CN1767087A - 铁氧体磁性材料及其制造方法 - Google Patents
铁氧体磁性材料及其制造方法 Download PDFInfo
- Publication number
- CN1767087A CN1767087A CN200510118623.XA CN200510118623A CN1767087A CN 1767087 A CN1767087 A CN 1767087A CN 200510118623 A CN200510118623 A CN 200510118623A CN 1767087 A CN1767087 A CN 1767087A
- Authority
- CN
- China
- Prior art keywords
- magnetic material
- ferrite
- ferrite magnetic
- material according
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Hard Magnetic Materials (AREA)
- Magnetic Ceramics (AREA)
Abstract
本发明的目的是提供一种在不增加Co的含量的情况下,能够有效地提高含有La-Co的M型铁氧体烧结磁体的剩磁通密度Br、顽磁力HcJ的技术。本发明提供一种铁氧体磁性材料,其以具有六方晶结构的铁氧体为主相,且该主相含有A、La、R、Fe以及Co,其中A是从Sr、Ba以及Pb之中选择的至少一种元素,R是Pr和/或Nd,在主相中的A、La、R、Fe以及Co金属元素各自的总构成比率以相对于所有金属元素的总量计分别是A:1~13原子%、La:0.05~6原子%、R:0.05~4原子%、Fe:80~95原子%、Co:0.05~5原子%。本发明的铁氧体磁性材料通过含有La以及Co,同时含有Pr以及Nd之中的1种或2种,而在不增加Co的含量的情况下,可以提高剩磁通密度Br以及顽磁力HcJ。
Description
技术领域
本发明涉及氧化物磁性材料,特别是涉及含有R以及Co的M型铁氧体磁体材料。
背景技术
作为氧化物永久磁体材料,一般主要采用六方晶系的磁铁铅矿型(M型)Sr铁氧体或Ba铁氧体。这些M型铁氧体因为比较廉价且具有高的磁特性这样的特征,所以被利用作为烧结磁体或粘结磁体,应用于搭载在例如家电制品或汽车等中的马达等。
近年来,对电子部件的小型化、高性能化的要求增高,与之相伴的是对铁氧体烧结磁体的小型化、高性能化有强烈的要求。例如,在特开平11-154604号公报(专利文献1)中提出了一种铁氧体烧结磁体,其具有以前的M型铁氧体烧结磁体所不能达到的高剩磁通密度和高顽磁力。该铁氧体烧结磁体至少含有Sr、La以及Co,并具有六方晶M型铁氧体的主要成分。而且,在特开平11-97226号公报(专利文献2)、特开平11-195516号公报(专利文献3)中公开了有关具有Sr、Pr以及Co或者具有Sr、Nd以及Co的六方晶M型铁氧体。
但是,在这些铁氧体磁体中,也进一步要求改善保持力以及饱和磁化这两种特性的改善。而且,通过使这些铁氧体磁体含有Co,从而使顽磁力(HcJ)以及剩磁通密度(Br)提高,但是因为Co价格高,导致铁氧体磁体的成本升高。
发明内容
因此,本发明的目的是提供一种在不增加Co的含量的情况下,能够有效地提高铁氧体烧结磁体的剩磁通密度(Br)、和/或顽磁力(HcJ)的技术。
本发明者们对六方晶M型铁氧体烧结磁体的磁特性提高进行了研究,结果发现,在用La和Co置换六方晶M型铁氧体的主要成分的一部分而得到的铁氧体中,含有Pr以及Nd之中的1种或2种是有效的。也就是说,本发明提供一种铁氧体磁性材料,其以具有六方晶结构的铁氧体为主相,而且所述主相含有A、La、R、Fe和Co,其中A是从Sr、Ba和Pb之中选择的至少一种元素,R是Pr和/或Nd,所述主相中的A、La、R、Fe和Co金属元素各自的总构成比率以相对于所有金属元素的总量计分别是:A:1~13原子%、La:0.003~10原子%、R:0~10原子%(不包括0)、Fe:80~95原子%、Co:0.05~5原子%。
在向M型铁氧体置换La以及Co的情况下,除了La之外,还进一步含有Pr以及Nd之中的1种或2种是有效的,其中优选以组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19表示的组合物为主要成分,其中,A是从Sr、Ba和Pb之中选择的至少一种、R是Pr和Nd之中的1种或2种,0.04≤x<0.80、0.02≤y<0.40、0.0<m<0.9、和0.9<z<1.1。
而且,本发明中,在前述组成式中,优选的是1.0<x/yz<2.5。这样的话磁特性提高效果变得显著。
另外,在本发明中,相对于前述主要成分以换算成SiO2计含有0.15~1.35wt%的Si成分,且可以含有Ca成分,其中Ca成分的摩尔量和Si成分的摩尔量的比率Ca/Si为0.35~2.10的范围。
本发明的铁氧体磁性材料可以作为铁氧体烧结磁体而加以利用。该铁氧体烧结磁体可以通过对原料粉末实施预定的处理后进行烧结而得到。而且,本发明的铁氧体磁性材料可以以铁氧体磁体粒子的形态加以利用。铁氧体磁体粒子典型地被用作粘结磁体的磁性粒子。另外,本发明的铁氧体磁性材料还可以作为磁记录介质的磁性膜而加以利用。这些利用的形态是典型的例子,也可以适用于本发明的铁氧体磁性材料的上述这些用途之外的用途。
另外,本发明的铁氧体磁性材料可以含有Si成分作为副成分。作为Si成分,可以列举出SiO2。Si成分的添加时期优选是在预烧工序之前,更具体地说优选是在配合工序时。通过用Pr和/或Nd置换La的一部分,同时在预烧工序之前添加Si成分的总量的40%或以上,可以谋求磁特性的提高。
根据本发明,通过用Pr和/或Nd置换La的一部分,可以提高铁氧体磁性材料的磁特性。具体地说,可以兼具4000Oe或以上的顽磁力(HcJ)以及4000G或以上的剩磁通密度(Br)。此外,也可以兼具4500Oe或以上的顽磁力(HcJ)以及4200G或以上的剩磁通密度(Br)。
而且,由于可以提高磁特性,所以即使减少价格高的Co的含量,也可以得到高特性。
附图说明
图1是表示实施例1中的m与磁特性之间的关系的数据表。
图2是表示实施例1中的m与顽磁力(HcJ)之间的关系的图表。
图3是表示实施例1中的m与剩磁通密度(Br)之间的关系的图表。
图4是表示实施例1中的m与方形性(Hk/HcJ)之间的关系的图表。
图5是表示实施例2中的x/yz与磁特性之间的关系的数据表。
图6是表示实施例2中的x/yz与顽磁力(HcJ)之间的关系的图表。
图7是表示实施例2中的x/yz与剩磁通密度(Br)之间的关系的图表。
图8是表示实施例3中的x,y,m与磁特性之间的关系的数据表。
图9是表示实施例4中的z与磁特性之间的关系的数据表。
图10是表示实施例4中的z与顽磁力(HcJ)之间的关系的图表。
图11是表示实施例4中的z与剩磁通密度(Br)之间的关系的图表。
图12是表示实施例5中的x/yz以及mx与磁特性之间的关系的数据表。
图13是表示实施例5中的m与顽磁力(HcJ)之间的关系的图表。
图14是表示实施例5中的m与剩磁通密度(Br)之间的关系的图表。
