CN1720498A - Contact sensitive device - Google Patents

Contact sensitive device Download PDF

Info

Publication number
CN1720498A
CN1720498A CN 200380104775 CN200380104775A CN1720498A CN 1720498 A CN1720498 A CN 1720498A CN 200380104775 CN200380104775 CN 200380104775 CN 200380104775 A CN200380104775 A CN 200380104775A CN 1720498 A CN1720498 A CN 1720498A
Authority
CN
China
Prior art keywords
member
contact
bending wave
sensitive device
measured
Prior art date
Application number
CN 200380104775
Other languages
Chinese (zh)
Other versions
CN100405266C (en
Inventor
尼克拉斯·P·R·希尔
达赖厄斯·M·沙利文
Original Assignee
新型转换器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to GB0228512.0 priority Critical
Priority to GB0228512A priority patent/GB0228512D0/en
Application filed by 新型转换器有限公司 filed Critical 新型转换器有限公司
Publication of CN1720498A publication Critical patent/CN1720498A/en
Application granted granted Critical
Publication of CN100405266C publication Critical patent/CN100405266C/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0436Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which generating transducers and detecting transducers are attached to a single acoustic waves transmission substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0433Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which the acoustic waves are either generated by a movable member and propagated within a surface layer or propagated within a surface layer and captured by a movable member

Abstract

一种接触敏感装置,包括一能够支持弯曲波的部件(12)、安装于该部件(12)上用于测量该部件中的弯曲波振动的三个感测器(16),由此每个感测器(16)确定一所测量的弯曲波信号,以及一从这些所测量的弯曲波信号计算该部件上的接触的位置的处理器。 A touch sensitive device, comprising a support member (12) bending waves, mounted on the member (12) three sensors for measuring bending wave vibration in the member (16), whereby each sensor (16) to determine a measured bending wave signal and a processor in contact with a member on the bending wave signal calculated from these measured positions. 该处理器计算每个所测量弯曲波信号的相位角以及至少两对感测器的相位角之间的相位差异,以便计算出至少两个相位差异,并从中确定该接触的位置。 The processor calculates the phase difference between the phase angle of each measured bending wave signal and the phase angle of at least two pairs of sensors, to calculate the difference between the at least two phases, and to determine the location of the contact.

Description

接触敏感装置 Contact sensitive device

技术领域 FIELD

本发明涉及接触敏感装置。 The present invention relates to contact sensitive device.

背景技术 Background technique

视觉显示器通常包含某种形式的触摸敏感屏幕。 Visual displays generally include some form of touch sensitive screen. 随着下一代便携式多媒体装置(如掌上型计算机)的出现,此种现象变得日益普遍。 With the advent of next-generation portable multimedia devices (such as handheld computers), and this phenomenon is becoming increasingly common. 使用波来检测接触的最完善的技术为表面声波(Surface Acoustic Wave,SAW)技术,该技术在玻璃屏幕的表面上产生高频波,并使用由手指接触而引起的高频波衰减来检测触摸位置。 Using waves to detect contact of the best technology for a surface acoustic wave (Surface Acoustic Wave, SAW) technology, which generates high frequency waves on the surface of a glass screen, and a high frequency wave by the finger contact attenuation caused by touch position is detected. 此技术为“飞行时间(time-of-flight)”型,其中使用干扰到达一个或多个感测器所需的时间来检测触摸位置。 This technique is "time of flight (time-of-flight)" type, in which the interference time required to reach one or more sensors to detect a touch position. 当介质以非分散的方式作用,即波的速度不会在有关频率范围上大幅变化时,该方法可行。 When the effect of non-dispersive manner, i.e., the wave velocity is not largely changed in the relevant frequency range of the medium, the method is feasible.

在本发明人的WO 01/48684与PCT/GB2002/003073中,提出了两种接触敏感装置及其使用方法。 In WO 01/48684 by the present invention and PCT / GB2002 / 003073, it is proposed two types of contact sensitive device and method of use. 在这两份申请中,该装置包括能支持弯曲波振动的部件以及安装于该部件上用于测量该部件中的弯曲波振动并且用于将信号发送至处理器的感测器,由此从该部件的表面上所作的接触在该部件中所产生的弯曲波振动变化来计算有关该接触的信息。 In both applications, the apparatus including supporting bending wave vibration and a member mounted on the member for measuring bending wave vibration in the member and for transmitting a signal to the processor of the sensor, whereby the change in bending wave vibration in contact with the upper surface of the component made in this section to calculate the generated information about the contact.

弯曲波振动意味着一激发,例如通过接触,该激发会使该部件发生平面外的位移。 An exciting bending wave vibration means, for example by contact, which causes excitation of-plane displacement of the member occurs. 许多材料都会弯曲,某些材料具有完全平方根离差关系(perfectsquare root dispersion relation)的纯弯曲,而某些材料则具有纯弯曲与剪切弯曲的混合弯曲。 Many materials will bend, some with pure bending material completely square root dispersion relation (perfectsquare root dispersion relation), and some with pure bending shear mixing is curved with curved. 离差关系说明波的平面内速度与波的频率的相依性。 Said dispersion relation in the frequency dependence of the speed of the plane wave Mingbo.

