Disclosure of Invention
The invention aims to provide an outward turning open type deployable structure and a manufacturing method thereof.
The outward-turning open type deployable structure comprises a movable link mechanism, wherein the link mechanism consists of N (N is more than or equal to 6, and N is an even number) tetrahedral rigid components, the tetrahedral rigid components are connected through rotary connecting pieces of a roof shaft and a support shaft to form a three-dimensional annular mechanism, the bottom end of the support shaft is a support, when the support moves from inside to outside along a sliding rail simultaneously, tetrahedrons rotate around the rotary connecting pieces of the tetrahedrons, the inner side surfaces of adjacent tetrahedrons of the structure can be in contact with each other, and the upper part of the structure is closed; when the support moves from outside to inside along the slide rail, the tetrahedron rotates around the rotating connecting piece, and the upper part of the structure is turned outwards and opened.
The geometry of the outwards-turned open-type deployable structure consisting of N tetrahedral rigid members can adopt various forms. When the structure is closed, the projection of the top surface in the horizontal direction can be a regular N-shaped polygon, the triangles serving as the top surfaces of the structure in the four surfaces of each tetrahedron are identical isosceles triangles, and the vertex of each triangle is coincided with one point when the structure is closed; when the structure is closed, the projection of the top surface in the horizontal direction can also be triangular, square, rectangular or polygonal.
An outward turning open type deployable structure composed of N tetrahedral rigid members takes the projection of a top surface in the horizontal direction as a regular N-shaped edge as an example when the structure is closed, and the manufacturing method comprises the following steps:
(1) the basic geometrical parameters for designing a developable structure consisting of N tetrahedral rigid members are as follows: when the structure is closed, the side length a of the regular N-shaped polygon projected in the horizontal direction of the roof is larger than 0; when the structure is closed, the upper rise c is larger than 0, and the relative rise xi is c/a; when the structure is closed, the included angle phi between the support shaft and the horizontal direction, <math> <mrow> <mn>0</mn> <mo><</mo> <mi>φ</mi> <mo><</mo> <mi>π</mi> <mo>-</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> the length d of the support shaft is more than 0 and less than a/cos phi, and the relative length eta of the support shaft is d/a; the angle between the roof axis and the horizontal direction when the structure is completely unfolded <math> <mrow> <msup> <mi>γ</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> <mo><</mo> <msup> <mi>γ</mi> <mo>′</mo> </msup> <mo><</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
(2) Determining the dimensions of N tetrahedral rigid members constituting the structure, wherein one tetrahedron A is represented1The formula for the length of the six sides of ABG is as follows:
BG=ηa; <math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>A</mi> <mo>=</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>B</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> <mo>;</mo> <mi>AB</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mi>N</mi> </mfrac> <mo>)</mo> </mrow> </msqrt> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>G</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>η</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <mi>η</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>φ</mi> <mo>-</mo> <mi>ξ</mi> <mi>sin</mi> <mi>φ</mi> <mo>)</mo> </mrow> </msqrt> <mo>;</mo> </mrow> </math>
<math> <mrow> <mi>AG</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>η</mi> <mi>cos</mi> <mi>φ</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mi>N</mi> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>η</mi> <mn>2</mn> </msup> </msqrt> </mrow> </math>
the geometry and dimensions of the remaining (N-1) tetrahedra can also be determined according to the above formula;
(3) determining a connection form between tetrahedral rigid members, wherein adjacent tetrahedral rigid members are respectively connected at the positions of a roof shaft and a support shaft through replaceable rotary connecting pieces to form a three-dimensional annular mechanism, the bottom end of the support shaft is a support, a pulley is arranged at the position of the support, and the slidable direction of the pulley is along the radial direction of a regular N-edge circumscribed circle;