图15是表示实施例6中,使用Ba作为A元素时的磁特性的数据表。
图16是表示实施例7中求得的顽磁力(HcJ)的温度系数的数据表。
图17是表示Pr置换量与顽磁力(HcJ)的温度特性之间的关系的图表。
图18是表示有无含有Pr与结晶磁各向异性K1之间的关系的数据表。
图19是表示实施例8中的1/H与结晶磁各向异性K1之间的关系的图表。
图20是表示实施例9中的SiO2添加量与磁特性之间的关系的数据表。
图21是表示在Ca/Si=0.70的情况下,SiO2添加量与顽磁力(HcJ)之间的关系的图表。
图22是表示在Ca/Si=0.70的情况下,SiO2添加量与剩磁通密度(Br)之间的关系的图表。
图23是表示在Ca/Si=1.40的情况下,SiO2添加量与顽磁力(HcJ)之间的关系的图表。
图24是表示在Ca/Si=1.40的情况下,SiO2添加量与剩磁通密度(Br)之间的关系的图表。
图25是表示在Ca/Si=1.75的情况下,SiO2添加量与顽磁力(HcJ)之间的关系的图表。
图26是表示在Ca/Si=1.75的情况下,SiO2添加量与剩磁通密度(Br)之间的关系的图表。
图27是表示实施例10中的Ca/Si与磁特性之间的关系的数据表。
图28是表示在SiO2添加量=0.30wt%的情况下,Ca/Si与顽磁力(HcJ)之间的关系的图表。
图29是表示在SiO2添加量=0.30wt%的情况下,Ca/Si与剩磁通密度(Br)之间的关系的图表。
图30是表示在SiO2添加量=0.60wt%的情况下,Ca/Si与顽磁力(HcJ)之间的关系的图表。
图31是表示在SiO2添加量=0.60wt%的情况下,Ca/Si与剩磁通密度(Br)之间的关系的图表。
图32是表示在SiO2添加量=0.90wt%的情况下,Ca/Si与顽磁力(HcJ)之间的关系的图表。
图33是表示在SiO2添加量=0.90wt%的情况下,Ca/Si与剩磁通密度(Br)之间的关系的图表。
图34是表示在前添加了Pr以及La的情况下的磁特性以及在后添加了Pr以及La的情况下的磁特性的数据表。
图35是表示在前添加了Pr以及La的情况下的磁特性以及在后添加了Pr以及La的情况下的磁特性的图表。
图36是表示添加Nd作为R元素的情况下的磁特性的数据表。
图37是表示实施例12中的m与顽磁力(HcJ)之间的关系的图表。
图38是表示实施例12中的m与剩磁通密度(Br)之间的关系的图表。
图39是表示实施例1中制作的烧结体的分析值(原子%)的数据表。
图40是表示实施例2中制作的烧结体的分析值(原子%)的数据表。
图41是表示实施例4中制作的烧结体的分析值(原子%)的数据表。
图42是表示实施例12中制作的烧结体的分析值(原子%)的数据表。
图43是表示实施例13中的Si成分(SiO2)的添加时期与磁特性之间的关系的数据表。
图44是表示SiO2的前添加量的比例与剩磁通密度(Br)之间的关系的图表。
图45是表示SiO2的前添加量的比例与顽磁力(HcJ)之间的关系的图表。
具体实施方式
以下详细地说明本发明的铁氧体磁性材料。
本发明的铁氧体磁性材料是以具有六方晶结构的铁氧体为主相,该主相中A、La、R、Fe以及Co金属元素各自的总构成比率以相对于所有金属元素的总量计分别是:
A:1~13原子%、
La:0.003~10原子%、
R:0~10原子%(但不包括0)、
Fe:80~95原子%、
Co:0.05~5原子%。
其中,A是从Sr、Ba和Pb之中选择的至少一种元素、R是Pr和/或Nd。
若A过小的话,则不生成M型铁氧体,或者α-Fe2O3等非磁性相增多。若A过大的话,则不生成M型铁氧体,或者SrFeO3-x等非磁性相增多。因此,本发明中含有1~13原子%的A。A的优选范围是3~11原子%,进一步优选是3~9原子%。
A中的Sr的比率优选是50原子%或以上、更优选是70原子%或以上、进一步优选是100原子%。若A中的Sr的比率过低的话,则不能一起实现饱和磁化提高和顽磁力的显著提高。
对于R来说,R是Pr以及Nd之中的1种或2种,其中以Pr为必需成分对于磁特性提高来说是更优选的。
当R超过0时,磁特性提高,但当R超过10原子%时,作为磁特性的指标之一的方形性(Hk/HcJ)变差,难以得到实用的磁体。因此,在本发明中,含有0~10原子%(但不包括0)的R。R的优选范围是0.005~5.4原子%,进一步优选是0.01~3.6原子%。
若La量过少的话,不能确保相对于六方晶M型铁氧体的Co的预定的固溶量,饱和磁化提高效果和/或各向异性磁场提高效果不充分。相反地,若La量过大的话,由于六方晶M型铁氧体中存在不能置换固溶的过剩的La,由此生成例如含有元素R的正铁氧体等异相,所以磁特性降低。
因此,在本发明中,含有0.003~10原子%的La。La的优选范围是0.05~6.0原子%,进一步优选是0.5~4.0原子%。
若Co量过少的话,则饱和磁化提高效果和/或各向异性磁场提高效果不充分。但是,若Co量过大的话,则在六方晶M型铁氧体中存在不能置换固溶的过剩的Co。因此,在本发明中,含有0.05~5原子%的Co。Co的优选范围是0.1~4.0原子%,进一步优选是0.15~3.0原子%。
若Fe量过少的话,则不生成M型铁氧体,或者SrFeO3-x等非磁性相增多。但是,若Fe量过多的话,则不生成M型铁氧体,或者α-Fe2O3等非磁性相增多。因此,在本发明中含有80~95原子%的Fe。Fe的优选范围是83~94原子%,进一步优选是86~93原子%。
而且,本发明的铁氧体磁性材料特别优选是以组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19表示的组合物为主要成分,其中A是从Sr、Ba以及Pb之中选择的至少一种,R是Pr以及Nd之中的1种或2种,0.04≤x<0.80、0.02≤y<0.40、0.00<m<0.90、和0.90<z<1.10。
下面对上述组成式的限定理由进行说明。
(La1-mRm)(x):
上述式(1)中,若x过小的话,也就是若(La1-mRm)的量过少的话,则不能确保相对于六方晶M型铁氧体的Co的预定的固溶量,且饱和磁化提高效果和/或各向异性磁场提高效果不充分。反过来,若x过大的话,由于六方晶M型铁氧体中存在不能置换固溶的过剩的(La1-mRm),由此生成例如含有元素R的正铁氧体等异相,所以磁特性降低。于是本发明设定0.04≤x<0.80。x的值优选是0.04≤x≤0.45,更优选是0.05≤x≤0.30,更进一步优选是0.05≤x≤0.25。R(m):
其中,R是Pr和Nd之中的1种或2种,其中以Pr为必需成分对于提高磁特性来说是更优选的。
当m超过0时,磁特性提高,但是当m达到0.90或以上时,作为磁特性的指标之一的方形性(Hk/HcJ)变差,难以得到实用的磁体。因此,本发明设定0.0<m<0.9。m的值优选是0.01≤m≤0.70,m的值更优选是0.04≤m≤0.60。
A:
A是从Sr、Ba和Pb之中选择的至少一种元素。从提高顽磁力(HcJ)的观点来看,A之中最优选使用Sr。
Co(y):
若表示Co量的y过小的话,饱和磁化提高效果和/或各向异性磁场提高效果不充分。但是,若y过大的话,则在六方晶M型铁氧体中存在不能置换固溶的过剩的Co。而且,即使在Co可以置换固溶的范围内,各向异性常数(K1)或各向异性磁场(Ha)的变差也加大。因此,本发明设定0.02≤y<0.40。y的值优选是0.02≤y≤0.30,进一步优选是0.04≤y≤0.20,更优选是0.06≤y≤0.20。