弯曲波具有优点,如提高强固性(robustness)以及降低对表面刮伤的敏感性等。 Bending waves have advantages such as increased ruggedness (robustness is) as well as reduced sensitivity to surface scratches and the like. 然而,弯曲波为分散波,即弯曲波的速度从而“飞行时间”依赖于频率。 However, the bending wave is dispersive waves, i.e. the bending wave velocity such "time of flight" frequency-dependent. 一般而言,脉冲包含大范围的频率成分,因此如果该脉冲行进一较短距离,高频成分会首先到达。 In general, the pulse component comprising a wide range of frequency, so if the pulse travels a short distance, high frequency components will arrive first. 在WO 01/48684与PCT/GB2002/003073中,可应用将所测量的弯曲波信号转换成一来自非分散波源的传播信号的校正,以便可应用雷达与声纳领域所使用的技术来检测接触位置。 In WO 01/48684 and PCT / GB2002 / 003073 may be applied to convert the measured bending wave signal to correct a non-dispersive wave source from the propagated signal, so as to be applied to radar and sonar art used to detect the contact position .

发明内容 SUMMARY

根据本发明的一方面,提供了一种接触敏感装置,该装置包括:能支持弯曲波的部件;安装于该部件上用于测量该部件中的弯曲波振动的三个感测器,由此每个感测器确定一所测量的弯曲波信号;以及从这些所测量的弯曲波信号计算该部件上的接触的位置的处理器,该接触敏感装置的特征在于该处理器计算每个所测量弯曲波信号的相位角,然后计算至少两对感测器的相位角之间的相位差异,并从该相位差异确定该接触的位置。 According to an aspect of the present invention, there is provided a contact sensitive device, the apparatus comprising: a support member capable of bending waves; mounted on the member for measuring bending wave vibration in the three sensors of the components, whereby each sensor to determine a measured bending wave signal; and a processor a position of the contact member on the calculation of these measured bending wave signal from the touch-sensitive device is characterized in that the processor calculates each measured phase angle of the bending wave signal, and then calculate the phase difference between the phase angles at least two pairs of sensors, and determining a position of the contact from the phase difference.

根据本发明的第二方面,提供了一种确定与接触敏感装置上的接触有关的信息的方法,该方法的步骤包括:提供能够支持弯曲波的部件以及安装于该部件上用于测量该部件中的弯曲波振动的三个感测器;在该部件的一位置处施加接触;使用每个感测器来确定一所测量的弯曲波信号以及从该所测量的弯曲波信号计算接触的位置,该方法的特征在于计算每个所测量弯曲波信号的相位角、计算至少两对感测器的相位角之间的相位差异以及从这些至少两个所计算的相位差异确定该接触的位置。 According to a second aspect of the present invention, there is provided a method of information relating to a contact on a contact sensitive device is determined, the method comprising the steps of: providing a member capable of supporting bending waves and a member mounted on the member for measuring the three sensors in the bending wave vibration; applied at a position of the contact member; each sensor used to determine a measured bending wave signal and a position in contact with the bending wave signals is calculated from the measured the method is characterized by calculating the phase angle of each measured bending wave signal, calculating a phase difference between the phase angles at least two pairs of sensors and determining the location of the contact from at least two of these phase differences are calculated.

下列特征可应用于该装置与该方法,其中将该处理器调适以提供该方法的许多计算或处理步骤。 The following features may be applied to the device and the method, wherein the processor is adapted to provide a number of calculations or processing steps of the method.

可通过将一吸收器放置成与该部件的边缘接触而抑制反射波。 The member may be in contact with the edges to suppress the reflected wave by placing into an absorber. 该吸收器与部件的机械阻抗可选择为使得该部件的边缘的弯曲波反射减至最少。 Mechanical impedance with the absorber member may be selected such that the edge of the bending wave member minimize reflection. 具体而言,所选择的阻抗使得弯曲波能量在围绕所选频率ω0的频带中被强烈地吸收。 Specifically, the impedance of the selected bending wave energy that is strongly absorbed in ω0 band around the selected frequency. 该吸收器的阻抗可选择成兼具抗性与相容性。 The impedance of the absorber may be selected to both the resistance and compatibility. 这些阻抗可选择成满足下列等式:ZT=-iZB(ω0)其中ZT为吸收器的终止(termination)阻抗,且ZB为该部件边缘的机械阻抗。 The impedances may be selected to satisfy the following equation: ZT = -iZB (ω0) where ZT is the termination (Termination) impedance of the absorber, and means for mechanical impedance ZB edge.

该吸收器可由泡沫塑胶制成,这些泡沫塑胶可具有开孔或闭孔且可为聚安酯或聚氯乙烯。 The absorber may be made of plastic foam, these foams may have open or closed cell plastic and may be a polyurethane or polyvinyl chloride. 例如,该泡沫可为一软PVC、闭孔为主的泡沫,如MIERSTM,或中等密度至高密度的开孔聚安酯泡沫。 For example, the foam may be a soft PVC, mainly closed-cell foam, such as MIERSTM, medium density or high density foam opening Kong Juan ester. 另一类已发现的合适泡沫为丙烯酸闭孔泡沫。 Another type of foam have been found suitable for acrylic closed-cell foam. 此等泡沫可具有较高的阻尼度以及相对高的硬度。 Such foams may have a higher degree of damping and a relatively high hardness. 此类特性尤其适合于硬、重材料如玻璃的边缘终止。 Such properties particularly suitable for hard, heavy materials such as termination edge of the glass. 示例包括3M序列号码4956、4910、4950与4655。 Examples include 3M sequence number 4956,4910,4950 and 4655. 该吸收器可实质上围绕该部件的周边而延伸。 The absorber may extend substantially around the periphery of the member. 该吸收器可当作安装架,用于将该部件支撑于框架中或至另一表面。 The absorber can be used as mount for the supporting member to the frame or other surface.

