CN1779144A - Externally turnover and openalbe expandable structure and production thereof - Google Patents

Externally turnover and openalbe expandable structure and production thereof Download PDF

Info

Publication number
CN1779144A
CN1779144A CN 200510060849 CN200510060849A CN1779144A CN 1779144 A CN1779144 A CN 1779144A CN 200510060849 CN200510060849 CN 200510060849 CN 200510060849 A CN200510060849 A CN 200510060849A CN 1779144 A CN1779144 A CN 1779144A
Authority
CN
China
Prior art keywords
mrow
msup
math
cos
msqrt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510060849
Other languages
Chinese (zh)
Other versions
CN100346043C (en
Inventor
罗尧治
刘晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CNB2005100608499A priority Critical patent/CN100346043C/en
Publication of CN1779144A publication Critical patent/CN1779144A/en
Application granted granted Critical
Publication of CN100346043C publication Critical patent/CN100346043C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

This invention is an outward retroflexion deployable structure and its process method. The structure comprises a movable connecting rod device, which is composed by several tetrahedrons that are connected by rotating joint to form a three- dimensional ring structure. At moving, the structure could deploy into an outspread structure. The process method is as followed: (1) decide the structure form and the basic geometry size and design the basic geometry parameters; (2) calculate out the tetrahedrons size according to the geometry size; (3) link the tetrahedrons through connecting joint at proper positions and design the wheel's position; (4) design the slide-rail's form and size; (5) link the structure and the slide-rail together. This structure's top part could be totally closed at closing and easy for control.