z:
在组成式A1-x(La1-mRm)x(Fe12-yCoy)zO19中,若z过小的话,则含有Sr或元素R的异相增加,而若z过大时,则含有α-Fe2O3或元素M的尖晶石铁氧体相等异相增加,因此磁特性降低。因此,本发明中的z优选设定为0.90<z<1.10。z的值优选是0.96≤z≤1.05,z的值更优选是0.97≤z≤1.04。
x/yz:
对于本发明的铁氧体磁性材料,优选的是,将表示La以及R的总量与Co量之比的x/yz设定为1.0<x/yz<2.5。以前,正如在前述的专利文献1~3中所公开的那样,该比值理想的是1。但是,正如后述的实施例所明显显示的那样,若x/yz超过1.1,则磁特性提高,因此更优选将x/yz设定为1.1≤x/yz≤2.3,更优选设定为1.3≤x/yz≤2.0。
在本发明的组成式中,氧O的原子数是19,这显示了Co全部是2价,La以及R全部是3价,且x=y、z=1时的氧的化学计量组成比。随着x、y、z的值的不同,氧的原子数也是不同的。例如在烧成气体介质是还原性气体介质时,有产生氧的缺损(ベイカンシ一)的可能性。另外,Fe在M型铁氧体中通常以3价存在,但这也可能变化成2价等。而且Co也有可能发生价数的变化,而且对于La以及R来说也可能采用3价以外的价数,由此相对于金属元素的氧的比率发生变化。在本说明书中,将氧的原子数表示为19,而不随着x、y、z的值的变化而变化,但是实际的氧的原子数可以是与此多少有些偏倚的值。
本发明的铁氧体磁性材料的组成可以通过荧光X射线定量分析等测定,但不排除含有主要成分以及副成分以外的成分。而且,上述主相的存在可以通过X射线衍射或电子线衍射等加以确认。
在本发明的铁氧体磁性材料中,作为副成分,可以含有Si成分以及Ca成分。添加Si成分以及Ca成分的目的是改善六方晶M型铁氧体的烧结性、控制磁特性以及调整烧结体的结晶粒径等等。
作为Si成分和Ca成分,各自优选使用SiO2和CaCO3,但不限于该个例子,可以适宜地使用能够实现本发明的效果的化合物。Si成分的添加量以换算成SiO2计优选的是0.15~1.35wt%,Ca成分的摩尔量和Si成分的摩尔量之比Ca/Si为0.35~2.10,更优选的是以换算成SiO2计为0.30~0.90wt%、Ca/Si是0.70~1.75,进一步优选的是0.45~0.90wt%、Ca/Si为1.05~1.75。
在本发明的铁氧体磁性材料中,作为副成分,也可以含有Al2O3和/或Cr2O3。Al2O3以及Cr2O3使顽磁力得以提高,但使剩磁通密度降低。为了抑制剩磁通密度的降低,Al2O3和Cr2O3的总含量优选是3质量%或以下。而为了充分地发挥添加Al2O3和/或Cr2O3的效果,Al2O3和Cr2O3的总含量优选是0.1质量%或以上。
在本发明的铁氧体磁性材料中,作为副成分,也可以含有B2O3。通过含有B2O3,可以降低预烧温度以及烧结温度,所以在生产上是有利的。B2O3的含量优选是整个铁氧体磁性材料的0.5wt%或以下。若B2O3含量过多的话,则饱和磁化降低。
在本发明的铁氧体磁性材料中,优选不含有Na、K、Rb等碱金属元素,但是可以以杂质的形式含有。当将它们换算成Na2O、K2O、Rb2O等氧化物而求取含量时,它们的含量的总和优选是整个铁氧体烧结体的3质量%或以下。若它们的含量过多的话,则饱和磁化降低。
而且,除了上述以外,也可以以氧化物的形式含有例如Ga、Mg、Cu、Mn、Ni、Zn、In、Li、Ti、Zr、Ge、Sn、V、Nb、Ta、Sb、As、W、Mo等。它们的含量以换算成化学计量组成的氧化物计分别优选是:氧化镓:5wt%或以下、氧化镁:5wt%或以下、氧化铜:5wt%或以下、氧化锰:5wt%或以下、氧化镍:5wt%或以下、氧化锌:5wt%或以下、氧化铟:3wt%或以下、氧化锂:1wt%或以下、氧化钛:3wt%或以下、氧化锆:3wt%或以下、氧化锗:3wt%或以下、氧化锡:3wt%或以下、氧化钒:3wt%或以下、氧化铌:3wt%或以下、氧化钽:3wt%或以下、氧化锑:3wt%或以下、氧化砷:3wt%或以下、氧化钨:3wt%或以下、和氧化钼:3wt%或以下。
在本发明的铁氧体磁性材料成为铁氧体烧结体的形态的场合,其平均结晶粒径优选是1.5μm或以下、更优选是1.0μm或以下、进一步优选是0.5~1.0μm。结晶粒径可以通过扫描型电子显微镜进行测定。
而本发明的铁氧体磁性材料成为铁氧体粒子的形态的场合,即使其的1次粒子的平均粒径超过1μm,也可以得到比以前高的顽磁力。1次粒子的平均粒径优选是2μm或以下、更优选是1μm或以下、进一步优选是0.1~1μm。若平均粒径过大的话,则铁氧体粒子中的多磁畴粒子的比率增高,顽磁力降低,而若平均粒径过小的话,则由于热扰乱而降低磁性,或者磁场中成型时的定向性或成型性变差。
铁氧体粒子通常用于由粘合剂将其结合而得到的粘结磁体。作为粘合剂,通常可以使用丁腈橡胶(NBR橡胶)、氯化聚乙烯、尼龙12(聚酰胺树脂)、尼龙6(聚酰胺树脂)。
接下来对本发明的铁氧体磁性材料的优选的制造方法进行描述。
首先对铁氧体粒子的制造方法进行说明。
作为铁氧体粒子的制造方法,可以使用固相反应法、共沉积法或水热合成法等液相法、玻璃析出化法、喷雾热分解法,气相法等各种方法。其中,作为粘结磁体用的铁氧体粒子的制造方法,目前在工业中最广泛采用的是固相反应法。
对于固相反应法而言,通过使用含有Fe、元素A、La、元素R、Co和Si、Ca的粉末作为原料,将这些粉末的混合物烧成(预烧),由此制造铁氧体粒子。在该预烧体中,铁氧体的一次粒子凝聚起来,成为所谓的「颗粒」状态。因此,其后在多数情况下要进行粉碎。粉碎是以干式或湿式进行,但由于在该情况下在铁氧体粒子中引入了应变而使得磁特性(主要是顽磁力)变差,所以粉碎后在多数情况下要进行退火处理。
预烧可以是在空气中例如于1000~1350℃下进行1秒~10小时,特别是1秒~3小时左右。这样得到的预烧体实质上具有磁铁铅矿型的铁氧体结构,其的一次粒子的平均粒径优选是2μm或以下、更优选是1μm或以下、进一步优选是0.1~1μm、最优选是0.1~0.5μm。平均粒径可以通过扫描型电子显微镜进行测定。
然后通常将预烧体进行粉碎或者破碎而制成铁氧体粒子的粉末。而且,在利用该铁氧体粒子作为粘结磁体的情况下,将其与树脂、金属、橡胶等各种粘合剂混炼,在磁场中成型或不在磁场中成型。之后,根据需要进行硬化而制成粘结磁体。
接下来对铁氧体烧结体进行说明。
通过将用上述铁氧体粒子的制造方法中所述的各种方法制造的铁氧体粒子成型和烧结而制造铁氧体烧结体。
将原料粉末预烧而制得的预烧体一般是颗粒状的,为了将其粉碎或者破碎,首先优选进行干式粗粉碎。在原料中所含有的杂质以及所添加的Si或者Ca偏析在大部分晶界或者三相点(或称为三重点)部分,一部分进入至粒内的铁氧体部分(主相)中。特是Ca进入Sr点的可能性大。
干式粗粉碎之后,优选的是,制备含有铁氧体粒子和水的粉碎用浆料,使用该浆料进行湿式粉碎。
湿式粉碎后,将粉碎用浆料浓缩而制备成型用浆料。浓缩可以通过离心分离或压滤机等进行。
成型可以以干式进行、也可以以湿式进行,但是为了提高定向度,优选进行湿式成型。