该部件的表面上可包括凸起的图案,从而横跨该表面所拖拉的接触为该部件提供可变的力以在该部件中产生弯曲波。 The upper surface of the member may include a raised pattern, whereby the dragging across the surface of a contact member for providing a variable force to the member to generate bending waves in the. 该图案可为具有统计上良好定义的空间波动分布的周期性或准周期性图案。 The pattern may have a well-defined spatial distribution of the statistical fluctuations of a periodic or quasi-periodic pattern. 该图案可为随机图案,从而在该部件的表面上行进的接触产生随机弯曲波信号。 The pattern may be a random pattern, so as to contact the surface of the traveling member generates a random bending wave signal. 随机浮雕图案可为抗反射涂层、防眩表面光制(finish)或蚀刻光制,如在电子显示器的前部所放置的许多熟知透明面板上所发现的图案。 Random relief pattern may be anti-reflective coating, anti-glare surface of the optical system (Finish) light or etching system, such as a pattern on a number of well known transparent front panel electronic display is placed found.

可通过具有以所选频率ω0为中心的通带且具有带宽Δω的带通滤波器来处理每个所测量的弯曲波信号。 May process each measured bending wave signal having a selected frequency by ω0 a pass band centered on and having a band pass filter bandwidth Δω. 滤波器的带宽Δω最好选择成解决多普勒(Doppler)效应,其中弯曲波到达一点时的频率与其原始频率不同。 Δω bandwidth of the filter is preferably selected to resolve Doppler (Doppler) effect in which different frequency bending wave arrival at its original frequency point. 因此,带宽最好符合以下关系:Δω>>2k(ω0)Vmax其中Vmax为横跨该表面的接触的最大横向速度,例如,如果该接触是由触摸笔提供,则Vmax为用户能够移动触摸笔的最大速度。 Thus, the bandwidth is preferably satisfy the following relationship: Δω >> 2k (ω0) Vmax wherein Vmax is the maximum lateral velocity across the surface in contact, e.g., if the contact is provided by the touch pen, the Vmax for the user to move the touch pen maximum speed.

每个已过滤信号的相位可通过与参考信号比较而测量到。 Each phase of the filtered signal may be measured with reference to the comparison signal. 参考信号可具有频率ω0。 The reference signal may have a frequency ω0. 所测量相位是输入与参考信号之间的平均相位差异,最佳在间隔2π/Δω上测量。 The measured average phase difference is the phase between the input and the reference signal, the best measurement in the interval 2π / Δω. 或者,参考信号可从来自第二感测器的已过滤的信号导出,在该情形下,所测量的相位为两个输入信号之间的相位差异。 Alternatively, the reference signal may be derived from the filtered signal from the second sensor, in this case, the phase of the measured phase difference between the two input signals.

相位差异可以2π/Δω的间隔予以计算,该间隔可为小于10ms的间隔。 Phase differences can be 2π / Δω be calculated interval, the interval may be an interval of less than 10ms. 可将参考与输入信号馈送至相位检测器。 And the reference input signal may be fed to the phase detector. 相位检测器的输出可馈送通过具有约Δω/2的截止频率的低通滤波器、然后通过数字化器、最后通过处理器以计算相位角θ。 Output of the phase detector can be fed through a low pass filter having a cutoff frequency of about Δω / 2 a, then finally by a processor to calculate the phase angle θ by the digitizer.

两个所测量弯曲波信号的瞬时相位θ1(t)与θm(t)可满足相位差等式:Δθ1m=θ1-θm=k(ω0)Δx1m+2πn1m其中Δx1m=X1-Xm,(xm与x1分别为从接触位置至标有m与1的每个感测器的距离),且k(ω)为波向量。 Two measured bending wave signal instantaneous phase θ1 (t) and θm (t) satisfy the equation retardation: Δθ1m = θ1-θm = k (ω0) Δx1m + 2πn1m wherein Δx1m = X1-Xm, (xm and x1 respectively from the contact position to the distance marked m and 1 each sensor), and k (ω) is the wave vector. 如果两个感测器之间的路径长度差异小于带通滤波器的相干长度,则可满足此等式,带通滤波器的相干长度可定义为:xc=2&pi;&omega;0&Delta;&omega;k(&omega;0)]]>相干条件因此为|Δx1m|<<xc。 If the path length difference between the two sensors is less than the coherence length of the band-pass filter, this equation can be satisfied, the coherence length of the band-pass filter defined as: xc = 2 & pi; & omega; 0 & Delta; & omega; k (& omega; 0)]]> is thus coherence condition | Δx1m | << xc. 如果未满足相干条件,则可能不满足上述相位等式。 If the coherence condition is not satisfied, the phase may not satisfy equations.

因此,需要n1m与相位角差异的值来确定接触的位置。 Therefore, the phase angle difference n1m to determine the location of the contact. 该部件的形状可选择成将Δx1m的幅度限制为小于一个波长的一半的值,即|Δx1m|<π/k(ω0)。 The shape of the member may be selected to limit the amplitude Δx1m is less than half a wavelength value, i.e., | Δx1m | <π / k (ω0). 在此情形中,如果Δx1m的所有可能的值满足条件|Δx1m|<π/k(ω0),则仅有一个n1m值为满足|Δθ1m-2πn1m|<π的整数n1m。 In this case, if all possible values ​​Δx1m satisfies the condition | Δx1m | <π / k (ω0), then only a value satisfying N1m | integer n1m <π of | Δθ1m-2πn1m. 或者,n可以某种方式加以估计或推断。 Alternatively, n may be estimated or inferred in some way.