(4) the form of the slide rail is designed, and the (N/2) slide rails are positioned on the same plane, the mutual included angle is (4 pi/N), and the extension lines can intersect at a point which is used as the center point of the slide rail. The position of the outermost point of the slide rail is equivalent to the position of the support when the structure is closed, and the distance formula from the central point
J1=a-dcosφ
The position of the innermost point of the slide rail is equivalent to the position of the support when the structure is completely unfolded, and the distance formula from the center
<math> <mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>sin</mi> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mi>cos</mi> <msup> <mi>γ</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>cos</mi> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mi>sin</mi> <msup> <mi>γ</mi> <mo>′</mo> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mi></mi> <mi>α</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>l</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>d</mi> <mo>-</mo> <mi>h</mi> <mo>)</mo> </mrow> <mi>cos</mi> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mo>;</mo> </mrow> </math>
Wherein,
<math> <mrow> <mi>α</mi> <mo>=</mo> <mi>arccos</mi> <mfrac> <mrow> <mn>2</mn> <mi>ξ</mi> <mi>sin</mi> <mi>φ</mi> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mi></mi> <mi>φ</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mi>l</mi> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mo>·</mo> <mrow> <mo>(</mo> <mi>sin</mi> <mi>φ</mi> <mo>+</mo> <mi>ξ</mi> <mi>cos</mi> <mi>φ</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> <mi>sin</mi> <mi>α</mi> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mi>h</mi> <mo>=</mo> <mfrac> <msqrt> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mn>2</mn> <mi>c</mi> </mrow> <mn>2</mn> </msup> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mfrac> <mo>·</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>l</mi> <mn>2</mn> </msup> </msqrt> <mrow> <mi>sin</mi> <mi>α</mi> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>arccos</mi> <mfrac> <mrow> <mo>-</mo> <mi>cos</mi> <msup> <mi>γ</mi> <mo>′</mo> </msup> <mi>cos</mi> <mi></mi> <mi>α</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>sin</mi> <msup> <mi>γ</mi> <mo>′</mo> </msup> <msqrt> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mi>α</mi> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msup> <mi>γ</mi> <mo>′</mo> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msup> <mi>γ</mi> <mo>′</mo> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
(5) the pulley and the slide rail are correspondingly installed, so that the central shaft of the structure is ensured to pass through the central point of the slide rail, and the pulley can slide in the track of the slide rail.
The invention has the advantages that the expandable structure is directly constructed by utilizing the three-dimensional annular mechanism, the structural form is beautiful, the center of the structural roof is completely closed when the structure is closed, the motion symmetry of the support is ensured, and the expansion to the required structural form is realized. When the expandable structure is formed by six tetrahedral members, the mechanism is a single-degree-of-freedom over-constrained three-dimensional mechanism, the single degree of freedom enables the structure motion to be very easy to control, and the complex operation required by expansion is avoided. Furthermore, the over-constrained nature of the mechanism provides relatively high rigidity and structural strength, which make the deployable structure particularly useful.
Detailed Description
The invention provides an outward-turnable open-type deployable structure, which is based on the theories of a link mechanism and a tetrahedral rotating ring. A link is a special form of mechanism that consists of several interconnected rigid members, the connection between the two members being called a hinge. The hinge has various types, the invention adopts a rotary hinge, and the hinge has only one rotational degree of freedom; the rigid member may be a straight rod, a curved rod or even a body.
The tetrahedral rotating ring may be seen as a link mechanism with tetrahedrons as rigid members. The N identical tetrahedrons are composed of 4N (N is more than or equal to 6, and N is an even number) identical equilateral or isosceles triangles, two opposite sides of each tetrahedron are respectively connected with the sides of other tetrahedrons to form a ring, the tetrahedrons can rotate around the adjacent common sides to form a three-dimensional mechanism, and the ring-shaped mechanism can continuously rotate inwards or outwards. Note that the motion of the tetrahedral ring has a single degree of freedom when N is 6, and if a regular tetrahedron is used to form the ring, when the mechanism moves to a certain state, the two surfaces contact each other to stop the motion.