对于湿式成型工序而言,是使用成型用浆料并在磁场中进行成型。成型压力是0.1~0.5吨/cm2左右、外加磁场是5~15kOe左右即可。
湿式成型工序后、将成型体在大气中或氮中以100~500℃的温度进行热处理,以将添加的分散剂充分地分解并除去。然后在烧结工序中,将成型体例如在大气中优选是1150~1270℃、更优选是1160~1240℃的温度烧结0.5~3小时左右,得到各向异性铁氧体烧结体。
在以上的制造方法中,对La和/或R的添加时期没有特别的限定,根据需要在适当的时期添加即可,优选在原料混合时添加。另外,在本发明中,将原料配合时进行的添加定义为前添加,而将在预烧粉的粉碎时进行的添加定义为后添加,以下也同样如此。
而且,对于Co的添加时期也没有特别的限定,根据需要在适当的时期添加即可,但是优选是后添加。
对Si的添加时期也没有特别的限定,根据需要在适当的时期添加即可,但优选是前添加总量的40%或以上。更优选的前添加量是总量的50%或以上、进一步优选是总量的80%或以上,更优选前添加整个总量。
而且,对Ca的添加时期也没有特别的限定,根据需要在适当的时期添加即可,优选后添加总量的50%或以上,更优选后添加整个总量。
其次,对于薄膜磁性层的形成,通常优选利用溅射法。在使用溅射法的场合,可以将上述烧结磁体用作靶,也可以利用采用至少2种氧化物靶的多元溅射法。溅射膜形成后,为了形成六方晶磁铁铅矿结构,有时也实施热处理。
实施例1
制备氧化铁(Fe2O3)、碳酸锶(SrCO3)、氧化镨(Pr6O11)以及氢氧化镧(La(OH)3)作为起始原料。对构成主要成分的这些起始原料进行称量以使得烧成后的主要成分为以下的组成式,然后添加氧化硅(SiO2)以使得其相对于主要成分为0.6wt%。
组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19
其中A=Sr,R=Pr
x=0.12,y=0.08,z=1.00
m=0~1.0
x/yz=1.5
将该混合原料用湿式磨碎机混合并粉碎2小时。将所得的混合浆料干燥后、于大气中进行预烧2.5小时。预烧温度设定为1100℃或1150℃。
将所得的预烧粉用小型杆振动磨粗粉碎10分钟。称量并添加氧化钴(Co3O4)以使得相对于所得的粗粉碎粉成为前述的烧成后的主组成,然后添加碳酸钙(CaCO3)和山梨糖醇以使得相对于前述的烧成后的主组成,碳酸钙(CaCO3)为1.4wt%以及山梨糖醇为0.9wt%,并用湿式球磨微粉碎25小时。
将所得的微粉碎浆料的固形成分浓度调整成70~75%,使用湿式磁场成型机,在12kOe的外加磁场中得到直径30mm×厚度15mm的圆柱状成型体。成型体在大气中、于室温下充分干燥,接着在大气中进行烧成1小时。烧成温度设定为1180℃或1200℃。
对所制得的圆柱状烧结体的上下面进行加工后,使用最大外加磁场为25kOe的B-H描绘器,测定顽磁力(HcJ)、剩磁通密度(Br)和方形性(Hk/HcJ)。而Hk是在磁滞回线的第2象限中,磁通密度为剩磁通密度的90%时的外部磁场強度。其结果示于图1~图4中。
如图2以及图3所示,若预烧以及烧成的条件变动,则所得的剩磁通密度(Br)以及顽磁力(HcJ)也变动,但在图2以及图3所示的四种情况的任一种中,通过使0.0<m而可以使剩磁通密度(Br)以及顽磁力(HcJ)提高。但是,如图4所示,若m为0.9或以上,则方形性(Hk/HcJ)降低至80%附近。若减磁曲线中的方形性(Hk/HcJ)降低,则有(BH)max降低,同时经时变化增大等问题,不能作为实用的磁体。因而,设定0.0<m<0.9。
为了抑制方形性(Hk/HcJ)的降低,而且得到高的剩磁通密度(Br)以及顽磁力(HcJ),可以确认优选的是0.01≤m≤0.70、更优选的是0.04≤m≤0.60。
实施例2
在实施例2中确认了x/yz的优选范围。
除了对起始原料进行称量以使得烧成后的主组成为以下的组成式以外,按照与实施例1同样的条件制作圆柱状烧结体,与实施例1同样地测定顽磁力(HcJ)以及剩磁通密度(Br)。其结果示于图5~图7中。
组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19
其中A=Sr,R=Pr
y=0.08,z=1.00
m=0、0.33
对于m=0.33而言,mx=0.04
x/yz=0.8~2.5
如图6和图7所示,在1.0<x/yz<2.5的范围内,通过含有Pr,得到了比m=0、即不含有Pr的场合有更高的顽磁力(HcJ)以及剩磁通密度(Br)。在重视顽磁力(HcJ)的场合,优选1.1≤x/yz≤2.3的范围,进一步优选是1.2≤x/yz≤1.8。而在重视剩磁通密度(Br)的场合,1.0<x/yz≤1.4、以及1.9≤x/yz<2.5的范围是优选的。
实施例3
在实施例3中确认了x,y,m和磁特性之间的关系。
除了对起始原料进行称量以使得烧成后的主组成为以下的组成式以外,按照与实施例1同样的条件制作圆柱状烧结体,与实施例1同样地测定顽磁力(HcJ)以及剩磁通密度(Br)。其结果示于图8中。
组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19
其中A=Sr,R=Pr
x=0.04~0.80,y=0.02~0.40
z=1.00,m=0.00~0.33
如图8所示,当x=0.80或y=0.40时,则由于含有Pr而导致磁特性提高的效果饱和。由此,将x,y的上限分别设定为x<0.8、y<0.4。
对于x来说,优选的是0.04≤x≤0.45、更优选的是0.05≤x≤0.30。对于y来说,优选的是0.02≤y≤0.30、更优选的是0.05≤y≤0.20。
在y=0.02、y=0.08的场合,即Co的量少时,则由于含有Pr而导致的磁特性提高效果是显著的。
实施例4
在实施例4中确认了z的优选范围。
除了对起始原料进行称量以使得烧成后的主组成为以下的组成式以外,按照与实施例1同样的条件制作圆柱状烧结体,与实施例1同样地测定顽磁力(HcJ)以及剩磁通密度(Br)。其结果示于图9~图11中。另外,预烧温度设定为1150℃,烧成温度设定为1200℃。
组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19
其中A=Sr,R=Pr
x=0.12,z=0.90~1.10
yz=0.08
m=0、0.33
如图10所示,在0.90<z<1.10的范围内,通过含有Pr,与不含有Pr的情况相比可以得到更高的顽磁力(HcJ)。
再者,如图9所示,在m=0.33时,在0.92≤z≤1.05的范围内,可以得到4000Oe或以上的顽磁力(HcJ)以及4270G或以上的剩磁通密度(Br),在0.95≤z≤1.04的范围内,可以得到4200Oe或以上的顽磁力(HcJ)和4270G或以上的剩磁通密度(Br)。
实施例5
在实施例5中确认了在使x/yz以及mx变动时的磁特性的变化。
将实施例1中所使用的起始原料称量以使得烧成后的主要成分为以下的组成式,然后添加氧化硅(SiO2)以使得其相对于主要成分为0.6wt%。将该混合原料用湿式磨碎机进行混合和粉碎2小时。将所得的混合浆料干燥后,在大气中于1150℃下进行预烧2小时。
