CN1760635A - Sensing system of fiber strain - Google Patents

Sensing system of fiber strain Download PDF

Info

Publication number
CN1760635A
CN1760635A CN 200410067115 CN200410067115A CN1760635A CN 1760635 A CN1760635 A CN 1760635A CN 200410067115 CN200410067115 CN 200410067115 CN 200410067115 A CN200410067115 A CN 200410067115A CN 1760635 A CN1760635 A CN 1760635A
Authority
CN
China
Prior art keywords
fibre
output terminal
mode optical
optical
sensing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410067115
Other languages
Chinese (zh)
Other versions
CN100420916C (en
Inventor
陈前媚
雷春奇
潘晔峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANWEN INFORMATION TECH Co Ltd SHANGHAI
Original Assignee
ANWEN INFORMATION TECH Co Ltd SHANGHAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANWEN INFORMATION TECH Co Ltd SHANGHAI filed Critical ANWEN INFORMATION TECH Co Ltd SHANGHAI
Priority to CNB2004100671159A priority Critical patent/CN100420916C/en
Publication of CN1760635A publication Critical patent/CN1760635A/en
Application granted granted Critical
Publication of CN100420916C publication Critical patent/CN100420916C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The sensing system of fiber strain is composed of optical fiber sensor, photovoltaic conversion circuit, and data processor. Characters are that through optical fiber, optical fiber sensor is connected to the photovoltaic conversion part partially; through data line, the photovoltaic conversion circuit is connected to the data processing circuit; Michelson type sensor is adopted in the optical fiber sensor. Advantages are: high anti electromagnetic interference, sensitivity, small influence from temperature and humidity, transmissibility of remote distance, etc. The system is suitable for real-time safe and fine monitoring and alarming large-scale structure in medium or long term.