Two adjacent common edges in the tetrahedral rotating ring are perpendicular to each other, and (N/2) symmetric planes exist when the tetrahedral rotating ring moves to any state. If the symmetrical plane of the mechanism is ensured to be unchanged, the shape of the tetrahedron is changed, so that the adjacent common edges are not necessarily vertical and are not parallel or intersected, and the tetrahedron ring can still move. It is characterized in thatThus, comprising N tetrahedral elements and movable in a specific direction by means of hinges having a rotation axis, and ensuring, during the movement, that the mechanism has (N/2) planes of symmetry in any state of movement, with a single degree of freedom of movement, limited by certain geometrical conditions. Setting a straight line perpendicular to and intersecting with the two adjacent shafts, using the connecting line of the two adjacent intersection points as a rigid rod, and keeping the axial direction of the hinges unchanged, so that the axial distance of the adjacent hinges is the rod length ai(i+1)Axial included angle alpha of adjacent hingesi(i+1)And the distance R between the end points of two adjacent rods at the hinge i along the axisiSatisfying the following geometrical conditions (fig. 3 shows a geometrical relationship diagram of the link mechanism when N ═ 6)
a12=a23=……=aN1=l
α12=α34=……=α(N-1)N=α,α23=α45=……=αN1=2π-α (1)
R1=R2=……=RN=0
The research on the tetrahedral rotating ring has attracted many people for research and analysis, but so far, the research on the tetrahedral rotating ring has been mainly focused on the case where the tetrahedron is a regular tetrahedron (two opposite sides of the tetrahedron as common sides are perpendicular) and the ring mechanism can be continuously rotated, mainly for the toy design and the like, and rarely applied to the structure.
The invention designs an outward turning open type deployable structure by combining the concepts of a tetrahedral rotating ring and a link mechanism, and provides a manufacturing method thereof. The method comprises the following steps:
first, the geometry and opening mode of the flip-out open deployable structure of the present invention are described.
The deployable structure comprises a linkage mechanism consisting of a plurality of rigid tetrahedral members (1), the tetrahedral members (1) being connected by rotary connectors (e.g. the alternative connectors 2 in fig. 4(a) and 4(b) respectively).
When the outwardly-turned open-type deployable structure is a ring-shaped structure composed of N (N is equal to or greater than 6, and N is an even number) tetrahedrons, fig. 5 shows a structural model when N is equal to 6. The N tetrahedrons are spaced at the same interval, and the edges of the adjacent tetrahedron members (1) are connected through a rotary connector (2) to form a ring (the connection mode is shown in figure 4). Adjacent common edges are not necessarily perpendicular and are not parallel nor intersecting. When the structure is closed, the inner side surfaces (6) of adjacent tetrahedrons are contacted, and the structure can be kept stable under the action of self weight and external force. The (N/2) public sides are used as roof shafts (3), the (N/2) public sides are used as support shafts (4), the support shafts (4) are inclined inwards by a certain angle, and the (N/2) supports (7) are respectively positioned at the bottom ends of the support shafts (4). The roof shaft (3) and the support shaft (4) are alternately positioned in N vertical planes with an included angle of (2 pi/N), and the roof shaft (3) and the support shaft (4) move in the planes when the structure is closed and unfolded.
The geometry of the outwards-turned open-type deployable structure consisting of N tetrahedral rigid members can adopt various forms. When the structure is closed, the projection of the top surface in the horizontal direction can be a regular N-polygon (such as ABCDEF in fig. 1 (a)), the triangle as the top surface (5) of the structure in the four faces of each tetrahedron is the same isosceles triangle, and the vertex of each triangle is coincided with one point (8) when the structure is closed; when the structure is closed, the projection of the top surface in the horizontal direction can also be a triangle, a square, a rectangle or a polygon (as shown in fig. 8).
When the support moves from inside to outside along the sliding rail (9), the tetrahedron (1) rotates around the rotary connecting piece (2) of the tetrahedron, so that the inner side surfaces (6) of the adjacent tetrahedron of the structure are contacted with each other, and the upper part of the structure is closed; when the support moves from outside to inside along the sliding rail (9), the tetrahedron (1) rotates around the rotating connecting piece (2), and the upper part of the structure is turned outwards and opened.