将所得的预烧粉用小型杆振动磨粗粉碎17分钟。称量并添加氧化钴(Co3O4)以使得相对于所得的粗粉碎粉成为前述的烧成后的主组成,然后添加碳酸钙(CaCO3)和山梨糖醇以使得相对于前述的烧成后的主组成,碳酸钙(CaCO3)为1.4wt%,以及山梨糖醇为0.5wt%,并用湿式磨碎机进行微粉碎2小时。
组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19
其中A=Sr,R=Pr
mx=0~0.05,z=1.00
y=0.08
Ca/Si=1.4
除了上述的方面以外,按照与实施例1同样的条件制作圆柱状烧结体,与实施例1同样地测定顽磁力(HcJ)以及剩磁通密度(Br)。其结果示于图12~图14中。
如图13以及图14所示,即使x/yz的值在本发明所推荐的范围内变动,仍可以确认由于含有Pr而导致的磁特性提高的效果。
实施例6
在实施例6中确认了使用Ba作为A元素时含有Pr的效果的有无。
作为构成主要成分的起始原料,进一步准备碳酸钡(BaCO3),并对起始原料进行称量以使得烧成后的主组成为以下的组成式,除此之外,按照与实施例1同样的条件制作圆柱状烧结体,与实施例1同样地测定顽磁力(HcJ)以及剩磁通密度(Br)。其结果示于图15中。
组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19
A=Sr,Ba
R=Pr
x=0.12,y=0.08,z=1.00
m=0,0.33
如图15所示,在使用Ba作为A元素的场合,也可以确认通过含有Pr而导致的磁特性提高的效果。而且可以确认,与含有50原子%的Sr、50原子%的Ba的烧结体相比,含有100%的Sr的烧结体表现出更高的磁特性。
实施例7
在实施例7中确认了m和顽磁力(HcJ)的温度特性之间的关系。
除了对起始原料进行称量以使得烧成后的主组成为以下的组成式以外,按照与实施例1同样的条件制作圆柱状烧结体。而且,将预烧温度设定为1100℃、烧成温度设定为1180℃。
组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19
其中A=Sr,R=Pr
x=0.12,y=0.08,z=1.00
m=0,0.08,0.33
对于所得的烧结体,通过振动试样型磁力计(VSM、VibratingSample Magnetometer)求取从-80℃到160℃的温度范围的I-H磁滞曲线。通过该I-H磁滞曲线,调查顽磁力(HcJ)的温度依存性。使用该结果,在从-40℃到120℃的范围内通过直线近似法算出顽磁力(HcJ)的温度系数。将其结果示于图16中。而且,将Pr置换量和顽磁力(HcJ)的温度特性之间的关系示于图17中。
另外,温度系数ΔHcJ/HcJ/ΔT是相对于20℃下的顽磁力(HcJ)的变化率。也就是说,图16中的ΔT,ΔHcJ/HcJ是如以下所示。
ΔT=120℃-(-40℃)=160℃
ΔHcJ/HcJ={120℃下的顽磁力-(-40℃下的顽磁力)}/20℃下的顽磁力
如图17所示,可以确认随着Pr置换量增加,顽磁力(HcJ)的温度特性得以改善。
实施例8
在实施例8中,确认了m和结晶磁各向异性常数K1之间的关系。其中,顽磁力(HcJ)同剩磁通密度(Br)一起均是重要的磁体特性,顽磁力(HcJ)与各向异性磁场(HA(=2K1/Is))和单磁畴粒子比率(fc)之积(HA×fc)成比例。结晶磁各向异性常数K1是由磁体的结晶结构所决定的常数,并左右顽磁力(HcJ)的值。如果能够增大结晶磁各向异性常数K1,则对于得到高的顽磁力(HcJ)是有利的。
除了对起始原料进行称量以使得烧成后的主组成为以下的组成式以外,按照与实施例1同样的条件制作圆柱状烧结体。另外,预烧温度设定为1100℃,烧成温度设定为1180℃。
组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19
其中A=Sr,R=Pr
x=0.12,y=0.08,z=1.00
m=0,0.33
对于所得的烧结体,通过转矩测定而求得结晶磁各向异性K1。转矩测定是以在圆板面内含有定向方向的圆板状切取烧结体,作为转矩测定用样品。然后,在室温下在施加磁场为H12~20kOe的范围内测定转矩曲线,然后将转矩曲线进行傅立叶变换,求得2次对称成分的振幅K。将所求得的K相对于1/H作图,通过外推至1/H=0而确定结晶磁各向异性K1。其结果示于图18以及图19中。另外,外加磁场设定为1~1.6MA/m,温度范围设定为80K~420K。
如图18以及图19所示,通过含有Pr而提高了结晶磁各向异性常数K1。与此相伴随的是,在室温下的顽磁力(HcJ)与不含有Pr的场合相比,顽磁力提高200Oe或以上。
实施例9
在实施例9中确认了SiO2添加量和磁特性之间的关系。
除了将CaCO3添加量、SiO2添加量、Ca/Si设定为图20中所示的值以外,按照与实施例1同样的条件制作圆柱状烧结体,与实施例1同样地测定顽磁力(HcJ)以及剩磁通密度(Br)。其结果示于图20~图26中。另外,预烧温度设定为1100℃,烧成温度设定为1180℃。
如图21~图26所示,在m=0、m=0.33时,显示出同样的倾向。Ca/Si是在本发明的所推荐的范围内,且SiO2的添加量是在0.15~1.35的范围,顽磁力(HcJ)和/或剩磁通密度(Br)得以提高。
如图21和图22所示,在Ca/Si=0.70时,SiO2添加量是在0.3~1.0的范围,可以得到4000Oe或以上的顽磁力(HcJ)以及4100G或以上的剩磁通密度(Br)。
如图23和图24所示,在Ca/Si=1.40时,SiO2添加量是在0.2~1.2的范围内,可以得到4000Oe或以上的顽磁力(HcJ)以及4200G或以上的剩磁通密度(Br)。
如图25和图26所示,在Ca/Si=1.75时,SiO2添加量是在0.2~1.0的范围内,可以得到4000Oe或以上的顽磁力(HcJ)以及4200G或以上的剩磁通密度(Br)。
实施例10
在实施例10中确认了Ca/Si和磁特性之间的关系。
除了将CaCO3添加量、SiO2添加量、Ca/Si设定为图27中所示的值以外,按照与实施例1同样的条件制作圆柱状烧结体,与实施例1同样地测定顽磁力(HcJ)以及剩磁通密度(Br)。其结果示于图27~图33中。另外,预烧温度设定为1100℃,烧成温度设定为1180℃。
如图27~图33所示,在SiO2添加量为0.30wt%、0.60wt%、0.90wt%的任一种情况下,当Ca/Si超过2.10时,则顽磁力(HcJ)大大降低。而在0.6≤Ca/Si≤1.8时,可以兼具4000Oe或以上的顽磁力(HcJ)以及4000G或以上的剩磁通密度(Br)。
实施例11
在实施例11中研究了R元素的添加时期和磁特性之间的关系。
制备氧化铁(Fe2O3)、碳酸锶(SrCO3)、氧化镨(Pr6O11)以及氢氧化镧(La(OH)3)作为起始原料。这时,将在混合时添加氧化镨以及氢氧化镧的情况称为前添加,而将在后述的微粉碎时添加的情况称为后添加。
将构成主要成分的这些起始原料进行称量以使得在前添加、后添加的情况下烧成后的主要成分都达到以下的组成式,然后添加氧化硅(SiO2)使得在前添加的情况下氧化硅(SiO2)相对于主要成分为0.6wt%。