Description

Outward turning open type deployable structure and manufacturing method thereof
Technical Field
The invention relates to an outward turning open type deployable structure and a manufacturing method thereof. It comprises a movable linkage mechanism consisting of a plurality of rigid members connected by rotational connections to form a three-dimensional ring mechanism that is opened by movement of the mechanism.
Background
The expandable structure is a novel engineering structure in recent years, the geometric shape of the expandable structure can be changed according to actual conditions, and the expandable structure can be folded and expanded by means of large displacement and movement of the expandable structure. The structure formed by the mechanism has internal freedom, the folding and unfolding processes of the mechanism are rigid motion, strain can not be generated in the parts of the mechanism, and the mechanism is favorable for being used as a repeatedly opened structure. The types of existing openable roof structures in the world can be divided into horizontal movement opening, rigid rotation opening, up-and-down movement opening and radial opening according to the roof opening movement mode. The invention provides an outward turning open type deployable structure which adopts a link mechanism[1-2]And a tetrahedral rotary ring[3-4]Is the basis of the theory of (1).
[1]Bricard.R.(1897).Mémoire sur la théorie de l’octacdre articulé.Journal demathématiques pures et appliquées,Liouville 3,113-148.
[2]Bricard.R.(1927).Lecons de cinématique.Tome II cinématique Appliquée,Gauthier-Villars,Paris,7-12.
[3]Schattschneider,D.and Walker,W.(1977).M.C.Escher Kalerdocycles,Ballantin Books,New York.
[4]Schatz,P.(1998).Rhythmusforschung und Technik,2.Auflage.Verlag FreiesGeistesleben,Stuttgart.
Disclosure of Invention
The invention aims to provide an outward turning open type deployable structure and a manufacturing method thereof.
The outward-turning open type deployable structure comprises a movable link mechanism, wherein the link mechanism consists of N (N is more than or equal to 6, and N is an even number) tetrahedral rigid components, the tetrahedral rigid components are connected through rotary connecting pieces of a roof shaft and a support shaft to form a three-dimensional annular mechanism, the bottom end of the support shaft is a support, when the support moves from inside to outside along a sliding rail simultaneously, tetrahedrons rotate around the rotary connecting pieces of the tetrahedrons, the inner side surfaces of adjacent tetrahedrons of the structure can be in contact with each other, and the upper part of the structure is closed; when the support moves from outside to inside along the slide rail, the tetrahedron rotates around the rotating connecting piece, and the upper part of the structure is turned outwards and opened.
The geometry of the outwards-turned open-type deployable structure consisting of N tetrahedral rigid members can adopt various forms. When the structure is closed, the projection of the top surface in the horizontal direction can be a regular N-shaped polygon, the triangles serving as the top surfaces of the structure in the four surfaces of each tetrahedron are identical isosceles triangles, and the vertex of each triangle is coincided with one point when the structure is closed; when the structure is closed, the projection of the top surface in the horizontal direction can also be triangular, square, rectangular or polygonal.
An outward turning open type deployable structure composed of N tetrahedral rigid members takes the projection of a top surface in the horizontal direction as a regular N-shaped edge as an example when the structure is closed, and the manufacturing method comprises the following steps:
(1) the basic geometrical parameters for designing a developable structure consisting of N tetrahedral rigid members are as follows: when the structure is closed, the side length a of the regular N-shaped polygon projected in the horizontal direction of the roof is larger than 0; when the structure is closed, the upper rise c is larger than 0, and the relative rise xi is c/a; when the structure is closed, the included angle phi between the support shaft and the horizontal direction, <math> <mrow> <mn>0</mn> <mo>&lt;</mo> <mi>&phi;</mi> <mo>&lt;</mo> <mi>&pi;</mi> <mo>-</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> the length d of the support shaft is more than 0 and less than a/cos phi, and the relative length eta of the support shaft is d/a; the angle between the roof axis and the horizontal direction when the structure is completely unfolded <math> <mrow> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> <mo>&lt;</mo> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mo>&lt;</mo> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
(2) Determining the dimensions of N tetrahedral rigid members constituting the structure, wherein one tetrahedron A is represented1The formula for the length of the six sides of ABG is as follows:
BG=ηa; <math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>A</mi> <mo>=</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>B</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mo>;</mo> <mi>AB</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>N</mi> </mfrac> <mo>)</mo> </mrow> </msqrt> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>G</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>&eta;</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <mi>&eta;</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>&phi;</mi> <mo>-</mo> <mi>&xi;</mi> <mi>sin</mi> <mi>&phi;</mi> <mo>)</mo> </mrow> </msqrt> <mo>;</mo> </mrow> </math>
<math> <mrow> <mi>AG</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&eta;</mi> <mi>cos</mi> <mi>&phi;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>N</mi> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>&eta;</mi> <mn>2</mn> </msup> </msqrt> </mrow> </math>
the geometry and dimensions of the remaining (N-1) tetrahedra can also be determined according to the above formula;
(3) determining a connection form between tetrahedral rigid members, wherein adjacent tetrahedral rigid members are respectively connected at the positions of a roof shaft and a support shaft through replaceable rotary connecting pieces to form a three-dimensional annular mechanism, the bottom end of the support shaft is a support, a pulley is arranged at the position of the support, and the slidable direction of the pulley is along the radial direction of a regular N-edge circumscribed circle;
(4) the form of the slide rail is designed, and the (N/2) slide rails are positioned on the same plane, the mutual included angle is (4 pi/N), and the extension lines can intersect at a point which is used as the center point of the slide rail. The position of the outermost point of the slide rail is equivalent to the position of the support when the structure is closed, and the distance formula from the central point
J1=a-dcosφ
The position of the innermost point of the slide rail is equivalent to the position of the support when the structure is completely unfolded, and the distance formula from the center
<math> <mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>sin</mi> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mi>cos</mi> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mo>+</mo> <mi>cos</mi> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mi>sin</mi> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mi></mi> <mi>&alpha;</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>l</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>d</mi> <mo>-</mo> <mi>h</mi> <mo>)</mo> </mrow> <mi>cos</mi> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mo>;</mo> </mrow> </math>
Wherein,
<math> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mi>arccos</mi> <mfrac> <mrow> <mn>2</mn> <mi>&xi;</mi> <mi>sin</mi> <mi>&phi;</mi> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mi></mi> <mi>&phi;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mi>l</mi> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mi>sin</mi> <mi>&phi;</mi> <mo>+</mo> <mi>&xi;</mi> <mi>cos</mi> <mi>&phi;</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mi>sin</mi> <mi>&alpha;</mi> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mi>h</mi> <mo>=</mo> <mfrac> <msqrt> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mn>2</mn> <mi>c</mi> </mrow> <mn>2</mn> </msup> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mfrac> <mo>&CenterDot;</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>l</mi> <mn>2</mn> </msup> </msqrt> <mrow> <mi>sin</mi> <mi>&alpha;</mi> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mo>=</mo> <mi>arccos</mi> <mfrac> <mrow> <mo>-</mo> <mi>cos</mi> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mi>cos</mi> <mi></mi> <mi>&alpha;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>sin</mi> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <msqrt> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mi>&alpha;</mi> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
(5) the pulley and the slide rail are correspondingly installed, so that the central shaft of the structure is ensured to pass through the central point of the slide rail, and the pulley can slide in the track of the slide rail.
The invention has the advantages that the expandable structure is directly constructed by utilizing the three-dimensional annular mechanism, the structural form is beautiful, the center of the structural roof is completely closed when the structure is closed, the motion symmetry of the support is ensured, and the expansion to the required structural form is realized. When the expandable structure is formed by six tetrahedral members, the mechanism is a single-degree-of-freedom over-constrained three-dimensional mechanism, the single degree of freedom enables the structure motion to be very easy to control, and the complex operation required by expansion is avoided. Furthermore, the over-constrained nature of the mechanism provides relatively high rigidity and structural strength, which make the deployable structure particularly useful.