Description

A kind of sensing system of fiber strain
Technical field
The present invention relates to photoelectric field, especially relate to the optical sensor field, particularly a kind of application system of Fibre Optical Sensor, concrete is the sensing system of fiber strain that a kind of key position that is used for bridge carries out strain measurement.
Background technology
In the prior art, carry out in the strain measurement resistance strain sensor most often miscellaneous of usefulness at the key position of bridge.Though this class sensor has long-term applicating history, has accumulated more rich experience.But in actual applications, still there are some comparatively serious problems, as moisture-sensitive, temperature influence; Be subject to the interference of peripheral electromagnetic field, can't operate as normal under strong-electromagnetic field or electrical noise environment; Long Distance Transmission, signal attenuation is excessive or the like.
Summary of the invention
Technical matters to be solved by this invention is: in the prior art, carry out in the strain measurement resistance strain sensor most often miscellaneous of usefulness at the key position of bridge.Though this class sensor has long-term applicating history, has accumulated more rich experience.But in actual applications, still there are some comparatively serious problems, as moisture-sensitive, temperature influence; Be subject to the interference of peripheral electromagnetic field, can't operate as normal under strong-electromagnetic field or electrical noise environment; Long Distance Transmission, signal attenuation is excessive or the like.
The present invention solves the problems of the technologies described above the technical scheme that is adopted to provide a kind of sensing system of fiber strain, described this sensing system of fiber strain is by Fibre Optical Sensor, photoelectric switching circuit and data processing equipment constitute, wherein, described Fibre Optical Sensor is connected with described photoelectric switching circuit by optical fiber, described photoelectric switching circuit is connected with described data processing equipment by data line, described Fibre Optical Sensor is made of one 2 * 2 single-mode optical-fibre coupler and one 3 * 3 single-mode optical-fibre coupler, an input end of described 2 * 2 single-mode optical-fibre coupler is connected with LASER Light Source, output terminal of described 2 * 2 single-mode optical-fibre coupler is connected with an input end of described 3 * 3 single-mode optical-fibre coupler, two other input end of another input end of described 2 * 2 single-mode optical-fibre coupler and described 3 * 3 single-mode optical-fibre coupler is connected with a photodetector respectively, the output terminal of described 3 * 3 single-mode optical-fibre coupler is provided with catoptron, described photodetector is connected with signal transmitting device in the described photoelectric switching circuit, and described signal transmitting device is connected with described data processing equipment.
Concrete, described Fibre Optical Sensor adopts the Michaelson sensor,
Further, described data processing equipment is made of analog to digital conversion circuit and computing machine, described analog to digital conversion circuit is connected with described signal transmitting device, described signal transmitting device is made of three IV transducers and decipherer, any one described IV transducer all is connected with a described photodetector, the output terminal of described three IV transducers all is connected with a totalizer, the output terminal of described three IV transducers constitutes signal wire with the output terminal of described totalizer respectively, described signal wire is connected with three comparers respectively, the output terminal of described comparer all is connected with described decipherer, described decipherer is adjusted circuit with trigger pip and is connected, and the output terminal of described decipherer passes through the signal of described D/A converting circuit after with conversion and exports to described computing machine.
Further, described catoptron adopts faraday rotator mirror.
IV transducer described in the present invention, decipherer, comparer, totalizer, trigger pip are adjusted circuit, photodetector and fiber coupler and are photoelectron industry known technology, do not repeat them here.
The present invention and prior art contrast, and effect is positive and tangible.Anti-electromagnetic interference capability of the present invention is strong, highly sensitive, and is little to temperature, effects of humidity change; But long-distance transmissions, data stabilization is reliable; Easy to use, information handling system is simple to operate, and is powerful; Practical, be suitable for large scale structure is carried out medium-term and long-term actual time safety health monitoring and early warning; Favorable economic benefit and remarkable social benefit are arranged.
Description of drawings
Fig. 1 is the functional module structure synoptic diagram of a preferred embodiment of a kind of sensing system of fiber strain of the present invention.
Fig. 2 is the structural representation of Fibre Optical Sensor of a preferred embodiment of a kind of sensing system of fiber strain of the present invention.
Fig. 3 is the circuit theory diagrams of the photoelectric switching circuit of a kind of sensing system of fiber strain of the present invention.
Fig. 4 is the oscillogram of the relation of the each point output voltage V of the Fibre Optical Sensor in a kind of sensing system of fiber strain of the present invention and phase.
Embodiment
As depicted in figs. 1 and 2, a kind of sensing system of fiber strain of the present invention is by Fibre Optical Sensor 10, photoelectric switching circuit 20 and data processing equipment 30 constitute, wherein, described Fibre Optical Sensor 10 is connected with described photoelectric conversion section 20 by optical fiber, described photoelectric switching circuit 20 is connected with described data processing circuit 30 by data line, described Fibre Optical Sensor 10 is made of one 2 * 2 single-mode optical-fibre coupler 11 and one 3 * 3 single-mode optical-fibre coupler 12, an input end of described 2 * 2 single-mode optical-fibre coupler 11 is connected with LASER Light Source 13, an output terminal of described 2 * 2 single-mode optical-fibre coupler 11 is connected to an input end of described 3 * 3 single-mode optical-fibre coupler 12, two other input end of another input end of described 2 * 2 single-mode optical-fibre coupler 11 and described 3 * 3 single-mode optical-fibre coupler 12 all is connected with photodetector 14, the output terminal of described 3 * 3 single-mode optical-fibre coupler 12 is provided with catoptron 15, described photodetector 14 is connected with the signal transmitting device of described photoelectric switching circuit 20, and described signal transmitting device is connected with data processing equipment 30.