组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19
其中A=Sr,R=Pr
x=0.12,y=0.08,z=1.00
m=0,0.33
x/yz=1.5
将该混合原料用湿式磨碎机混合和粉碎2小时。将所得的混合浆料干燥后、在大气中于1150℃下预烧2小时。将所得的预烧粉用小型杆振动磨粗粉碎17分钟。称量并添加氧化钴(Co3O4)以使得相对于所得的粗粉碎粉成为前述的烧成后的主组成,然后添加碳酸钙(CaCO3)和山梨糖醇以使得相对于前述的烧成后的主组成,碳酸钙(CaCO3)为1.4wt%,以及山梨糖醇为0.5wt%。而且,在混合时未添加而进行后添加的情况下,进一步添加氧化镨和氢氧化镧使其达到前述的烧成后的主组成,并添加氧化硅(SiO2)以使得其相对于主要成分为0.6wt%。然后,用湿式磨碎机微粉碎2小时。将所得的微粉碎浆料的固形分浓度调整成70~75%,使用湿式磁场成型机,在12kOe的外加磁场中得到直径30mm×厚度15mm的圆柱状成型体。将成型体在大气中、于室温下充分干燥,接着在大气中于1180~1220℃下烧成1小时。将所得的圆柱状烧结体的上下面加工后,使用最大外加磁场为25kOe的B-H描绘器,测定顽磁力(HcJ)以及剩磁通密度(Br)。
将其结果示于图34以及图35中。从图35可以确认,前添加Pr对于得到高的剩磁通密度(Br)以及高的顽磁力(HcJ)的方面是有效的。
实施例12
在实施例12中确认了使用Nd作为R元素时的磁特性。
制备氧化铁(Fe2O3)、碳酸锶(SrCO3)、氧化钕(Nd2O3)以及氢氧化镧(La(OH)3作为起始原料。将构成主要成分的这些起始原料进行称量以使得烧成后的主组成为以下的组成式,然后添加氧化硅(SiO2)以使得其相对于主组成为0.6wt%。
组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19
其中A=Sr,R=Nd
x=0.12,y=0.08,z=1.00
m=0~0.58
除此之外,按照与实施例1同样的条件制作圆柱状烧结体,与实施例1同样地测定顽磁力(HcJ)以及剩磁通密度(Br)。另外,预烧温度设定为1150℃,烧成温度设定为1200℃。其结果示于图36~图38中。
如图37以及图38所示,在使用Nd作为R元素的情况下,当m超过0时,可以确认顽磁力(HcJ)得以提高。
将实施例1、2、4、12所制作的烧结体的分析值(原子%)分别示于图39~42中。另外,在各烧结体中含有Mn,但它是以Fe的原料杂质的形式混入的。而且,在各烧结体中含有Ba,但它是以Sr的原料杂质的形式混入。
从以上的实施例1~12的结果可以确认,在含有La的同时还含有R的组成中,当m超过0时,顽磁力(HcJ)得以提高。但是,当m增大时,未能发现该顽磁力(HcJ)提高的效果。
而且还确认,在含有La的同时还含有R的组成中,当x/yz大于1.0时,顽磁力(HcJ)得以提高。
因此,根据本发明,通过含有La以及R可以提供具有高的磁特性的铁氧体磁性材料。
实施例13
在实施例13中对Si成分(SiO2)的添加时期与磁特性之间的关系进行了研究。
称量起始原料以使得烧成后的主要组成为以下的组成式。
组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19
其中A=Sr,R=Pr
x=0.12,y=0.08,z=1.00
m=0.33
然后将氧化硅(SiO2)的总量恒定于0.6wt%,而且将SiO2的添加时期、预烧温度以及烧成温度示于图43中,除此以外与实施例1同样地制作烧结体,进行与实施例1同样的评价。其结果示于图43~图45中。另外,SiO2的后添加是在粗粉碎后进行。
如图44所示,随着SiO2的前添加量的比例增加,则剩磁通密度(Br)提高,100%前添加SiO2的场合与100%后添加的场合相比,剩磁通密度(Br)提高约80G提高。而且,如图45所示,前添加SiO2不会对顽磁力(HcJ)造成不良的影响。为了享有通过前添加SiO2所导致的剩磁通密度(Br)提高的效果,将SiO2的40%或以上、优选是50%或以上、更优选是80%或以上进行前添加是有效的。
Claims (23)
1、一种铁氧体磁性材料,其特征在于,以具有六方晶结构的铁氧体为主相,而且所述主相含有A、La、R、Fe和Co,其中A是从Sr、Ba和Pb之中选择的至少一种元素,R是Pr和/或Nd,所述主相中的A、La、R、Fe和Co金属元素各自的总构成比率以相对于所有金属元素的总量计分别是:
A:1~13原子%、
La:0.003~10原子%、
R:大于0原子%但小于等于10原子%、
Fe:80~95原子%、
Co:0.05~5原子%。
2、根据权利要求1所述的铁氧体磁性材料,其特征在于,以组成式:A1-x(La1-mRm)x(Fe12-yCoy)zO19所表示的组合物为主要成分,
其中,A是从Sr、Ba和Pb之中选择的至少一种,
R是Pr和Nd之中的1种或2种,
0.04≤x<0.80,
0.02≤y<0.40,
0.00<m<0.90,
0.90<z<1.10。
3、根据权利要求2所述的铁氧体磁性材料,其特征在于,在所述组成式中,0.01≤m≤0.70。
4、根据权利要求2所述的铁氧体磁性材料,其特征在于,在所述组成式中,0.04≤m≤0.60。
5、根据权利要求2所述的铁氧体磁性材料,其特征在于,在所述组成式中,0.04≤x≤0.45。
6、根据权利要求2所述的铁氧体磁性材料,其特征在于,在所述组成式中,0.02≤y≤0.30。
7、根据权利要求2所述的铁氧体磁性材料,其特征在于,在所述组成式中,0.96≤z≤1.05。
8、根据权利要求2所述的铁氧体磁性材料,其特征在于,在所述组成式中,1.0<x/yz<2.5。
9、根据权利要求1或2所述的铁氧体磁性材料,其特征在于,作为所述A必须含有Sr。
10、根据权利要求1或2所述的铁氧体磁性材料,其特征在于,所述A是Sr和Ba。
11、根据权利要求1或2所述的铁氧体磁性材料,其特征在于,所述R是Pr。
12、根据权利要求1或2所述的铁氧体磁性材料,其特征在于,所述R是Nd。
13、根据权利要求1或2所述的铁氧体磁性材料,其特征在于,相对于所述主要成分,以换算成SiO2计含有0.15~1.35wt%的Si成分,且含有Ca成分,Ca成分的摩尔量和Si成分的摩尔量的比率Ca/Si是0.35~2.10的范围。
14、根据权利要求1或2所述的铁氧体磁性材料,其特征在于,所述铁氧体磁性材料构成铁氧体烧结磁体,铁氧体磁体粒子,铁氧体磁体粒子分散在树脂中而得到的粘结磁体、以及作为磁性膜的磁记录介质之中的任一种。
15、根据权利要求1或2所述的铁氧体磁性材料,其特征在于,所述铁氧体磁性材料是铁氧体烧结磁体。
16、根据权利要求15所述的铁氧体磁性材料,其特征在于,所述铁氧体烧结磁体同时具有4000Oe或以上的顽磁力和4000G或以上的剩磁通密度Br。
17、根据权利要求15所述的铁氧体磁性材料,其特征在于,所述铁氧体烧结磁体同时具有4500Oe或以上的顽磁力和4200G或以上的剩磁通密度Br。
18、根据权利要求2所述的铁氧体磁性材料,其特征在于,
0.04≤x≤0.45、
0.02≤y≤0.30、
0.0 1≤m≤0.70、
0.96≤z≤1.05、
1.0<x/yz<2.5。