And secondly, the geometric parameters involved in the outwards-turning open type deployable structure are adopted.
The structure geometry was set as follows:
(1) a represents the side length of a regular N-shaped polygon projected in the horizontal direction when the structure is closed (as shown in FIG. 1(a), a is more than 0);
(2) c represents the upper rise when the structure is closed (as in fig. 1(b), OO' ═ c, c > 0), and relative rise ξ ═ c/a;
(3) phi represents the angle between the axis of the support and the horizontal when the structure is closed <math> <mrow> <mo>(</mo> <mn>0</mn> <mo><</mo> <mi>φ</mi> <mo><</mo> <mi>π</mi> <mo>-</mo> <mi>arccos</mi> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> </math> As in fig. 6);
(4) d represents the length of the support shaft (as shown in fig. 1(c), BG ═ DM ═ FN ═ d, 0 < d < a/cos phi), and the relative length η of the support shaft is d/a;
(5) gamma' indicates the angle between the roof axis and the horizontal when the structure is fully deployed <math> <mrow> <mo>(</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> <mo><</mo> <msup> <mi>γ</mi> <mo>′</mo> </msup> <mo><</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </math>
(6) Gamma represents the included angle between the support shaft and the horizontal direction when the structure moves (as shown in figure 7);
(7) tau represents the angle between the roof axis and the horizontal direction when the structure moves (as shown in figure 7);
(8) alpha represents the included angle between the axes of the adjacent hinges (as in the formula (1));
(9) l represents the distance between the axes of adjacent hinges (as shown in equation (1));
(10) e, f and h represent the distances in the direction of the axis from the end points of the rods perpendicular to the axes of the two adjacent hinges of the structure and intersecting the two axes to the end points of the common edges of the tetrahedron (see fig. 6 and 7, a)1A0=e,AA0=f,BB0=h,GB0=d-h)。
(1) "5" is a basic geometric parameter of the structure, which determines the geometry and dimensions of the structure, and other geometric parameters of the structure can be obtained from the basic geometric parameter. (6) And (7) parameters representing the structure deployment process, which vary as the structure moves. (8) "10" are indirect geometrical parameters of the structure, representing the relationship between the axes of the tetrahedron and the relationship between the tetrahedron and the rod perpendicular to and intersecting the two axes.
And thirdly, the formula involved in the outward turning open type deployable structure is provided.
The invention can adopt various geometric forms, and takes the situation that an expandable structure consisting of N tetrahedrons is adopted, and the projection of the top surface of the structure in the horizontal direction is a regular N-shaped polygon when the structure is closed as an example.