Concrete, described Fibre Optical Sensor adopts the Michaelson sensor,
Further, described data processing equipment 30 is made of analog to digital conversion circuit and computing machine, described analog to digital conversion circuit is connected with described signal transmitting device, described signal transmitting device is made of three IV transducers and decipherer, any one described IV transducer all is connected with a described photodetector, the output terminal of described three IV transducers all is connected with a totalizer, the output terminal of described three IV transducers constitutes signal wire with the output terminal of described totalizer respectively, described signal wire is connected with three comparers respectively, the output terminal of described comparer all is connected with described decipherer, described decipherer is adjusted circuit with trigger pip and is connected, and the output terminal of described decipherer passes through the signal of described D/A converting circuit after with conversion and exports to described computing machine.
Further, described catoptron adopts faraday rotator mirror.
Concrete, the circuit theory of described signal transmitting device is as shown in Figure 3.
The concrete course of work of the present invention is described below: single-mode fiber DFB LASER Light Source LD is that the laser (coherent light) of 1310nm imports to 2 * 2 single-mode optical-fibre couplers with wavelength.The optical fiber of its output terminal links to each other with the fused fiber splice of 3 * 3 single-mode optical-fibre coupler input ends, laser enters the signal arm that is pasted on detection means through the shunt of 3 * 3 single-mode optical-fibre couplers and as the reference arm of temperature compensation, after arriving end, to interfere in light signal reflected back 3 * 3 single-mode optical-fibre couplers by catoptron, phase difference to 3 optical fiber to interfix afterwards, by output terminal output, wherein 2 * 2 initial single-mode optical-fibre couplers of a route are exported along separate routes.Photodetection PD converts light to electric current, convert voltage output to by current-voltage again, from the electric signal of laser detector by the signal transmitting device convert to-5V is to the voltage signal of+5V, as shown in Figure 4, the value of this voltage signal is big or small linear with the testee deformation quantity, this standard signal will be transported to data acquisition and processing section, after analog-to-digital conversion card ADC collection, the input computer, and process computing one-tenth is the strain value of unit with μ ε, by the management software display waveform, output test result and alerting signal at last.
Principle of work of the present invention is: when sticking on the responsive arm of the lip-deep fibre optic interferometer of works when sensing the physical quantity of works and changing, fibre optic interferometer just forms a series of interference light and shades and changes output.In order to make its signal Processing simple and convenient, reliable and stable and take interferometer output light and shade is changed the numeration scheme.Because the phase of light wave of two output optical fibre ends of interferometer of 2 * 2 optical fiber coupling is to differ 180 ° each other,, can't differentiate the moving direction of interfering light and shade, just the strain variation direction though can obtain count pulse.Can not differentiate, just can't realize the plus-minus counted, utilize one 2 * 2 single-mode optical-fibre coupler and one 3 * 3 single-mode optical-fibre coupler to constitute fibre optic interferometer among the present invention, can realize declaring to.
Specific embodiment 1.
For the stress of simulating bridge to check the validity of sensing system of fiber strain of the present invention, we have made a cover experimental apparatus for testing-equi intensity cantilever.Material is selected the 65Mn steel for use, and its elastic modulus E is 200.5Gpa through actual measurement.
The wide b of the fixed end of equi intensity cantilever is 72mm, and thick h is 6mm, and long l is 350mm.If lift heavy counterweight P is W = b h 2 6 = 36 × 6 2 6 = 432 m m 3 1kg, then:
Section modulus:
Bending moment: M=Pl=9.8 * 1 * 350=3430N-mm
Theoretical stress: σ = M W = 3430 432 = 7.94 N m m 2
Theoretical strain: ϵ = σ E = 7.94 200.5 = 39.60 μϵ
When loading the 1kg counterweight, the strain of output is 39.60 μ ε to this calibration with device.
Experiment is by loading the counterweight of Different Weight, and relatively fibre optic strain sensor and electric-resistance strain ga(u)ge sensor differs.In the experiment semi-girder is loaded 2kg, 4kg, 6kg, 8kg, 10kg successively, and write down the reading value of fibre optic strain sensor and electric-resistance strain ga(u)ge sensor simultaneously.
Semi-girder loading experiment measured data such as following table,
Figure A20041006711500084
6 238 236 237 236 237 237 237 237 237.6 0.25 0.25
8 317 316 316 314 314 315 316 314 316.8 0.25 0.88
10 397 395 395 393 393 394 396 393 396.0 0 0.76
The semi-girder loading experiment shows that fibre optic strain sensor of the present invention has the good accuracy and the linearity.
Specific embodiment 2.
Temperature conditions experiment: the small cantilever beam that will be pasted with fibre optic strain sensor of the present invention is positioned in the experimental box, treat the experimental box temperature reach institute's temperature of demarcating and stable after, loading experiment and record data are also carried out in taking-up immediately.
Damp condition experiment: fibre optic strain sensor of the present invention is positioned over concrete curing chamber and temperature is set, humidity makes it stable, carries out data recording simultaneously.
High temperature, low temperature semi-girder loading experiment measured data such as following table,
Fibre optic strain sensor temperature of the present invention loads the measured data table
Temperature (℃) -50 +23 +90
Counterweight (kg) 0 2 0 2 0 2 0 2 0 2 0 2
Optical fiber (μ ε) 0 79 0 80 0 80 0 80 0 81 0 80
Average (μ ε/2kg) 79.5 80 80.5
Fibre optic strain sensor humidity measured data table of the present invention
Time (minute) 0 5 10 15 20 25
Optical fiber (μ ε) 0 1 1 1 2 1
Experiment shows that fibre optic strain sensor of the present invention can adapt to-50 ℃~90 ℃ the temperature environment and the application of 95RH relative humidity environment.