Drawings
The invention will be further explained with reference to the drawings. In the attached drawings
FIGS. 1(a) - (c) are schematic views of the structure of the outward flip open deployable structure in the closed state;
FIGS. 2(a) - (c) are schematic views of the structure of the outwardly flipped open deployable structure during deployment;
fig. 3 is a schematic view of the geometrical relationship of the expandable structure with bar members perpendicular to and intersecting adjacent axes replacing a tetrahedral linkage when N is 6;
FIGS. 4(a) and (b) are diagrammatic views of an alternative connector form for connecting two tetrahedral members;
FIGS. 5(a) - (c) are plan, elevation and isometric views of the structural model in a closed, deployed and fully deployed configuration in a flip-out open deployable structure;
FIG. 6 is a tetrahedron A in the closed state of an outwardly flipped open deployable structure1ABG calculation schematic diagram;
FIG. 7 is a tetrahedron A during deployment of an outwardly flipped open deployable structure1ABG calculation schematic diagram;
fig. 8(a), (b), (c), (d) and (e) are schematic plan views of the top surface projected in the horizontal direction as a regular hexagon, a triangle, a regular octagon, a square and a rectangle when the flip-out open deployable structure is closed, respectively;
fig. 9(a), (b), (c) and (d) are mesh structure diagrams of the closed and open state of the flip-out open deployable structure.
Detailed Description
The invention provides an outward-turnable open-type deployable structure, which is based on the theories of a link mechanism and a tetrahedral rotating ring. A link is a special form of mechanism that consists of several interconnected rigid members, the connection between the two members being called a hinge. The hinge has various types, the invention adopts a rotary hinge, and the hinge has only one rotational degree of freedom; the rigid member may be a straight rod, a curved rod or even a body.
The tetrahedral rotating ring may be seen as a link mechanism with tetrahedrons as rigid members. The N identical tetrahedrons are composed of 4N (N is more than or equal to 6, and N is an even number) identical equilateral or isosceles triangles, two opposite sides of each tetrahedron are respectively connected with the sides of other tetrahedrons to form a ring, the tetrahedrons can rotate around the adjacent common sides to form a three-dimensional mechanism, and the ring-shaped mechanism can continuously rotate inwards or outwards. Note that the motion of the tetrahedral ring has a single degree of freedom when N is 6, and if a regular tetrahedron is used to form the ring, when the mechanism moves to a certain state, the two surfaces contact each other to stop the motion.
Two adjacent common edges in the tetrahedral rotating ring are perpendicular to each other, and (N/2) symmetric planes exist when the tetrahedral rotating ring moves to any state. If the symmetrical plane of the mechanism is ensured to be unchanged, the shape of the tetrahedron is changed, so that the adjacent common edges are not necessarily vertical and are not parallel or intersected, and the tetrahedron ring can still move. It is characterized in thatThus, comprising N tetrahedral elements and movable in a specific direction by means of hinges having a rotation axis, and ensuring, during the movement, that the mechanism has (N/2) planes of symmetry in any state of movement, with a single degree of freedom of movement, limited by certain geometrical conditions. Setting a straight line perpendicular to and intersecting with the two adjacent shafts, using the connecting line of the two adjacent intersection points as a rigid rod, and keeping the axial direction of the hinges unchanged, so that the axial distance of the adjacent hinges is the rod length ai(i+1)Axial included angle alpha of adjacent hingesi(i+1)And the distance R between the end points of two adjacent rods at the hinge i along the axisiSatisfying the following geometrical conditions (fig. 3 shows a geometrical relationship diagram of the link mechanism when N ═ 6)
a12=a23=……=aN1=l
α12=α34=……=α(N-1)N=α,α23=α45=……=αN1=2π-α (1)
R1=R2=……=RN=0
The research on the tetrahedral rotating ring has attracted many people for research and analysis, but so far, the research on the tetrahedral rotating ring has been mainly focused on the case where the tetrahedron is a regular tetrahedron (two opposite sides of the tetrahedron as common sides are perpendicular) and the ring mechanism can be continuously rotated, mainly for the toy design and the like, and rarely applied to the structure.
The invention designs an outward turning open type deployable structure by combining the concepts of a tetrahedral rotating ring and a link mechanism, and provides a manufacturing method thereof. The method comprises the following steps:
first, the geometry and opening mode of the flip-out open deployable structure of the present invention are described.
The deployable structure comprises a linkage mechanism consisting of a plurality of rigid tetrahedral members (1), the tetrahedral members (1) being connected by rotary connectors (e.g. the alternative connectors 2 in fig. 4(a) and 4(b) respectively).
When the outwardly-turned open-type deployable structure is a ring-shaped structure composed of N (N is equal to or greater than 6, and N is an even number) tetrahedrons, fig. 5 shows a structural model when N is equal to 6. The N tetrahedrons are spaced at the same interval, and the edges of the adjacent tetrahedron members (1) are connected through a rotary connector (2) to form a ring (the connection mode is shown in figure 4). Adjacent common edges are not necessarily perpendicular and are not parallel nor intersecting. When the structure is closed, the inner side surfaces (6) of adjacent tetrahedrons are contacted, and the structure can be kept stable under the action of self weight and external force. The (N/2) public sides are used as roof shafts (3), the (N/2) public sides are used as support shafts (4), the support shafts (4) are inclined inwards by a certain angle, and the (N/2) supports (7) are respectively positioned at the bottom ends of the support shafts (4). The roof shaft (3) and the support shaft (4) are alternately positioned in N vertical planes with an included angle of (2 pi/N), and the roof shaft (3) and the support shaft (4) move in the planes when the structure is closed and unfolded.
The geometry of the outwards-turned open-type deployable structure consisting of N tetrahedral rigid members can adopt various forms. When the structure is closed, the projection of the top surface in the horizontal direction can be a regular N-polygon (such as ABCDEF in fig. 1 (a)), the triangle as the top surface (5) of the structure in the four faces of each tetrahedron is the same isosceles triangle, and the vertex of each triangle is coincided with one point (8) when the structure is closed; when the structure is closed, the projection of the top surface in the horizontal direction can also be a triangle, a square, a rectangle or a polygon (as shown in fig. 8).
When the support moves from inside to outside along the sliding rail (9), the tetrahedron (1) rotates around the rotary connecting piece (2) of the tetrahedron, so that the inner side surfaces (6) of the adjacent tetrahedron of the structure are contacted with each other, and the upper part of the structure is closed; when the support moves from outside to inside along the sliding rail (9), the tetrahedron (1) rotates around the rotating connecting piece (2), and the upper part of the structure is turned outwards and opened.
And secondly, the geometric parameters involved in the outwards-turning open type deployable structure are adopted.
The structure geometry was set as follows:
(1) a represents the side length of a regular N-shaped polygon projected in the horizontal direction when the structure is closed (as shown in FIG. 1(a), a is more than 0);
(2) c represents the upper rise when the structure is closed (as in fig. 1(b), OO' ═ c, c > 0), and relative rise ξ ═ c/a;
(3) phi represents the angle between the axis of the support and the horizontal when the structure is closed <math> <mrow> <mo>(</mo> <mn>0</mn> <mo>&lt;</mo> <mi>&phi;</mi> <mo>&lt;</mo> <mi>&pi;</mi> <mo>-</mo> <mi>arccos</mi> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> </math> As in fig. 6);
(4) d represents the length of the support shaft (as shown in fig. 1(c), BG ═ DM ═ FN ═ d, 0 < d < a/cos phi), and the relative length η of the support shaft is d/a;
(5) gamma' indicates the angle between the roof axis and the horizontal when the structure is fully deployed <math> <mrow> <mo>(</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> <mo>&lt;</mo> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mo>&lt;</mo> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </math>
(6) Gamma represents the included angle between the support shaft and the horizontal direction when the structure moves (as shown in figure 7);
(7) tau represents the angle between the roof axis and the horizontal direction when the structure moves (as shown in figure 7);
(8) alpha represents the included angle between the axes of the adjacent hinges (as in the formula (1));
(9) l represents the distance between the axes of adjacent hinges (as shown in equation (1));
(10) e, f and h represent the distances in the direction of the axis from the end points of the rods perpendicular to the axes of the two adjacent hinges of the structure and intersecting the two axes to the end points of the common edges of the tetrahedron (see fig. 6 and 7, a)1A0=e,AA0=f,BB0=h,GB0=d-h)。
(1) "5" is a basic geometric parameter of the structure, which determines the geometry and dimensions of the structure, and other geometric parameters of the structure can be obtained from the basic geometric parameter. (6) And (7) parameters representing the structure deployment process, which vary as the structure moves. (8) "10" are indirect geometrical parameters of the structure, representing the relationship between the axes of the tetrahedron and the relationship between the tetrahedron and the rod perpendicular to and intersecting the two axes.