1. Determination of geometrical dimensions of tetrahedral elements in a structure
The N tetrahedrons are identical or symmetrical, and only the tetrahedron A needs to be calculated1The geometry of the ABG, as in fig. 6. A rectangular coordinate system O ' XYZ is established by taking O ' as an origin, O ' B as an X axis, O ' Q (O ' Q vertical plane OO ' B) as a Y axis and O ' O as a Z axis. When the structure is closed, the coordinates of each point are respectively A1(0, 0, c), B (a, 0, 0), A (acos (2 π/N), asin (2 π/N), 0), G (a-dcos φ, 0, -dsin φ). Tetrahedron A1The six sides of the ABG have a length of
BG=ηa; <math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>A</mi> <mo>=</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>B</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> <mo>;</mo> <mi>AB</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </msqrt> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>G</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>η</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <mi>η</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>φ</mi> <mo>-</mo> <mi>ξ</mi> <mi>sin</mi> <mi>φ</mi> <mo>)</mo> </mrow> </msqrt> <mo>;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>AG</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>η</mi> <mi>cos</mi> <mi>φ</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>η</mi> <mn>2</mn> </msup> </msqrt> </mrow> </math>
2. Determining values of structure indirect geometric parameters alpha, l, e, f and h
As shown in FIG. 6, a straight line A is set0B0With two tetrahedron axes A1A and BG are perpendicular and intersect at A0And B0When the included angle between the axes of adjacent shafts is alpha and the distance is l, A is0B0L; extension A of the rods into a tetrahedron1A0=e,AA0=f,BB0H. When A is used as AR/BG and the intersecting plane O' XY is used as R, the point of R is (0, asin (2 pi/N), -atan phi cos (2 pi/N)), so as to satisfy the geometric relationship
<math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>A</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> </mrow> </math>
<math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>R</mi> <mo>=</mo> <mi>a</mi> <msqrt> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>φ</mi> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>ξ</mi> <mi>tan</mi> <mi></mi> <mi>φ</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>AR</mi> <mo>=</mo> <mi>a</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>φ</mi> </msqrt> <mo>·</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </math>
And is <math> <mrow> <mi>cos</mi> <mi>α</mi> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <msup> <mi>A</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>A</mi> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <msup> <mi>R</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mo>·</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>A</mi> <mo>·</mo> <mi>AR</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
Substituting formula (3) into formula (4)
<math> <mrow> <mi>α</mi> <mo>=</mo> <mi>arccos</mi> <mfrac> <mrow> <mn>2</mn> <mi>ξ</mi> <mi>sin</mi> <mi>φ</mi> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mi></mi> <mi>φ</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>Ν</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>Ν</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
Axis A1The angle alpha between A and BG, the distance l, then the tetrahedron A1Volume of ABG
<math> <mrow> <mi>V</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>A</mi> <mo>·</mo> <mi>BG</mi> <mo>·</mo> <mi>l</mi> <mo>·</mo> <mi>sin</mi> <mi>α</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Passing through A as straight line AH ^ plane OBG and crossing O' B at H, tetrahedron A1Volume of ABG
<math> <mrow> <mi>V</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mi>AH</mi> <mo>·</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>BG</mi> <mo>·</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>B</mi> <mo>·</mo> <mi>sin</mi> <mo>∠</mo> <mi>OBG</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
Equations (6) and (7) are equal and have
<math> <mrow> <mi>sin</mi> <mo>∠</mo> <mi>OBG</mi> <mo>=</mo> <mfrac> <mrow> <mi>ξ</mi> <mi>cos</mi> <mi>φ</mi> <mo>+</mo> <mi>sin</mi> <mi>φ</mi> </mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> </mfrac> <mo>,</mo> </mrow> </math> AH=asin(2π/N),A1A=A1B
To obtain
<math> <mrow> <mi>l</mi> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mo>·</mo> <mrow> <mo>(</mo> <mi>sin</mi> <mi>φ</mi> <mo>+</mo> <mi>ξ</mi> <mi>cos</mi> <mi>φ</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> <mi>sin</mi> <mi>α</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
Per A0As AP/BB0And AP ═ BB0H, then BP ═ A0B0=l,∠A1A0P ═ α, satisfy
<math> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>B</mi> <mo>=</mo> <msqrt> <msup> <mi>l</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>e</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <mi>eh</mi> <mi>cos</mi> <mi>α</mi> </msqrt> <mo>=</mo> <msqrt> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </msqrt> </mrow> </math>
<math> <mrow> <mi>AB</mi> <mo>=</mo> <msqrt> <msup> <mi>l</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>f</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>fh</mi> <mi>cos</mi> <mi>α</mi> </msqrt> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
Get it solved
<math> <mrow> <mi>h</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mn>2</mn> <mi>c</mi> </mrow> <mn>2</mn> </msup> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mfrac> <mo>·</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>l</mi> <mn>2</mn> </msup> </msqrt> <mo></mo> </mrow> <mrow> <mi>sin</mi> <mi>α</mi> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mi>e</mi> <mo>=</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <msqrt> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </msqrt> </mfrac> <mo>+</mo> <mi>h</mi> <mi>cos</mi> <mi>α</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>f</mi> <mo>=</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <msqrt> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </msqrt> </mfrac> <mo>-</mo> <mi>h</mi> <mi>cos</mi> <mi>α</mi> </mrow> </math>
3. Determining the relation between the included angle gamma between the roof axis and the horizontal direction and the included angle tau between the support axis and the horizontal direction in the process of unfolding the structure
The schematic view of the structure in the process of unfolding is shown in figure 2, a roof shaft A1A、C1C and E1The extension line of E is crossed with O1The extension lines of the support axes BG, DM and FN intersect at O2Plane A0C0E0Quadrature axis O1O2In O01Plane B0D0F0Quadrature axis O1O2In O02. The structure N tetrahedrons are identical or symmetrical, taking the tetrahedron A1The ABG calculates the geometry of the structure as it is deployed, as shown in fig. 7.