每个相位角差异结合整数n1m的可能值的范围可用以产生一系列的路径长度差异,从而在该部件的表面上定义一系列的离散双曲线,以表示可能的接触位置。 Phase angle difference values ​​for each possible integer n1m binding of a series of ranges used to generate the path length difference, thereby defining a series of discrete hyperbolic on the surface of the member to indicate the position of possible contact. 可通过绘制每个路径长度差异所定义的每条双曲线并选择大量双曲线相交或近乎相交的一点而确定该接触位置。 May be defined by the path length difference of each drawing and selecting a plurality of hyperbolic each intersecting hyperbolic or near the intersection point of the contact position is determined. 此点可能为真实的接触位置。 This point may be true of the contact position.

如果n1m未知,则确定接触位置所需的双曲线系列的最小数目为三,并且通过增加欲绘制的双曲线的数目而增加确定正确接触位置的可能性。 If n1m unknown, it is determined that the minimum number of required series of hyperbolic three contact position, and increases the likelihood of determining the correct position of the contact by increasing the number to be plotted a hyperbolic. 可使用多个感测器,其中可为每对感测器计算相位角差异,从而产生多条双曲线。 A plurality of sensors may be used, in which the phase angle difference is calculated for each pair of sensors, thereby producing a plurality of hyperbolic. 在该实施例中,感测器的最小数目为三。 In this embodiment, the minimum number of sensors is three.

或者,如果n1m未知,则可将来自每个感测器的所测量的弯曲波信号分成两个或多个离散频带,其中可为每个频带并为每对感测器计算相位角差异。 Bending wave signal or, if known n1m can be measured from each sensor into two or more discrete bands, which can be calculated for each pair of sensors and the phase angle difference for each frequency band. 虽然可从单对感测器计算多个相位角差异,但不同频率下的相位角差异是从相同的路径长度差异导出。 Although a plurality of the phase angle difference from a single sensor to calculate, but the difference in phase angle at different frequencies are derived from the same path length difference. 因此,感测器的最小数目为三。 Thus, the minimum number of sensors is three. 可通过由具有不同通带频率的至少两个带通滤波器处理弯曲波信号来实现频带分割。 Band division may be achieved by bending wave signal processed by the at least two band pass filters having different pass band frequency. 例如,使用具有频率ω0+ωδ以及ω0-ωδ的两个带通滤波器,两个感测器的相位角差异Δθa、Δθb可定义为Δθa=k(ω0+ωδ)Δx+2πnaΔθb=k(ω0-ωδ)Δx+2πnb其中Δx为该接触与感测器位置所定义的单路径长度差异。 For example, having a frequency ω0 + ωδ and two bandpass filters ω0-ωδ, the phase angle difference between two sensors Δθa, Δθb defined as Δθa = k (ω0 + ωδ) Δx + 2πnaΔθb = k (ω0 -ωδ) Δx + 2πnb wherein [Delta] x single path for contact with the sensor length difference defined position.

因此,可选择na与nb的值,使得所测量的相位角差异推断出路径长度差异的类似值。 Thus, the value of na and nb is selectable, so that the phase angle difference between the measured value is similar to infer the path length difference. 仅有一个(na,nb)值组合满足此点。 Only one (na, nb) combinations of values ​​satisfies this. 在此情况下,可确定路径长度差异的真实值。 In this case, the real value may be determined path length difference. 正确的组合(na,nb)可确定为使以下表达式最小化的值组合:|&Delta;&theta;a-2&pi;nak(&omega;0+&omega;&delta;)-&Delta;&theta;b-2&pi;nbk(&omega;0-&omega;&delta;)|]]>路径长度差异则可估计为:&Delta;x=12(&Delta;&theta;a-2&pi;nak(&omega;0+&omega;&delta;)+&Delta;&theta;b-2&pi;nbk(&omega;0-&omega;&delta;))]]>如果对两对感测器重复此处理,则可确定两个路径长度差异,该两个路径长度差异进而可用于确定接触位置。 Correct combination (na, nb) may be determined so that the following expression is minimized combinations of values: | & Delta; & theta; a-2 & pi; nak (& omega; 0 + & omega; & delta;) - & Delta; & theta; b-2 & pi; nbk (& omega; 0- & omega; & delta;) |]]> path length difference can be estimated as: & Delta; x = 12 (& Delta; & theta; a-2 & pi; nak (& omega; 0 + & omega; delta &;) + & Delta ; & theta; b-2 & pi; nbk (& omega; 0- & omega; & delta;))]]> If this process is repeated two pairs of sensors, may be determined two path length difference between the two path length difference Furthermore available for determining the contact position.

或者,如果n1m未知,则可使用WO 01/48684与PCT//GB2002/003073(如图11所概述)中所教导的方法来作出接触位置的初始确定。 Alternatively, n1m if unknown, may be used initially and PCT WO 01/48684 methods (outlined in Figure 11) as taught // GB2002 / 003073 to make the contact position determination. 然后,可假定该接触比弯曲波移动更慢,因此相位角差异在时间标度Δt上变化较小的增量。 Then, it may be assumed that the contacts move slower than the flexural wave, the phase angle difference Δt on a time scale smaller incremental changes. 因此,可选择n的每个值以最小化路径长度差异的变化。 Thus, to minimize the path length variation for each value of n selectable difference.