And thirdly, the formula involved in the outward turning open type deployable structure is provided.
The invention can adopt various geometric forms, and takes the situation that an expandable structure consisting of N tetrahedrons is adopted, and the projection of the top surface of the structure in the horizontal direction is a regular N-shaped polygon when the structure is closed as an example.
1. Determination of geometrical dimensions of tetrahedral elements in a structure
The N tetrahedrons are identical or symmetrical, and only the tetrahedron A needs to be calculated1The geometry of the ABG, as in fig. 6. A rectangular coordinate system O ' XYZ is established by taking O ' as an origin, O ' B as an X axis, O ' Q (O ' Q vertical plane OO ' B) as a Y axis and O ' O as a Z axis. When the structure is closed, the coordinates of each point are respectively A1(0, 0, c), B (a, 0, 0), A (acos (2 π/N), asin (2 π/N), 0), G (a-dcos φ, 0, -dsin φ). Tetrahedron A1The six sides of the ABG have a length of
BG=ηa; <math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>A</mi> <mo>=</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>B</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mo>;</mo> <mi>AB</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </msqrt> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>G</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>&eta;</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <mi>&eta;</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>&phi;</mi> <mo>-</mo> <mi>&xi;</mi> <mi>sin</mi> <mi>&phi;</mi> <mo>)</mo> </mrow> </msqrt> <mo>;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>AG</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&eta;</mi> <mi>cos</mi> <mi>&phi;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>&eta;</mi> <mn>2</mn> </msup> </msqrt> </mrow> </math>
2. Determining values of structure indirect geometric parameters alpha, l, e, f and h
As shown in FIG. 6, a straight line A is set0B0With two tetrahedron axes A1A and BG are perpendicular and intersect at A0And B0When the included angle between the axes of adjacent shafts is alpha and the distance is l, A is0B0L; extension A of the rods into a tetrahedron1A0=e,AA0=f,BB0H. When A is used as AR/BG and the intersecting plane O' XY is used as R, the point of R is (0, asin (2 pi/N), -atan phi cos (2 pi/N)), so as to satisfy the geometric relationship
<math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>A</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> </mrow> </math>
<math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>R</mi> <mo>=</mo> <mi>a</mi> <msqrt> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>&phi;</mi> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>&xi;</mi> <mi>tan</mi> <mi></mi> <mi>&phi;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>AR</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>&phi;</mi> </msqrt> <mo>&CenterDot;</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </math>
And is <math> <mrow> <mi>cos</mi> <mi>&alpha;</mi> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <msup> <mi>A</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>A</mi> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <msup> <mi>R</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>A</mi> <mo>&CenterDot;</mo> <mi>AR</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
Substituting formula (3) into formula (4)
<math> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mi>arccos</mi> <mfrac> <mrow> <mn>2</mn> <mi>&xi;</mi> <mi>sin</mi> <mi>&phi;</mi> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mi></mi> <mi>&phi;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>&Nu;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>&Nu;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
Axis A1The angle alpha between A and BG, the distance l, then the tetrahedron A1Volume of ABG
<math> <mrow> <mi>V</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>A</mi> <mo>&CenterDot;</mo> <mi>BG</mi> <mo>&CenterDot;</mo> <mi>l</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mi>&alpha;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Passing through A as straight line AH ^ plane OBG and crossing O' B at H, tetrahedron A1Volume of ABG
<math> <mrow> <mi>V</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mi>AH</mi> <mo>&CenterDot;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>BG</mi> <mo>&CenterDot;</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>B</mi> <mo>&CenterDot;</mo> <mi>sin</mi> <mo>&angle;</mo> <mi>OBG</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
Equations (6) and (7) are equal and have
<math> <mrow> <mi>sin</mi> <mo>&angle;</mo> <mi>OBG</mi> <mo>=</mo> <mfrac> <mrow> <mi>&xi;</mi> <mi>cos</mi> <mi>&phi;</mi> <mo>+</mo> <mi>sin</mi> <mi>&phi;</mi> </mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> </mfrac> <mo>,</mo> </mrow> </math> AH=asin(2π/N),A1A=A1B
To obtain
<math> <mrow> <mi>l</mi> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mi>sin</mi> <mi>&phi;</mi> <mo>+</mo> <mi>&xi;</mi> <mi>cos</mi> <mi>&phi;</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mi>sin</mi> <mi>&alpha;</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
Per A0As AP/BB0And AP ═ BB0H, then BP ═ A0B0=l,∠A1A0P ═ α, satisfy
<math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>B</mi> <mo>=</mo> <msqrt> <msup> <mi>l</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>e</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <mi>eh</mi> <mi>cos</mi> <mi>&alpha;</mi> </msqrt> <mo>=</mo> <msqrt> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </msqrt> </mrow> </math>
<math> <mrow> <mi>AB</mi> <mo>=</mo> <msqrt> <msup> <mi>l</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>f</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>fh</mi> <mi>cos</mi> <mi>&alpha;</mi> </msqrt> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
A 1 A = e + f = a 2 + c 2
Get it solved
<math> <mrow> <mi>h</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mn>2</mn> <mi>c</mi> </mrow> <mn>2</mn> </msup> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mfrac> <mo>&CenterDot;</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>l</mi> <mn>2</mn> </msup> </msqrt> <mo></mo> </mrow> <mrow> <mi>sin</mi> <mi>&alpha;</mi> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mi>e</mi> <mo>=</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <msqrt> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </msqrt> </mfrac> <mo>+</mo> <mi>h</mi> <mi>cos</mi> <mi>&alpha;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>f</mi> <mo>=</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <msqrt> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </msqrt> </mfrac> <mo>-</mo> <mi>h</mi> <mi>cos</mi> <mi>&alpha;</mi> </mrow> </math>
3. Determining the relation between the included angle gamma between the roof axis and the horizontal direction and the included angle tau between the support axis and the horizontal direction in the process of unfolding the structure
The schematic view of the structure in the process of unfolding is shown in figure 2, a roof shaft A1A、C1C and E1The extension line of E is crossed with O1The extension lines of the support axes BG, DM and FN intersect at O2Plane A0C0E0Quadrature axis O1O2In O01Plane B0D0F0Quadrature axis O1O2In O02. The structure N tetrahedrons are identical or symmetrical, taking the tetrahedron A1The ABG calculates the geometry of the structure as it is deployed, as shown in fig. 7.
Translating the origin of the rectangular coordinate system to O01Point and establish a rectangular coordinate system O01X01Y01Z01. Per A0As A0S∥BB0Intersecting plane O01Y01Z01At S, set A0O1E', each point coordinate is A0(e′cosγcos(2π/N),e′cosγsin(2π/N),0),O1(0, 0, e ' sin gamma), S (0, e ' cos gamma sin (2 pi/N), -e ' cos gamma cos (2 pi/N) tan tau) satisfying the geometric relationship
O1A0=e′
<math> <mrow> <msub> <mi>A</mi> <mn>0</mn> </msub> <mi>S</mi> <mo>=</mo> <msup> <mi>e</mi> <mo>&prime;</mo> </msup> <mi>cos</mi> <mi>&gamma;</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>&tau;</mi> </msqrt> <mo>&CenterDot;</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>O</mi> <mn>1</mn> </msub> <mi>S</mi> <mo>=</mo> <msup> <mi>e</mi> <mo>&prime;</mo> </msup> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mi>&gamma;</mi> <mrow> <mo>(</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>&tau;</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mi></mi> <mi>&gamma;</mi> <mi>sin</mi> <mi></mi> <mi>&gamma;</mi> <mi>tan</mi> <mi></mi> <mi>&tau;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mrow> </math>
And is <math> <mrow> <mi>cos</mi> <mi>&alpha;</mi> </mrow> </math><math> <mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>O</mi> <mn>1</mn> </msub> <msup> <msub> <mi>A</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>A</mi> <mn>0</mn> </msub> <msup> <mi>S</mi> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>O</mi> <mn>1</mn> </msub> <msup> <mi>S</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <msub> <mi>A</mi> <mn>0</mn> </msub> <mi>S</mi> <mo>&CenterDot;</mo> <msub> <mi>O</mi> <mn>1</mn> </msub> <msub> <mi>A</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> </mrow> </math><math> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </math>
Substituting the formula (11) into the formula (12) to obtain the geometric parameter relationship in the structure unfolding process
sinγsinτ-cosγcosτcos(2π/N)=cosα (13)
When the structure is closed, the air inlet pipe is connected with the air inlet pipe, <math> <mrow> <msub> <mi>&tau;</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>&phi;</mi> <mo>,</mo> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
when the structure is fully unfolded, γ ═ γ', then
<math> <mrow> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mo>=</mo> <mi>arccos</mi> <mfrac> <mrow> <mo>-</mo> <mi>cos</mi> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mi>cos</mi> <mi></mi> <mi>&alpha;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>sin</mi> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <msqrt> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mi>&alpha;</mi> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