Translating the origin of the rectangular coordinate system to O01Point and establish a rectangular coordinate system O01X01Y01Z01. Per A0As A0S∥BB0Intersecting plane O01Y01Z01At S, set A0O1E', each point coordinate is A0(e′cosγcos(2π/N),e′cosγsin(2π/N),0),O1(0, 0, e ' sin gamma), S (0, e ' cos gamma sin (2 pi/N), -e ' cos gamma cos (2 pi/N) tan tau) satisfying the geometric relationship
O1A0=e′
<math> <mrow> <msub> <mi>A</mi> <mn>0</mn> </msub> <mi>S</mi> <mo>=</mo> <msup> <mi>e</mi> <mo>′</mo> </msup> <mi>cos</mi> <mi>γ</mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>τ</mi> </msqrt> <mo>·</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>O</mi> <mn>1</mn> </msub> <mi>S</mi> <mo>=</mo> <msup> <mi>e</mi> <mo>′</mo> </msup> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mi>γ</mi> <mrow> <mo>(</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>τ</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mi></mi> <mi>γ</mi> <mi>sin</mi> <mi></mi> <mi>γ</mi> <mi>tan</mi> <mi></mi> <mi>τ</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mrow> </math>
And is <math> <mrow> <mi>cos</mi> <mi>α</mi> </mrow> </math><math> <mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>O</mi> <mn>1</mn> </msub> <msup> <msub> <mi>A</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>A</mi> <mn>0</mn> </msub> <msup> <mi>S</mi> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>O</mi> <mn>1</mn> </msub> <msup> <mi>S</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <msub> <mi>A</mi> <mn>0</mn> </msub> <mi>S</mi> <mo>·</mo> <msub> <mi>O</mi> <mn>1</mn> </msub> <msub> <mi>A</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> </mrow> </math><math> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </math>
Substituting the formula (11) into the formula (12) to obtain the geometric parameter relationship in the structure unfolding process
sinγsinτ-cosγcosτcos(2π/N)=cosα (13)
When the structure is closed, the air inlet pipe is connected with the air inlet pipe, <math> <mrow> <msub> <mi>τ</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>φ</mi> <mo>,</mo> <msub> <mi>γ</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>arccos</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>ξ</mi> <mn>2</mn> </msup> </msqrt> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
when the structure is fully unfolded, γ ═ γ', then
<math> <mrow> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>arccos</mi> <mfrac> <mrow> <mo>-</mo> <mi>cos</mi> <msup> <mi>γ</mi> <mo>′</mo> </msup> <mi>cos</mi> <mi></mi> <mi>α</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>sin</mi> <msup> <mi>γ</mi> <mo>′</mo> </msup> <msqrt> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mi>α</mi> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msup> <mi>γ</mi> <mo>′</mo> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msup> <mi>γ</mi> <mo>′</mo> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
Equation (13) describes the relationship of the variables τ and γ during the structure unfolding process. When the structure is unfolded from the closed state, the included angle gamma between the roof axis and the horizontal plane is from gamma0Increasing gradually to gamma', and the included angle tau between the support shaft and the horizontal plane is from tau0And gradually decreases to tau'.