所测量的相位角差异可包含会导致选择不正确n值的随机错误。 The measured phase angle difference can cause random errors may include selecting an incorrect value of n. 例如可通过状态空间估计器如广为人知的卡尔曼(Kalman)滤波器评估n的连续序列的可能性来减轻此错误。 For example the possibility of a continuous sequence of n can be determined by state space known as a Kalman estimator (Kalman) filter to reduce the error evaluation. 选择具有最大可能性测量值的序列。 Selecting a sequence of measurements with the maximum likelihood.

状态空间估计器提供系统(对该系统进行噪声测量)的内部状态的估计。 It provides estimated state space estimation system (for the noise measurement system) of internal states. 状态空间估计器的必要输入为系统状态的演变的统计说明。 Enter the necessary space estimator for the state statistics illustrate the evolution of the system state. 该状态的一示例为说明与该部件接触的物体的位置与速度的坐标系。 This state is an example for explaining a coordinate system of the position and speed of the member in contact with the object. 广为人知的是,卡尔曼滤波器与其他状态空间估计器可提供所观察到的噪声测量的序列与系统状态的模型相一致的可能性的测量。 It is widely known that the model of the noise measurement system state sequences observed consistent with the possibility of measuring the Kalman filter and other state space estimator available.

状态空间估计器因此可用以采取在不同时间(例如t1、t2、t3、...)所作的一对路径长度差异(例如Δx12与Δx34)的序列来估计这些时间的系统状态,即接触的位置与速度。 Thus the state space estimator may be used to take the path length of a pair sequence differences (e.g. Δx12 and Δx34) at different times (e.g., t1, t2, t3, ...) is made to estimate the state of the system time, i.e., the contact position and speed. 而且,可评估路径长度差异的这些值与系统模型相一致的总体可能性。 Further, the overall likelihood of these values ​​can be evaluated with the path length difference system models consistent.

如果从相位角差异序列与一组整数(n=n(t1)、n(t2)、n(t3)、...)获得该路径长度差异序列,则通过状态空间估计器所产生的可能性的测量值可用以推断已选择n的正确值的可能性。 If possibility (, n (t2), n (t3), ... n = n (t1)) of the path length difference sequences obtained from the phase angle difference with a set of integer sequences, is generated by the state space estimator measurements may be used to infer the correct value n is the possibility of choice. 由此得出结论,用于选择整数n的正确序列的方法是找到状态空间估计器给予最大可能性测量值的序列。 It follows that the method for selecting the correct sequence of integer n is the state space to find the maximum likelihood sequence estimator given measured values.

如上所述,状态空间估计器使用系统状态演变的某些统计说明。 As noted above, the state-space estimator uses some statistical description of the evolution of the system state. 接触移动的适当模型可为简单的随机步行。 Contact movement of an appropriate model may be a simple random walk. 或者,该模型采用用户如何移动触摸笔或手指的详细统计说明。 Alternatively, the model uses detailed statistics illustrate how the user moves the stylus or a finger. 一个示例为用户在写入文字或个别字符时如何移动钢笔的统计说明。 An example of statistical description for the user how to move the pen when writing text or individual characters.

处理器可进一步适用于在该确定程序中包含任何有关接触预期位置的可用信息。 The processor may be further adapted to include any available information about the expected position of the contact in the determination procedure. 例如,如果该部件为图形用户界面的输入装置,其中用户可选择按下“按钮”,则有用的是,假定该部件上的任何接触在与这些按钮对应的离散区域内发生。 For example, if the input device is a member of a graphical user interface, wherein the user may select press "button", it is useful to assume that any contact on the member occurs within the discrete areas corresponding to these icons.

或者,可使用接触可能发生的机率的地图,并且该机率基于用户的预期行为。 Alternatively, contact may occur using probability maps, and the probability based on the expected behavior of the user. 该装置可包括具有图形用户界面(GUI)的软件应用程序,其利用应用程序接口(API)与操作系统交互,其中API适用于产生机率地图。 The apparatus may comprise a graphical user interface (GUI) software application, which uses an application program interface (API) to interact with the operating system, where the API is adapted to generate the probability map. 该机率地图可基于图形用户界面所呈现的物体的位置、大小以及使用频率。 The probability map may be based on a graphical user interface presented by the position of the object, the size and frequency of use. 该机率地图也可基于有关被启动的各种GUI元件的相对可能性的信息。 The probability map may also be based on information about the relative likelihood of the various GUI elements being activated to.

下列特征可应用于本发明的所有实施例。 The following features are applicable to all embodiments of the present invention. 该装置可包括记录构件,用于当该接触横跨该部件移动时,随时间记录来自该感测器或每个感测器的所测量的弯曲波信号。 The apparatus may include a recording member, for, when the contacting is moved across the member, the bending wave signal recording from the sensor or each sensor is measured over time. 可在中央处理器中计算与接触有关的信息。 Information relating to the contact may be calculated in the central processor. 这些感测器可安装于该部件的边缘处或与该部件的边缘隔开。 These sensors can be installed in or at the edge of the member spaced from an edge of the member. 感测器可采用可将弯曲波振动转换成模拟输入信号的感测转换器的形式。 Sensor employed may convert bending wave vibration into an analog input signal in the form of a sensing transducer.