Equation (13) describes the relationship of the variables τ and γ during the structure unfolding process. When the structure is unfolded from the closed state, the included angle gamma between the roof axis and the horizontal plane is from gamma0Increasing gradually to gamma', and the included angle tau between the support shaft and the horizontal plane is from tau0And gradually decreases to tau'.
4. Determining the size and position of a sliding track
When the structure is unfolded to a certain state, the positive (N/2) edge A0C0E0… … side length a0Regular (N/2) polygonal shape B0D0F0… … side length b0Plane A0C0E0And B0D0F0A distance of c0I.e. O01O02=c0
In a rectangular coordinate systemO01X01Y01Z01In, each point coordinate is <math> <mrow> <msub> <mi>A</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mfrac> <msub> <mi>a</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>B</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mrow> <mn>2</mn> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>C</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mo>-</mo> <mfrac> <msub> <mi>a</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>D</mi> <mn>0</mn> </msub> <mo>(</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>4</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>4</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> <mo>,</mo> <mo>&hellip;</mo> <mo>&hellip;</mo> <mo>,</mo> </mrow> </math> Satisfy the geometric relationship
<math> <mrow> <mi>tan</mi> <mi>&tau;</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mrow> <mn>2</mn> <mi>c</mi> </mrow> <mn>0</mn> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mi>tan</mi> <mi>&gamma;</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <msub> <mi>c</mi> <mn>0</mn> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>l</mi> <mo>=</mo> <msqrt> <mfrac> <mrow> <msup> <msub> <mi>a</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>a</mi> <mn>0</mn> </msub> <msub> <mi>b</mi> <mn>0</mn> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <msub> <mi>b</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mn>4</mn> <mi>sin</mi> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msup> <msub> <mi>c</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </msqrt> </mrow> </math>
Equation (16) is solved
<math> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>tan</mi> <mi>&gamma;</mi> <mo>+</mo> <mi>tan</mi> <mi></mi> <mi>&tau;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>&tau;</mi> <mo>+</mo> <mn>2</mn> <mi>tan</mi> <mi></mi> <mi>&tau;</mi> <mi>tan</mi> <mi></mi> <mi>&gamma;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>&gamma;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>l</mi> </mrow> </math>
<math> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>tan</mi> <mi></mi> <mi>&gamma;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>tan</mi> <mi>&tau;</mi> <mo>)</mo> </mrow> </mrow> <msqrt> <mrow> <mo>(</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>&tau;</mi> <mo>+</mo> <mn>2</mn> <mi>tan</mi> <mi></mi> <mi>&tau;</mi> <mi>tan</mi> <mi></mi> <mi>&gamma;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>&gamma;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mfrac> <mi>l</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <msqrt> <mrow> <mo>(</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>&tau;</mi> <mo>+</mo> <mn>2</mn> <mi>tan</mi> <mi></mi> <mi>&tau;</mi> <mi>tan</mi> <mi></mi> <mi>&gamma;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>&gamma;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mfrac> <mi>l</mi> </mrow> </math>
Substituting the formula (13) into the formula (17) to obtain
<math> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&tau;</mi> <mi>cos</mi> <mi></mi> <mi>&gamma;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>cos</mi> <mi></mi> <mi>&tau;</mi> <mi>sin</mi> <mi>&gamma;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mi>&alpha;</mi> </mrow> </mfrac> <mi>l</mi> </mrow> </math>
<math> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>&tau;</mi> <mi>cos</mi> <mi>&gamma;</mi> <mo>+</mo> <mi>cos</mi> <mi></mi> <mi>&tau;</mi> <mi>sin</mi> <mi></mi> <mi>&gamma;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mi>&alpha;</mi> </mrow> </mfrac> <mi>l</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mi>cos</mi> <mi></mi> <mi>&tau;</mi> <mi>cos</mi> <mi></mi> <mi>&gamma;</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mi>&alpha;</mi> </mrow> </mfrac> <mi>l</mi> </mrow> </math>
The expandable structure is composed of N tetrahedral rigid members, and the (N/2) slide rails (9) are in the same plane, have an included angle of (4 pi/N) and have extension lines intersected at one point, and the point is used as the center point of the slide rail. The position of the outermost points (G, M and N in figures 1(a) and (b)) of the sliding rail (9) corresponds to the position of the support (7) when the structure is closed, and the distance formula from the center point
J1=a-dcosφ (19)
The innermost points of the slide rail (9) (S in fig. 1(a) and (b) and fig. 2(a) and (b))G、SMAnd SN) Corresponding to the position of the support (7) when the structure is fully unfolded, formula of the distance from the center
<math> <mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mrow> <mn>2</mn> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mrow> <mo>(</mo> <mi>d</mi> <mo>-</mo> <mi>h</mi> <mo>)</mo> </mrow> <mi>cos</mi> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
Substituting the formula (18) into the formula (20) to obtain
<math> <mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>sin</mi> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mi>cos</mi> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mo>+</mo> <mi>cos</mi> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mi>sin</mi> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mi></mi> <mi>&alpha;</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>l</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>d</mi> <mo>-</mo> <mi>h</mi> <mo>)</mo> </mrow> <mi>cos</mi> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
Fourthly, the invention discloses a manufacturing method of an outward turning open type deployable structure
1. From the foregoing, the basic shape of the deployable structure of the present invention has been determined. Selecting proper geometric parameters: the side length a of the regular N-shaped projection of the top surface in the horizontal direction when the structure is closed, the rise c of the upper part when the structure is closed, the included angle phi between the support shaft (4) and the horizontal direction when the structure is closed, the length d of the support shaft (4) and the included angle gamma' between the roof shaft (3) and the horizontal direction when the structure is completely unfolded.
2. According to formula (2), the geometrical dimensions of the N tetrahedral rigid members making up the structure are determined, the N tetrahedral members being designed according to the dimensions.
3. The annular position relation between N tetrahedron components (1) is correctly arranged, the connection form between the tetrahedron rigid components is determined, the adjacent tetrahedron components (1) are respectively connected at the positions of a roof shaft (3) and a support shaft (4) through replaceable rotary connectors (2), the bottom end of the support shaft is provided with a support (4), a pulley is arranged at the position of the support, and the slidable direction of the pulley is along the radial direction of a circumscribed circle of a regular N-edge. Attention is paid to confirm the correct positions of the roof axis (3) and the support axis (4) of the tetrahedral member (1).
4. According to the formulas (19) and (21), the outermost points (G, M and N in FIGS. 1(a) and (b)) of the slide rail (9) and the innermost points (S in FIGS. 1(a), (b) and FIGS. 2(a), (b)) of the slide rail (9) are determinedG、SMAnd SN) The distance from the center is designed according to the basic schematic diagram of the sliding rail (9) in the figures 1 and 2, the (N/2) sliding rails are in the same plane, the mutual included angle is (4 pi/N), and the extension lines can intersect at a point which is used as the center point of the sliding rail.
5. The pulley and the slide rail are correspondingly installed, so that the central shaft of the structure is ensured to pass through the central point of the slide rail, and the pulley can slide in the track of the slide rail.
In the foregoing, the N tetrahedral members of the deployable structure are considered as N entities. In fact, the N tetrahedrons in the present invention can also be tetrahedrons formed by a grid formed by rods (as shown in fig. 9), and can also be combined with a film material, so that the density and the weight of the structure can be greatly reduced, which is very beneficial to engineering application.
The invention has the advantages that the expandable structure is directly constructed by utilizing the three-dimensional annular mechanism, the structural form is attractive, the center of the structural roof is completely closed when the structure is closed, the motion symmetry of the support is ensured, and the expansion to the required structural form is realized. When the expandable structure is formed by six tetrahedral members, the mechanism is a single-degree-of-freedom over-constrained three-dimensional mechanism, the single degree of freedom enables the structure motion to be very easy to control, and the complex operation required by expansion is avoided. Furthermore, the over-constrained nature of the mechanism provides relatively high rigidity and structural strength, which make the deployable structure particularly useful.
The invention can be applied to openable roof structures with various sizes, and the opening mode of the openable roof structure is an outward turning opening mode.