4. Determining the size and position of a sliding track
When the structure is unfolded to a certain state, the positive (N/2) edge A0C0E0… … side length a0Regular (N/2) polygonal shape B0D0F0… … side length b0Plane A0C0E0And B0D0F0A distance of c0I.e. O01O02=c0。
In a rectangular coordinate systemO01X01Y01Z01In, each point coordinate is <math> <mrow> <msub> <mi>A</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mfrac> <msub> <mi>a</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>B</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mrow> <mn>2</mn> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>C</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mo>-</mo> <mfrac> <msub> <mi>a</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>D</mi> <mn>0</mn> </msub> <mo>(</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>4</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>4</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> <mo>,</mo> <mo>…</mo> <mo>…</mo> <mo>,</mo> </mrow> </math> Satisfy the geometric relationship
<math> <mrow> <mi>tan</mi> <mi>τ</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mrow> <mn>2</mn> <mi>c</mi> </mrow> <mn>0</mn> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mi>tan</mi> <mi>γ</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <msub> <mi>c</mi> <mn>0</mn> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>l</mi> <mo>=</mo> <msqrt> <mfrac> <mrow> <msup> <msub> <mi>a</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>a</mi> <mn>0</mn> </msub> <msub> <mi>b</mi> <mn>0</mn> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <msub> <mi>b</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mn>4</mn> <mi>sin</mi> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msup> <msub> <mi>c</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </msqrt> </mrow> </math>
Equation (16) is solved
<math> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>tan</mi> <mi>γ</mi> <mo>+</mo> <mi>tan</mi> <mi></mi> <mi>τ</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>τ</mi> <mo>+</mo> <mn>2</mn> <mi>tan</mi> <mi></mi> <mi>τ</mi> <mi>tan</mi> <mi></mi> <mi>γ</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>γ</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>l</mi> </mrow> </math>
<math> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>tan</mi> <mi></mi> <mi>γ</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>tan</mi> <mi>τ</mi> <mo>)</mo> </mrow> </mrow> <msqrt> <mrow> <mo>(</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>τ</mi> <mo>+</mo> <mn>2</mn> <mi>tan</mi> <mi></mi> <mi>τ</mi> <mi>tan</mi> <mi></mi> <mi>γ</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>γ</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mfrac> <mi>l</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <msqrt> <mrow> <mo>(</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>τ</mi> <mo>+</mo> <mn>2</mn> <mi>tan</mi> <mi></mi> <mi>τ</mi> <mi>tan</mi> <mi></mi> <mi>γ</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mi>γ</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </msqrt> </mfrac> <mi>l</mi> </mrow> </math>
Substituting the formula (13) into the formula (17) to obtain
<math> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>τ</mi> <mi>cos</mi> <mi></mi> <mi>γ</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>cos</mi> <mi></mi> <mi>τ</mi> <mi>sin</mi> <mi>γ</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mi>α</mi> </mrow> </mfrac> <mi>l</mi> </mrow> </math>
<math> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>sin</mi> <mi></mi> <mi>τ</mi> <mi>cos</mi> <mi>γ</mi> <mo>+</mo> <mi>cos</mi> <mi></mi> <mi>τ</mi> <mi>sin</mi> <mi></mi> <mi>γ</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mi>α</mi> </mrow> </mfrac> <mi>l</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mi>cos</mi> <mi></mi> <mi>τ</mi> <mi>cos</mi> <mi></mi> <mi>γ</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mi>α</mi> </mrow> </mfrac> <mi>l</mi> </mrow> </math>
The expandable structure is composed of N tetrahedral rigid members, and the (N/2) slide rails (9) are in the same plane, have an included angle of (4 pi/N) and have extension lines intersected at one point, and the point is used as the center point of the slide rail. The position of the outermost points (G, M and N in figures 1(a) and (b)) of the sliding rail (9) corresponds to the position of the support (7) when the structure is closed, and the distance formula from the center point
J1=a-dcosφ (19)
The innermost points of the slide rail (9) (S in fig. 1(a) and (b) and fig. 2(a) and (b))G、SMAnd SN) Corresponding to the position of the support (7) when the structure is fully unfolded, formula of the distance from the center