该部件可采用板或面板的形式。 The member may take the form of a plate or panel. 该部件可为透明或非透明,例如具有印刷图案。 The member may be transparent or non-transparent, for example having a printed pattern. 该部件可具有均匀的厚度。 The member may have uniform thickness. 或者,该部件可具有更复杂的形状,例如曲面及/或可变厚度。 Alternatively, the member may have a more complex shape, such as curved and / or variable thickness.

该装置可为纯被动感测器,其中通过初始冲击或通过该接触的摩擦移动来产生弯曲波振动,从而产生所测量的弯曲波信号。 The device may be a purely passive sensor, wherein the initial impact or by generating bending wave vibration movement by the frictional contact thereby generating the measured bending wave signal. 该接触可采用手指触摸或触摸笔(其可为手持钢笔的形式)触摸的形式。 This contact can be a finger touch or a touch pen (which may be in the form of a hand-held pen) in the form of a touch. 触摸笔在该部件上的移动可产生连续的信号,该信号受到触摸笔在该部件上的位置、压力以及速度的影响。 Moving the touch pen on the member may generate a continuous signal which is subjected to the position of the touch pen on the member, the influence of pressure and velocity. 该触摸笔可具有挠性尖端、例如,橡皮尖端,该尖端通过向该部件施加可变的力而在该部件中产生弯曲波。 The stylus may have a flexible tip, e.g., a rubber tip, the variable force applied by the tip member to generate bending waves in the member. 该可变的力可由黏着于该部件的表面或横跨该部件的表面滑动的尖端来提供。 The variable force may be adhered to the surface of the member or across the surface of the tip member slidably provided. 当尖端横跨该部件的表面移动时,会产生张力,该张力在某临界值处会造成该尖端与该部件之间的任何黏合破裂,从而允许尖端横跨该表面滑动。 When the surface of the tip moves across of the member, it will produce a tension which at a certain threshold value causes any adhesion between the tip and the rupture member, thereby allowing the tip across the surface of the sliding. 弯曲波可具有超声波区域(>20kHz)内的频率成分。 Bending waves may have an ultrasonic region (> 20kHz) frequency components therein.

该部件也可以是声辐射器,并可将发射转换器安装于该部件上,以便在该部件中激发弯曲波振动,以产生声输出。 The member may also be an acoustic radiator, and the transmitter transducer mounted on the member to excite bending wave vibration in the member to generate an acoustic output. 该转换器的音频信号的频带最好不同于并且不重叠于感测器的测量的频带。 Band of the audio signal converter preferably different and does not overlap the frequency band of the measurement sensor. 音频信号因而可得以过滤,例如,音频频带可限于20kHz以下的频率,而振动测量可限于20kHz以上的频率。 The audio signal may thus be filtered, for example, the audio band may be limited to frequencies below 20kHz, and the vibration measurements may be limited to frequencies above 20kHz. 感测器可具有双重功能性并且当作发射转换器。 Sensor may have dual functionality as a transmitter and the transducer.

该或每个发射转换器或感测器可为弯曲转换器,其与该部件例如压电转换器直接焊接。 The or each emitting transducer or sensor may be curved transducer, for example welded directly to the member of the piezoelectric transducer. 或者,该或每个发射转换器或感测器可为在单点处与该部件耦合的惯性转换器。 Alternatively, the or each emitting transducer or sensor may be an inertial transducer at a single point coupled to the member. 惯性转换器可为电动转换器或压电转换器。 Inertial transducer may be an electrical transducer or a piezoelectric transducer.

根据本发明的接触敏感装置可包含于移动电话、膝上型计算机或个人数据助理中。 Contact sensitive device according to the invention may comprise a mobile phone, a laptop computer or a personal data assistant. 例如,传统上装配于移动电话的袖珍键盘可由根据本发明为触摸敏感型的连续模具(moulding)替代。 For example, a mobile telephone mounted on the conventional keypad may be replaced with a touch-sensitive continuous mold (Molding) according to the present invention. 在膝上型计算机中,当作鼠标控制器发挥作用的触摸板可由其为根据本发明的接触敏感装置的连续模具替代。 In a laptop computer, to function as a mouse controller may be by a touch panel as an alternative contact sensitive device according to the continuous mold of the present invention. 或者,该接触敏感装置可为显示器屏幕,例如包含液晶的液晶显示器屏幕,其可用于激发或感测弯曲波。 Alternatively, the contact sensitive device may be a display screen such as a liquid crystal display comprising a liquid crystal screen, which can be used to excite or sense bending waves. 显示器屏幕可呈现与接触有关的信息。 The display screen may present information related to the contact.