Claims (4)

1. sensing system of fiber strain, by Fibre Optical Sensor, photoelectric switching circuit and data processing equipment constitute, be provided with the signal transmitting device in the described photoelectric switching circuit, it is characterized in that: described Fibre Optical Sensor is connected with described photoelectric switching circuit by optical fiber, described photoelectric switching circuit is connected with described data processing equipment by data line, described Fibre Optical Sensor is made of one 2 * 2 single-mode optical-fibre coupler and one 3 * 3 single-mode optical-fibre coupler, an input end of described 2 * 2 single-mode optical-fibre coupler is connected with LASER Light Source, output terminal of described 2 * 2 single-mode optical-fibre coupler is connected with an input end of described 3 * 3 single-mode optical-fibre coupler, two other input end of another input end of described 2 * 2 single-mode optical-fibre coupler and described 3 * 3 single-mode optical-fibre coupler is connected with a photodetector respectively, the output terminal of described 3 * 3 single-mode optical-fibre coupler is provided with catoptron, described photodetector is connected with signal transmitting device in the described photoelectric switching circuit, and described signal transmitting device is connected with described data processing equipment.
2. sensing system of fiber strain as claimed in claim 1 is characterized in that: described Fibre Optical Sensor adopts the Michaelson optical fibre interferometric sensor.
3. sensing system of fiber strain as claimed in claim 1, it is characterized in that: described data processing equipment is made of analog to digital conversion circuit and computing machine, described analog to digital conversion circuit is connected with described signal transmitting device, described signal transmitting device is made of three IV transducers and decipherer, any one described IV transducer all is connected with a described photodetector, the output terminal of described three IV transducers all is connected with a totalizer, the output terminal of described three IV transducers constitutes signal wire with the output terminal of described totalizer respectively, described signal wire is connected with three comparers respectively, the output terminal of described comparer all is connected with described decipherer, described decipherer is adjusted circuit with trigger pip and is connected, and the output terminal of described decipherer passes through the signal of described D/A converting circuit after with conversion and exports to described computing machine.
4. sensing system of fiber strain as claimed in claim 1 is characterized in that: described catoptron adopts faraday rotator mirror.
CNB2004100671159A 2004-10-13 2004-10-13 Sensing system of fiber strain Expired - Fee Related CN100420916C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100671159A CN100420916C (en) 2004-10-13 2004-10-13 Sensing system of fiber strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100671159A CN100420916C (en) 2004-10-13 2004-10-13 Sensing system of fiber strain

Publications (2)

Publication Number Publication Date
CN1760635A true CN1760635A (en) 2006-04-19
CN100420916C CN100420916C (en) 2008-09-24

Family

ID=36706789

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100671159A Expired - Fee Related CN100420916C (en) 2004-10-13 2004-10-13 Sensing system of fiber strain