19、根据权利要求18所述的铁氧体磁性材料,其特征在于,1.1≤x/yz≤2.3。
20、根据权利要求18所述的铁氧体磁性材料,其特征在于,相对于所述主要成分,以换算成SiO2计含有0.30~0.90wt%的Si成分,且含有Ca成分,Ca成分的摩尔量和Si成分的摩尔量的比率Ca/Si是0.70~1.75的范围。
21、一种铁氧体磁性材料的制造方法,所述铁氧体磁性材料含有以A、La、R、Fe和Co作为主要成分的六方晶M型铁氧体,作为副成分至少含有Si成分,其中所述A是从Sr、Ba和Pb之中选择的至少一种元素,所述R是Pr和/或Nd,所述制造方法的特征在于,具有下列的工序:将含有所述六方晶M型铁氧体的原料粉末的全部或一部分、以及所述Si成分的总量的40%或以上的原料组合物在预定温度下加热保持而制得预烧体的工序a,和将由所述工序a所得到的预烧体粉碎的工序b。
22、根据权利要求21所述的铁氧体磁性材料的制造方法,其特征在于,具有下列的工序:将由所述工序b得到的粉碎粉末在磁场中成型的工序c,以及将由所述工序c得到的成型体以预定温度烧成而得到以六方晶M型铁氧体为磁性相的烧结体的工序d。
23、根据权利要求21或22所述的铁氧体磁性材料的制造方法,其特征在于,所述主要成分中A、La、R、Fe和Co金属元素各自的总构成比率以相对于所有金属元素的总量计分别是:
A:1~13原子%、
La:0.003~10原子%、
R:大于0原子%但小于等于10原子%、
Fe:80~95原子%、
Co:0.05~5原子%。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP315197/2004 | 2004-10-29 | ||
JP2004315197 | 2004-10-29 | ||
JP301815/2005 | 2005-10-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101749331A Division CN101693621B (zh) | 2004-10-29 | 2005-10-31 | 铁氧体磁性材料的制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1767087A true CN1767087A (zh) | 2006-05-03 |
CN100573748C CN100573748C (zh) | 2009-12-23 |
Family
ID=36742869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB200510118623XA Expired - Fee Related CN100573748C (zh) | 2004-10-29 | 2005-10-31 | 铁氧体烧结磁体 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100573748C (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101618962B (zh) * | 2009-07-28 | 2012-05-23 | 四川西汉电子科技有限责任公司 | 一种低温度系数高电阻率热敏材料及其制备方法 |
CN102971908A (zh) * | 2010-12-01 | 2013-03-13 | 迪睿合电子材料有限公司 | 天线装置以及通信装置 |
CN105236950A (zh) * | 2015-10-12 | 2016-01-13 | 安吉县科声磁性器材有限公司 | 一种锶永磁铁氧体高性能的工艺方法 |
CN105669180A (zh) * | 2014-10-24 | 2016-06-15 | 天工方案公司 | 提高谐振频率的掺碱y相六角晶型铁氧体 |
CN106219610A (zh) * | 2016-07-02 | 2016-12-14 | 宁波江东索雷斯电子科技有限公司 | 一种钴铁氧体纳米磁性材料的制备方法 |
CN106977191A (zh) * | 2016-01-15 | 2017-07-25 | Tdk株式会社 | 铁氧体烧结磁铁 |
CN107564654A (zh) * | 2017-09-15 | 2018-01-09 | 安徽信息工程学院 | 一种用于磁性复合材料的无机复合材料iv及其制备方法 |
CN110511013A (zh) * | 2019-08-22 | 2019-11-29 | 兰州理工大学 | 一种La-Ce二元掺杂钡铁氧体吸波材料及制备方法 |
CN111386161A (zh) * | 2017-09-25 | 2020-07-07 | 国立研究开发法人产业技术综合研究所 | 磁性材料及其制造法 |
US11069983B2 (en) | 2014-09-30 | 2021-07-20 | Skyworks Solutions, Inc. | Modified Z-type hexagonal ferrite materials with enhanced resonant frequency |
CN115734945A (zh) * | 2020-08-06 | 2023-03-03 | 株式会社村田制作所 | 软磁性组合物、烧结体、复合体、糊料、线圈部件和天线 |
-
2005
- 2005-10-31 CN CNB200510118623XA patent/CN100573748C/zh not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101618962B (zh) * | 2009-07-28 | 2012-05-23 | 四川西汉电子科技有限责任公司 | 一种低温度系数高电阻率热敏材料及其制备方法 |
CN102971908A (zh) * | 2010-12-01 | 2013-03-13 | 迪睿合电子材料有限公司 | 天线装置以及通信装置 |
CN102971908B (zh) * | 2010-12-01 | 2016-03-23 | 迪睿合电子材料有限公司 | 天线装置以及通信装置 |
US11069983B2 (en) | 2014-09-30 | 2021-07-20 | Skyworks Solutions, Inc. | Modified Z-type hexagonal ferrite materials with enhanced resonant frequency |
US11551837B2 (en) | 2014-10-24 | 2023-01-10 | Skyworks Solutions, Inc. | Magnetodielectric Y-phase strontium hexagonal ferrite materials formed by sodium substitution |
US11004581B2 (en) | 2014-10-24 | 2021-05-11 | Skyworks Solutions, Inc. | Increased resonant frequency alkali-doped Y-phase hexagonal ferrites |
