2003-05-19 2004-04-09 一种确定传输信道的信道评估的方法和装置

Country Status (1)

Country Link
CN (1) CN100574128C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689883B (zh) * 2007-05-22 2013-07-03 艾利森电话股份有限公司 用于从rake接收机输出中消除导频信道振幅依赖性的方法和设备
CN104662824A (zh) * 2012-05-14 2015-05-27 瑞典爱立信有限公司 用于通过定标确定信号功率估计的方法和设备
CN111429031A (zh) * 2020-04-16 2020-07-17 苏州科腾软件开发有限公司 一种基于大数据的电力通讯效果评估系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689883B (zh) * 2007-05-22 2013-07-03 艾利森电话股份有限公司 用于从rake接收机输出中消除导频信道振幅依赖性的方法和设备
CN104662824A (zh) * 2012-05-14 2015-05-27 瑞典爱立信有限公司 用于通过定标确定信号功率估计的方法和设备
CN104662824B (zh) * 2012-05-14 2017-03-29 瑞典爱立信有限公司 用于通过定标确定信号功率估计的方法和设备
US9661508B2 (en) 2012-05-14 2017-05-23 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for determining a signal estimate by scaling
CN111429031A (zh) * 2020-04-16 2020-07-17 苏州科腾软件开发有限公司 一种基于大数据的电力通讯效果评估系统
CN111429031B (zh) * 2020-04-16 2023-08-15 安徽融兆智能有限公司 一种基于大数据的电力通讯效果评估系统

Also Published As

Publication number Publication date
CN100574128C (zh) 2009-12-23

Similar Documents

Publication Publication Date Title
CN1160872C (zh) 在无线通信系统中使用的提供接收信号干扰的正确估计值的系统和方法
US7561637B2 (en) Determination of a channel estimate of a transmission channel
CN1131600C (zh) 瑞克接收机
KR101089527B1 (ko) 역방향 링크 송신 빔형성을 위한 방법 및 장치
US7245597B2 (en) Method and system for performing handoff in wireless communication systems
US6426971B1 (en) System and method for accurately predicting signal to interference and noise ratio to improve communications system performance
US7630427B2 (en) Systems, methods, and apparatus for establishing finger lock state
CN1618183A (zh) 在传输信道之间确定增益偏置的方法
CN1135726C (zh) 软切换期间按业务与领示信道相对强度定标的数字接收机和接收方法
CN1502174A (zh) 提供盲自适应估算和接收的方法与设备
CN1618220A (zh) 估计通信信道之间相位偏移的方法及装置
CN101057441A (zh) 用于接收信号质量估算的良性干扰抑制
CN1545770A (zh) 带有使用质量指示信号的智能天线的通信设备
CN101313488A (zh) 一种导频信道发射功率的调整方法及装置
CN1758563A (zh) Fdd模式的cdma系统中前向基本业务信道信号干扰比估计算法
CN1158789C (zh) 无线电通信设备和无线电通信系统
CN1926777A (zh) 信道估计的方法和系统、相关接收机及计算机程序产品
CN1488205A (zh) 无线接收装置和定向接收方法
CN1913506A (zh) 用于wcdma射频收发器的基带处理模块及其操作方法
CN1677894A (zh) 阵列天线无线电通信设备
EP1480350B1 (en) Determination of a channel estimate of a transmission channel
CN100342738C (zh) 用于功率估计的装置和方法
CN1792042A (zh) 对传输信道的信道评估的确定
CN1471767A (zh) 简化的质量指示位测试过程
EP2652992A1 (en) Receiver power reduction methods and apparatus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091223

Termination date: 20190409

CF01 Termination of patent right due to non-payment of annual fee