Country Status (1)

Country Link
CN (1) CN100420916C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297118A (en) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 Visible light signal testing method and system
CN103346775A (en) * 2013-06-13 2013-10-09 上海安文桥梁检测技术有限公司 Interpretation circuit for interference type optical fiber strain transducer
CN105928465A (en) * 2015-02-26 2016-09-07 柯尼卡美能达株式会社 Strain sensor and method of measuring strain amount

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4446760C2 (en) * 1994-12-24 1996-11-14 Sensor Instr Gmbh Device for measuring deformation of an object
CA2301069C (en) * 1997-08-19 2004-11-23 University Of Maryland Large scale high speed multiplexed optical fiber sensor network
CN2608945Y (en) * 2003-03-20 2004-03-31 上海安文信息技术有限公司 Optical fibre sensing interferometer
CN2608946Y (en) * 2003-03-20 2004-03-31 上海安文信息技术有限公司 High sensitivity optical fibre sensing interferometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297118A (en) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 Visible light signal testing method and system
CN103346775A (en) * 2013-06-13 2013-10-09 上海安文桥梁检测技术有限公司 Interpretation circuit for interference type optical fiber strain transducer
CN103346775B (en) * 2013-06-13 2015-10-14 上海安文桥梁检测技术有限公司 A kind of interpretation circuit for interference-type optical fiber strain transducer
CN105928465A (en) * 2015-02-26 2016-09-07 柯尼卡美能达株式会社 Strain sensor and method of measuring strain amount
CN105928465B (en) * 2015-02-26 2018-08-31 柯尼卡美能达株式会社 Strain transducer and deflection assay method

Also Published As

Publication number Publication date
CN100420916C (en) 2008-09-24

Similar Documents

Publication Publication Date Title
CA2584376C (en) Embeddable polarimetric fiber optic sensor and method for monitoring of structures
Peng et al. Tilt sensor with FBG technology and matched FBG demodulating method
Hampshire et al. Monitoring the behavior of steel structures using distributed optical fiber sensors
US20020041722A1 (en) Optical sensing device containing fiber bragg gratings
CN202648830U (en) A distributed fiber sensing device based on Brillouin scattering
CN102721484B (en) Distributed optical fiber sensing device based on brillouin scattering
CN102944253A (en) System capable of synchronously measuring transverse pressure and temperature of fiber grating based on polarization measurement
CN101625247A (en) Large-range high-speed fiber bragg grating sensor demodulation device and demodulation method based on DSP
CN102680582A (en) Matching fiber grating acoustic emission sensing system with temperature compensation function
Xiong et al. Fiber Bragg grating displacement sensor with high measurement accuracy for crack monitoring
CN1831485A (en) Cavity length demodulating algorithm of fibre-optical F-P sensor
CN111579816B (en) Acceleration measuring instrument based on photoelectric oscillator
CN114111909A (en) Fiber Bragg grating temperature and stress dual-parameter integrated sensing and demodulating system based on diffraction grating
CN101769762B (en) Sensing demodulating system for optical chirped-grating
CN1975341A (en) All-optical fiber grating multi-parameter sensing system
CN1760635A (en) Sensing system of fiber strain
CN1904571A (en) A system and a method for measuring forces
CN111999263A (en) Mesoscale micro-nano optical fiber humidity sensor
CN201237522Y (en) Optical grating weighting transducer
Golnabi Mass measurement using an intensity-modulated optical fiber sensor
CN112748090B (en) Hydrogen humidity integrated sensor, hydrogen humidity detection device based on self-reference technology and application
CN101364025B (en) Digital type high speed wave lengh demodulator
Kulkarni et al. Optically activated novel force sensor calibrated as weighing balance
CN219777959U (en) Gravity measurement system based on fiber Bragg grating
Olivero et al. Comparative study of fiber Bragg gratings and fiber polarimetric sensors for structural health monitoring of carbon composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080924

Termination date: 20131013