<math> <mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mrow> <mn>2</mn> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mrow> <mo>(</mo> <mi>d</mi> <mo>-</mo> <mi>h</mi> <mo>)</mo> </mrow> <mi>cos</mi> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
Substituting the formula (18) into the formula (20) to obtain
<math> <mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>sin</mi> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mi>cos</mi> <msup> <mi>γ</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>cos</mi> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mi>sin</mi> <msup> <mi>γ</mi> <mo>′</mo> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mi></mi> <mi>α</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>l</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>d</mi> <mo>-</mo> <mi>h</mi> <mo>)</mo> </mrow> <mi>cos</mi> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
Fourthly, the invention discloses a manufacturing method of an outward turning open type deployable structure
1. From the foregoing, the basic shape of the deployable structure of the present invention has been determined. Selecting proper geometric parameters: the side length a of the regular N-shaped projection of the top surface in the horizontal direction when the structure is closed, the rise c of the upper part when the structure is closed, the included angle phi between the support shaft (4) and the horizontal direction when the structure is closed, the length d of the support shaft (4) and the included angle gamma' between the roof shaft (3) and the horizontal direction when the structure is completely unfolded.
2. According to formula (2), the geometrical dimensions of the N tetrahedral rigid members making up the structure are determined, the N tetrahedral members being designed according to the dimensions.
3. The annular position relation between N tetrahedron components (1) is correctly arranged, the connection form between the tetrahedron rigid components is determined, the adjacent tetrahedron components (1) are respectively connected at the positions of a roof shaft (3) and a support shaft (4) through replaceable rotary connectors (2), the bottom end of the support shaft is provided with a support (4), a pulley is arranged at the position of the support, and the slidable direction of the pulley is along the radial direction of a circumscribed circle of a regular N-edge. Attention is paid to confirm the correct positions of the roof axis (3) and the support axis (4) of the tetrahedral member (1).
4. According to the formulas (19) and (21), the outermost points (G, M and N in FIGS. 1(a) and (b)) of the slide rail (9) and the innermost points (S in FIGS. 1(a), (b) and FIGS. 2(a), (b)) of the slide rail (9) are determinedG、SMAnd SN) The distance from the center is designed according to the basic schematic diagram of the sliding rail (9) in the figures 1 and 2, the (N/2) sliding rails are in the same plane, the mutual included angle is (4 pi/N), and the extension lines can intersect at a point which is used as the center point of the sliding rail.
5. The pulley and the slide rail are correspondingly installed, so that the central shaft of the structure is ensured to pass through the central point of the slide rail, and the pulley can slide in the track of the slide rail.
In the foregoing, the N tetrahedral members of the deployable structure are considered as N entities. In fact, the N tetrahedrons in the present invention can also be tetrahedrons formed by a grid formed by rods (as shown in fig. 9), and can also be combined with a film material, so that the density and the weight of the structure can be greatly reduced, which is very beneficial to engineering application.
The invention has the advantages that the expandable structure is directly constructed by utilizing the three-dimensional annular mechanism, the structural form is attractive, the center of the structural roof is completely closed when the structure is closed, the motion symmetry of the support is ensured, and the expansion to the required structural form is realized. When the expandable structure is formed by six tetrahedral members, the mechanism is a single-degree-of-freedom over-constrained three-dimensional mechanism, the single degree of freedom enables the structure motion to be very easy to control, and the complex operation required by expansion is avoided. Furthermore, the over-constrained nature of the mechanism provides relatively high rigidity and structural strength, which make the deployable structure particularly useful.
The invention can be applied to openable roof structures with various sizes, and the opening mode of the openable roof structure is an outward turning opening mode.