附图说明 BRIEF DESCRIPTION

已通过示例在附图中概略性说明了本发明,其中:图1为根据本发明一方面的触摸敏感装置的示意平面图;图2为图1的装置的示意透视图;图3为一维梁的示意侧视图;图4a为说明反射系数的振幅对频率(Hz)的曲线图,因振幅为一比率故无单位;图4b为说明反射系数的相位(以弧度为单位)对频率(Hz)的曲线图;图5a与5b为替代性触摸敏感装置的示意透视图;图6为根据本发明找到接触位置的方法的流程图;图7a为用于计算相位角的设备的示意方块图;图7b为结合图7a的设备使用的设备的示意方块图;图8a至8d为根据本发明的设备的平面图,说明路径长度差异的双曲线;图9为用于计算相位角的替代性设备的示意方块图;图10为说明计算接触位置的替代性方法的流程图;图11为使用离差校正的相关函数计算接触位置的方法的流程图;图11a为离差校正的相关函数对时间 By way of example in the drawings has a schematic illustration of the present invention, wherein: Figure 1 is a schematic plan view of an aspect of the touch-sensitive device according to the present invention; FIG. 2 is a schematic perspective view of the device of FIG. 1; FIG. 3 is a one-dimensional beam it is a schematic side view; FIG. 4a is an explanatory graph showing the amplitude reflection coefficient of frequency (Hz), because a ratio of amplitude so no units; FIG. 4b is a diagram of the reflection coefficient phase (in radians) of frequency (Hz) graph; Figures 5a and 5b is a schematic perspective view of an alternative touch sensitive device; FIG. 6 is a flowchart of a method of the contact position found according to the present invention; FIG. 7a is a device for calculating the phase angle of a schematic block diagram; FIG. 7b is a schematic block diagram of apparatus in conjunction with the use of the apparatus of Figure 7a; Figures 8a to 8d is a plan view of the apparatus according to the present invention, illustrating the path length difference of hyperbola; FIG. 9 is a schematic for an alternative apparatus for calculating the phase angle a block diagram; FIG. 10 is a flowchart of an alternate method of calculating a contact position described; FIG. 11 is a flowchart of a method using the dispersion corrected correlation function is calculated contact position; and FIG. 11a is a dispersion corrected correlation function of time 曲线图,以及图12a为兼作一扬声器操作的接触敏感装置的示意方块图,以及图12b说明在图12a的装置中分离音频信号与所测量弯曲波信号的方法。 Graph, and FIG. 12a is a schematic block diagram of serving as a contact sensitive device operation speaker, an audio signal, and FIG. 12b described methods and measured bending wave signal separating apparatus 12a of FIG.

具体实施方式 Detailed ways

图1说明一接触敏感装置10,其包括安装于显示装置14前方的透明触摸敏感板12。 1 illustrates a touch-sensitive device 10, which is attached to a display comprising a transparent touch sensitive device 14 in front plate 12. 显示装置14可采用电视、计算机屏幕或其他视觉显示装置的形式。 Form of the apparatus 14 may employ a display device of a TV, a computer screen or other visual display. 使用钢笔形式的触摸笔18来将文字20或其他内容写在触摸敏感板12上。 Using a pen touch pen 18 to form text or other content 20 written on the touch-sensitive panel 12.

透明触摸敏感板12为能够支持弯曲波振动的部件,例如一声装置。 The transparent touch-sensitive panel 12 is a member capable of supporting bending wave vibration, for example, sound devices. 如图2所示,将用于测量板12中弯曲波振动的四个感测器16安装于该板的下侧。 2, the plate 12 for measuring bending wave vibration in the four sensors 16 attached to the lower side of the plate. 感测器16采用压电振动感测器的形式,并且在板12的每个角落安装一个感测器。 Sensor 16 in the form of piezoelectric vibration sensors, and a sensor mounted in each corner of the plate 12. 至少一个感测器16也可当作一发射转换器,用于在板中激发弯曲波振动。 At least one sensor 16 may also be used as a transmitter transducer for exciting bending wave vibration in the plate. 以此方式,该装置可当作一组合式扬声器与接触敏感装置。 In this manner, the apparatus can be used as a combined loudspeaker and contact sensitive device.

由泡沫塑胶制成的安装架22是附着于板12的下侧并实质上围绕板12的周边而延伸。 Made of foamed plastic mount 22 is attached to the underside of the plate 12 and extending substantially around the periphery of the plate 12. 安装架22具有黏性表面,从而该部件可牢固地附着于任何表面。 22 having a surface mount adhesive, so that the member may be securely attached to any surface. 安装架与板的机械阻抗经过选择而使板边缘的弯曲波反射减至最小。 Mechanical impedance mounting frame and plate bending waves through the edge of the board selected to minimize reflection.