Claims (5)

1. An outwards-overturning opening type deployable structure is characterized by comprising a movable link mechanism, wherein the link mechanism consists of N tetrahedral rigid components (1), the tetrahedral rigid components are connected through a roof shaft (3) and a rotary connecting piece (2) of a support shaft (4) to form a three-dimensional annular mechanism, a support (7) is arranged at the bottom end of the support shaft (4), when the support moves from inside to outside along a sliding rail (9), the tetrahedrons (1) rotate around the rotary connecting piece (2) of the tetrahedrons, so that the inner side surfaces (6) of adjacent tetrahedrons of the structure are in contact with each other, and the upper part of the structure is closed; when the support moves from outside to inside along the sliding rail (9), the tetrahedron (1) rotates around the rotating connecting piece (2), and the upper part of the structure is turned outwards and opened.
2. A flip-out open deployable structure according to claim 1, wherein the N tetrahedral rigid members are an even number of tetrahedral rigid members equal to or greater than six.
3. A structure deployable in an outwardly turned open configuration according to claim 1 or 2, wherein when the structure of N tetrahedron-shaped rigid members is closed, the projection of the top surface (5) in the horizontal direction is a regular N-sided polygon, the triangles of the four faces of each tetrahedron as the top surfaces (5) of the structure are identical isosceles triangles, and the vertices (8) of the N triangles of the top surface coincide at a point when the structure is closed.
4. A structure deployable in an outwardly turned open position according to claim 1 or 2, wherein the horizontal projection of the top surface (5) when the structure of N tetrahedral rigid members is closed is triangular, square, rectangular or polygonal.
5. A method of making an outwardly turned open deployable structure according to claim 1, further comprising the steps of:
(1) the basic geometrical parameters for designing a developable structure consisting of N tetrahedral rigid members are as follows: when the structure is closed, the side length a of the regular N-shaped polygon projected in the horizontal direction of the roof is larger than 0; when the structure is closed, the upper rise c is larger than 0, and the relative rise xi is c/a; when the structure is closed, the included angle phi between the support shaft (4) and the horizontal direction, <math> <mrow> <mn>0</mn> <mo>&lt;</mo> <mi>&phi;</mi> <mo>&lt;</mo> <mi>&pi;</mi> <mo>-</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> the length d of the support shaft (4) is more than 0 and less than a/cos phi, and the relative length eta of the support shaft is d/a; when the structure is completely unfolded, the roof axis (3) forms an included angle with the horizontal direction <math> <mrow> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> <mo>&lt;</mo> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mo>&lt;</mo> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
(2) Determining the dimensions of N tetrahedral rigid members constituting the structure, wherein one tetrahedron A is represented1The formula for the length of the six sides of ABG is as follows:
<math> <mrow> <mi>BG</mi> <mo>=</mo> <mi>&eta;a</mi> <mo>;</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>A</mi> <mo>=</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>B</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mo>;</mo> <mi>AB</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>N</mi> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> </msqrt> </mrow> </math>
<math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>G</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>&eta;</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <mi>&eta;</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>&phi;</mi> <mo>-</mo> <mi>&xi;</mi> <mi>sin</mi> <mi>&phi;</mi> <mo>)</mo> </mrow> </msqrt> <mo>;</mo> </mrow> </math>
<math> <mrow> <mi>AG</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&eta;</mi> <mi>cos</mi> <mi>&phi;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>N</mi> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>&eta;</mi> <mn>2</mn> </msup> </msqrt> </mrow> </math>
the geometry and dimensions of the remaining (N-1) tetrahedra can also be determined according to the above formula;
(3) determining a connection form between tetrahedral rigid members, wherein adjacent tetrahedral rigid members (1) are respectively connected at positions of a roof shaft (3) and a support shaft (4) through replaceable rotary connectors (2) to form a three-dimensional annular mechanism, the bottom end of the support shaft (4) is provided with a support (7), a pulley is arranged at the position of the support (7), and the sliding direction of the pulley is along the radial direction of a circumscribed circle of a regular N-edge;
(4) the form and the size of the slide rail are designed, and (N/2) slide rails (9) are in the same plane, the mutual included angle is (4 pi/N), and the extension lines can intersect at one point which is used as the center point of the slide rail. The position of the outermost point of the slide rail (9) is equivalent to the position of the support (7) when the structure is closed, and the distance formula from the central point
J1=a-dcosφ
The position of the innermost point of the slide rail (9) is equivalent to the position of the support (7) when the structure is completely unfolded, and the distance formula from the center
<math> <mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>sin</mi> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mi>cos</mi> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mo>+</mo> <mi>cos</mi> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mi>sin</mi> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mi></mi> <mi>&alpha;</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>l</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>d</mi> <mo>-</mo> <mi>h</mi> <mo>)</mo> </mrow> <mi>cos</mi> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mo>;</mo> </mrow> </math>
Wherein,
<math> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mi>arccos</mi> <mfrac> <mrow> <mn>2</mn> <mi>&xi;</mi> <mi>sin</mi> <mi>&phi;</mi> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mi></mi> <mi>&phi;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mi>l</mi> <mo>=</mo> <mfrac> <mrow> <mi>&alpha;</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mi>sin</mi> <mi>&phi;</mi> <mo>+</mo> <mi>&xi;</mi> <mi>cos</mi> <mi>&phi;</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&xi;</mi> <mn>2</mn> </msup> </msqrt> <mi>sin</mi> <mi>&alpha;</mi> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mi>h</mi> <mo>=</mo> <mfrac> <msqrt> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mn>2</mn> <mi>c</mi> </mrow> <mn>2</mn> </msup> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mfrac> <mo>&CenterDot;</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>l</mi> <mn>2</mn> </msup> </msqrt> <mrow> <mi>sin</mi> <mi>&alpha;</mi> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <msup> <mi>&tau;</mi> <mo>&prime;</mo> </msup> <mo>=</mo> <mi>arccos</mi> <mfrac> <mrow> <mo>-</mo> <mi>cos</mi> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mi>cos</mi> <mi></mi> <mi>&alpha;</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>sin</mi> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <msqrt> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mi>&alpha;</mi> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mi>si</mi> <msup> <mi>n</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msup> <mi>&gamma;</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
(5) the pulley and the slide rail are correspondingly installed, so that the central shaft of the structure is ensured to pass through the central point of the slide rail, and the pulley can slide in the track of the slide rail.
CNB2005100608499A 2005-09-22 2005-09-22 Externally turnover and openalbe expandable structure and production thereof Expired - Fee Related CN100346043C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100608499A CN100346043C (en) 2005-09-22 2005-09-22 Externally turnover and openalbe expandable structure and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100608499A CN100346043C (en) 2005-09-22 2005-09-22 Externally turnover and openalbe expandable structure and production thereof