US11776718B2 (en) | 2014-10-24 | 2023-10-03 | Skyworks Solutions, Inc. | Increased resonant frequency potassium-doped hexagonal ferrite |
US11869689B2 (en) | 2014-10-24 | 2024-01-09 | Skyworks Solutions, Inc. | Incorporation of oxides into ferrite material for improved radio radiofrequency properties |
US11164689B2 (en) | 2014-10-24 | 2021-11-02 | Skyworks Solutions, Inc. | Increased resonant frequency potassium-doped hexagonal ferrite |
CN105669180A (zh) * | 2014-10-24 | 2016-06-15 | 天工方案公司 | 提高谐振频率的掺碱y相六角晶型铁氧体 |
US11742118B2 (en) | 2014-10-24 | 2023-08-29 | Skyworks Solutions, Inc. | Increased resonant frequency alkali-doped Y-phase hexagonal ferrites |
CN105669180B (zh) * | 2014-10-24 | 2021-03-19 | 天工方案公司 | 提高谐振频率的掺碱y相六角晶型铁氧体 |
US10971288B2 (en) | 2014-10-24 | 2021-04-06 | Skyworks Solutions, Inc. | Incorporation of oxides into ferrite material for improved radio radiofrequency properties |
US10984928B2 (en) | 2014-10-24 | 2021-04-20 | Skyworks Solutions, Inc. | Magnetodielectric y-phase strontium hexagonal ferrite materials formed by sodium substitution |
CN105236950A (zh) * | 2015-10-12 | 2016-01-13 | 安吉县科声磁性器材有限公司 | 一种锶永磁铁氧体高性能的工艺方法 |
CN106977191A (zh) * | 2016-01-15 | 2017-07-25 | Tdk株式会社 | 铁氧体烧结磁铁 |
CN106219610A (zh) * | 2016-07-02 | 2016-12-14 | 宁波江东索雷斯电子科技有限公司 | 一种钴铁氧体纳米磁性材料的制备方法 |
CN106219610B (zh) * | 2016-07-02 | 2017-09-01 | 烟台鑫洋电子有限公司 | 一种钴铁氧体纳米磁性材料的制备方法 |
CN107564654A (zh) * | 2017-09-15 | 2018-01-09 | 安徽信息工程学院 | 一种用于磁性复合材料的无机复合材料iv及其制备方法 |
CN111386161A (zh) * | 2017-09-25 | 2020-07-07 | 国立研究开发法人产业技术综合研究所 | 磁性材料及其制造法 |
CN110511013A (zh) * | 2019-08-22 | 2019-11-29 | 兰州理工大学 | 一种La-Ce二元掺杂钡铁氧体吸波材料及制备方法 |
CN110511013B (zh) * | 2019-08-22 | 2022-02-11 | 兰州理工大学 | 一种La-Ce二元掺杂钡铁氧体吸波材料及制备方法 |
CN115734945A (zh) * | 2020-08-06 | 2023-03-03 | 株式会社村田制作所 | 软磁性组合物、烧结体、复合体、糊料、线圈部件和天线 |
CN115734945B (zh) * | 2020-08-06 | 2024-02-23 | 株式会社村田制作所 | 软磁性组合物、烧结体、复合体、糊料、线圈部件和天线 |
Also Published As
Publication number | Publication date |
---|---|
CN100573748C (zh) | 2009-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1767087A (zh) | 铁氧体磁性材料及其制造方法 | |
CN1155022C (zh) | 氧化物磁性材料、铁氧体颗粒、烧结磁体、粘结磁体、磁记录介质和电机 | |
CN1277277C (zh) | R-t-b系稀土类永久磁铁 | |
CN1229303C (zh) | 氧化锌系压电陶瓷组合物及其制造方法 | |
CN1128455C (zh) | 磁体粉末、烧结磁体、粘结磁体和磁记录介质 | |
CN1239578A (zh) | 磁体粉末、烧结磁体,其制造工艺、粘结磁体、马达和磁记录介质 | |
CN1162873C (zh) | 铁氧体磁体 | |
CN1217350C (zh) | 永磁体及其制造方法 | |
CN1220991C (zh) | 永磁体及其制造方法 | |
CN1242424C (zh) | 永久磁体和r-tm-b系永久磁体 | |
CN1627455A (zh) | 铁氧体和变压器及其驱动方法 | |
CN1186310A (zh) | 稀土粘结磁铁与稀土铁硼型磁铁合金 | |
CN1036554C (zh) | 热稳定性良好的永久磁铁 | |
CN1655295A (zh) | 磁体粉末、烧结磁体的制造方法及其产品 | |
CN85109738A (zh) | 稀土合金粉及其制备工艺 | |
CN1120506C (zh) | 钕-铁-硼系永久磁铁 | |
CN1093311C (zh) | 稀土-铁-氮磁体合金 | |
CN1658340A (zh) | 六角型铁氧体磁体 | |
CN1455938A (zh) | 永磁体及其制造方法 | |
CN1557005A (zh) | R-t-b系稀土类永久磁铁 | |
CN1111799A (zh) | 稀土类磁性粉末,其永久磁铁及其制造方法 | |
CN1052746A (zh) | 永久磁体 | |
CN1662470A (zh) | 铁氧体材料 | |
CN1647218A (zh) | 复合型稀士类各向异性粘结磁铁、用于制作复合型稀土类各向异性粘结磁铁的混合物以及它们的制造方法 | |
CN1402696A (zh) | 铁氧体磁铁的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091223 Termination date: 20211031 |