Publications (2)

Publication Number Publication Date
CN1779144A true CN1779144A (en) 2006-05-31
CN100346043C CN100346043C (en) 2007-10-31

Family

ID=36769594

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100608499A Expired - Fee Related CN100346043C (en) 2005-09-22 2005-09-22 Externally turnover and openalbe expandable structure and production thereof

Country Status (1)

Country Link
CN (1) CN100346043C (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587557A (en) * 2012-03-29 2012-07-18 浙江大学 Method for manufacturing similarly elliptical opening structure with fixed-point motion function
CN102605888A (en) * 2012-03-08 2012-07-25 东南大学 Truss structure with four degrees of freedom
CN102912852A (en) * 2012-10-18 2013-02-06 东南大学 Regular tetrahedral symmetrical deployable mechanism unit
CN103883057A (en) * 2014-04-09 2014-06-25 东南大学 Openable house cover with transverse scissor type units
CN103883055A (en) * 2014-04-09 2014-06-25 东南大学 Openable roof with redundancy restraint function and spatial multi-ring shear type units
CN103883056A (en) * 2014-04-09 2014-06-25 东南大学 Openable roof of space double-ring shear unit
CN103883058A (en) * 2014-04-09 2014-06-25 东南大学 Openable house cover with transverse double-ring space scissor type units
CN103938781A (en) * 2014-04-09 2014-07-23 东南大学 Annularly unfolded roof structure
CN103938780A (en) * 2014-04-09 2014-07-23 东南大学 Dual-ring scissor type unit unfolding roof
CN111186175A (en) * 2020-01-21 2020-05-22 东南大学 Foldable membrane rod structure
CN113789901A (en) * 2021-10-16 2021-12-14 神州建设集团有限公司 Roof structure is built in room
CN113891837A (en) * 2019-05-24 2022-01-04 自由度有限责任公司 Enclosing piece, table and lamp started by folded paper
CN114370118A (en) * 2022-01-24 2022-04-19 天津大学 Single-degree-of-freedom rotationally-symmetric deployable structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640811A (en) * 1995-03-17 1997-06-24 Boyle; Marvin L. Outdoor dome biased rafter-brace, rafter-brace and four-way connector framework
JPH1088661A (en) * 1996-09-18 1998-04-07 Takenaka Komuten Co Ltd Multiple polygonal pyramidal type form variable roof frame
CN2325439Y (en) * 1997-07-17 1999-06-23 李义雄 Ventilation structure with adjustable roof parts
JP2001148948A (en) * 1999-11-25 2001-06-05 Fukuyama:Kk Opening and closing mechanism for skylight of greenhouse and greenhouse
CN2487800Y (en) * 2001-01-09 2002-04-24 于汉荣 Longspan expanding structure beam

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605888A (en) * 2012-03-08 2012-07-25 东南大学 Truss structure with four degrees of freedom
CN102587557A (en) * 2012-03-29 2012-07-18 浙江大学 Method for manufacturing similarly elliptical opening structure with fixed-point motion function
CN102912852B (en) * 2012-10-18 2014-12-24 东南大学 Regular tetrahedral symmetrical deployable mechanism unit
CN102912852A (en) * 2012-10-18 2013-02-06 东南大学 Regular tetrahedral symmetrical deployable mechanism unit
CN103883057B (en) * 2014-04-09 2015-12-09 东南大学 A kind of horizontal scissors unit can retractable roof
CN103938781B (en) * 2014-04-09 2015-12-09 东南大学 A kind of roof structure of circular development
CN103883058A (en) * 2014-04-09 2014-06-25 东南大学 Openable house cover with transverse double-ring space scissor type units
CN103938781A (en) * 2014-04-09 2014-07-23 东南大学 Annularly unfolded roof structure
CN103938780A (en) * 2014-04-09 2014-07-23 东南大学 Dual-ring scissor type unit unfolding roof
CN103883055A (en) * 2014-04-09 2014-06-25 东南大学 Openable roof with redundancy restraint function and spatial multi-ring shear type units
CN103883057A (en) * 2014-04-09 2014-06-25 东南大学 Openable house cover with transverse scissor type units
CN103883056B (en) * 2014-04-09 2015-12-09 东南大学 A kind of space dicyclo scissors unit can retractable roof
CN103883058B (en) * 2014-04-09 2015-12-09 东南大学 A kind of horizontal dicyclo space scissors unit can retractable roof
CN103883056A (en) * 2014-04-09 2014-06-25 东南大学 Openable roof of space double-ring shear unit
CN103883055B (en) * 2014-04-09 2015-12-09 东南大学 A kind of space many rings scissors unit with redundant constaint can retractable roof
CN103938780B (en) * 2014-04-09 2015-12-30 东南大学 A kind of dicyclo scissors unit launches roof system
CN113891837A (en) * 2019-05-24 2022-01-04 自由度有限责任公司 Enclosing piece, table and lamp started by folded paper
EP3976482A4 (en) * 2019-05-24 2023-07-26 Degrees of Freedom LLC Origami-inspired enclosure, table, and lamp
CN111186175A (en) * 2020-01-21 2020-05-22 东南大学 Foldable membrane rod structure
CN113789901A (en) * 2021-10-16 2021-12-14 神州建设集团有限公司 Roof structure is built in room
CN113789901B (en) * 2021-10-16 2022-12-06 神州建设集团有限公司 Roof structure is built in room
CN114370118A (en) * 2022-01-24 2022-04-19 天津大学 Single-degree-of-freedom rotationally-symmetric deployable structure

Also Published As

Publication number Publication date
CN100346043C (en) 2007-10-31

Similar Documents

Publication Publication Date Title
CN100346043C (en) Externally turnover and openalbe expandable structure and production thereof
CN100340317C (en) Toy figure having plurality of body parts joined by ball and socket joints
CN1159191C (en) Basement of dragging support platform with expanded fundation
CA2944890C (en) Systems and methods for collapsible structure applications
CN1096408C (en) Suspension clamping device
CN1273142A (en) Agitating device for vibrating fluid
CN101076682A (en) Epitrochoidal crankshaft mechanism and method
CN1302191C (en) Deployable structure
CN1496302A (en) Ultroasonic vibratory welding device and ultrasonic vibratory horn
CN1735752A (en) Collapsible nut
RU2478474C2 (en) Vibratory concrete mixer
CN101074880A (en) Method for scanning entry safety landing area in moon detector suspension stage
CN106540612A (en) Spliced a mixing bowl
CN1715581A (en) Method for producing radial openable round plate type structure
CN1897167A (en) Image display device support
JP2006520107A5 (en)
CN101066591A (en) Copying robot
CN2803444Y (en) Indoor folding climbing stairs for children
CN1593294A (en) Sofa with parts interchangeable, free assembly and its production method
CN1922366A (en) A covering for an access aperture, and related assemblies
CN1347674A (en) Cosmetics container
CN1908985A (en) Lattice simplified restrain method of three-dimensional human model
RU2460624C1 (en) Vibratory unit with working chamber displacement
CN2640292Y (en) Portable parasol
CN1734504A (en) Three-dimensional object fashioning method, computer animation and game role making method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Assignee: Wuhu Tianhang Technology (Group) Co., Ltd.

Assignor: Zhejiang University

Contract fulfillment period: 2009.8.11 to 2014.8.10 contract change

Contract record no.: 2009330002439

Denomination of invention: Externally turnover and openalbe expandable structure and production thereof

Granted publication date: 20071031

License type: Exclusive license

Record date: 20091012

LIC Patent licence contract for exploitation submitted for record

Free format text: EXCLUSIVE LICENSE; TIME LIMIT OF IMPLEMENTING CONTACT: 2009.8.11 TO 2014.8.10; CHANGE OF CONTRACT

Name of requester: WUHU AVIATION SCIENCE AND TECHNOLOGY( GROUP ) CO.,

Effective date: 20091012

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071031

Termination date: 20140922

EXPY Termination of patent right or utility model