安装架与板的机械阻抗之间的关系可通过考虑图3所示的一维模型而加以近似。 The relationship between the mechanical impedance of the mount plate may be approximated by a three-dimensional model shown in FIG consideration. 该模型包括梁(beam)形式的波导34,其终止于具有终止阻抗的边缘安装架36。 The model includes (Beam) in the form of a waveguide beam 34 which terminates in an edge having a mounting bracket 36 terminating impedance. 沿波导34向下行进的入射波38是由安装架36反射而形成反射波40。 Incident wave 34 travels along the waveguide 38 is downwardly reflected wave 40 is formed by the reflector mounting bracket 36. 入射与反射波是沿垂直于边缘的方向行进的平面波。 The incident and reflected waves in a direction perpendicular to the traveling direction of the edge of the plane wave. 假定安装架36满足下列边界条件:(i)终止阻抗仅耦合进横向速度,即其不提供任何扭矩阻力;从而弯曲力矩在边缘处等于零,以及(ii)边缘处横向剪切力与速度的比率等于终端阻抗;安装架的反射系数是由下式给定:R(&omega;)=-ZT/ZB(&omega;)-iZT/ZB(&omega;)+i]]>其中ZT为安装架的终止阻抗,并且ZB为波导末端的机械阻抗,由下式给定ZB(&omega;)=Bk3(&omega;)2&omega;(1+i)]]>其中k(ω)为波向量,其根据面板的弯曲硬度B以及每单位面积的质量μ来表示,k=(&mu;B)1/4&omega;]]>因此,反射系数取决于波导末端与安装架的阻抗的比率。 Mounting bracket 36 is assumed to satisfy the following boundary conditions: (i) the termination impedance is only coupled into the transverse velocity, i.e., it does not provide any torque resistance; whereby the bending moment is zero at the edges, and the ratio of the transverse shear rate and (ii) at the edge equal to the termination impedance; reflection coefficient mounting frame is given by: R (& omega;) = - ZT / ZB (& omega;) - iZT / ZB (& omega;) + i]]> where ZT is the mount termination impedance, and ZB is the mechanical impedance of the waveguide end, by the formula given ZB (& omega;) = Bk3 (& omega;) 2 & omega; (1 + i)]]> where k (ω) is the wave vector, based on the panel and B the bending stiffness of the mass per unit area is represented μ, k = (& mu; B) 1/4 & omega;]]> Thus, the reflection coefficient depends on the ratio of the impedance of the end of the waveguide and the mount. 此外,波导的阻抗与频率的平方根成正比,并且具有权重相等的实与虚(reactive)成分(即π/4相位角)。 In addition, the frequency of the square root of the impedance of the waveguide, and having a weight equal to the real and imaginary (reactive) component (i.e., π / 4 phase angle). 因此,反射系数可能与频率有很大关系。 Thus, the reflection coefficient may have a lot of frequency.

如果下列条件得到满足,则反射系数消失,即在围绕ω0的频带中强烈吸收弯曲波能量: If the following conditions are satisfied, the disappearance of the reflection coefficient, i.e., strong absorption in the frequency band around the bending wave energy ω0 of:

ZT=-iZB(ω0)因此,该安装架的终止阻抗必须兼具实与虚成分,或等效地,该安装架必须兼具抗性与相容性。 ZT = -iZB (ω0) Accordingly, the terminating impedance of the mounting bracket must be both real and imaginary components, or equivalently, the mounting bracket must be compatible with both resistance.

该板可为例如1mm厚的聚碳酸酯薄片,其每单位面积质量为μ=1.196kgm-2,并且弯曲硬度为B=0.38Nm。 The plate may be, for example, 1mm thick polycarbonate sheet, which mass per unit area of ​​μ = 1.196kgm-2, and the bending stiffness of B = 0.38Nm. 以上等式可用于计算板的阻抗以及强烈吸收所选角频率ω0=2π(900Hz)周围的弯曲波能量所需的吸收器的阻抗。 The above equation can be used to calculate impedance and a strong absorption plate casting frequency ω0 = 2π (900Hz) surrounding impedance bending wave energy absorber is required.

板的每单位宽度阻抗(impedance)(1mm梁近似值)为:ZB(ω0)=(1+i)33.8Nsm-2。 Impedance per unit width of plate (Impedance) (Beam approximation 1mm) is: ZB (ω0) = (1 + i) 33.8Nsm-2.

提供所需吸收的吸收器的特性因而为:每单位宽度的电阻(resistance),Re(ZT)=Im[ZB(ω0)]=33.8Nsm-2。 Absorber provides the desired absorption properties is thus: resistance per unit width (resistance), Re (ZT) = Im [ZB (ω0)] = 33.8Nsm-2.

每单位宽度的硬度,-i Im(ZT)ω0=Re[ZB(ω0)]ω0=1.91×105Nm-2。 Stiffness per unit width, -i Im (ZT) ω0 = Re [ZB (ω0)] ω0 = 1.91 × 105Nm-2.

反射系数为无单位复数。 Unitless complex reflection coefficient. 图4a以及4b为说明反射系数R(ω)的振幅与相位随频率变化的曲线图。 4a and FIG. 4b is a graph illustrating the reflection coefficient R (ω) of the amplitude and phase versus frequency. 当ω0近似等于900Hz时,反射系数的振幅为零,反射系数的相位为倒相。 When ω0 is approximately equal to 900Hz, an amplitude reflection coefficient is zero, the phase of the reflection coefficient is inverted.

在图5a与5b中,板12具有均匀的表面糙度且采用凸起表面图案28、29的形式。 In Figures 5a and 5b, the plate 12 has a uniform surface roughness, and takes the form of a convex surface 28, 29 of the pattern. 沿路径30横跨该表面拖拉触摸笔18,当触摸笔18通过图案上一凸起部分或线时,便在该部件中产生弯曲波32。 30 along a path across the surface drag of the touch pen 18, a convex portion or when the touch pen 18 through line pattern, will produce bending waves in the member 32. 因此,触摸笔18的接触在该部件中提供一弯曲波振动来源。 Thus, contact with the touch pen 18 is provided in the curved curvelet sources of vibration member. 在图5a中,表面图案28为凸起交叉线的周期性图案,而在图5b中,表面图案29为随机浮雕图案。 In Figure 5a, the surface projection pattern 28 to cross-line periodic pattern, whereas in Figure 5b, the surface relief pattern is a random pattern 29.

在图2、5a与5b的具体实施例中,当接触在该部件的粗糙表面上移动时,弯曲波在该部件中从接触点各向同性地辐射。 In the particular embodiment of FIG. 2,5a and 5b, when the contact movement on the roughened surface of the member, bending wave radiated isotropically from the contact point in the component. 该部件在距离x处从接触点的位移通过一转移函数H(ω;x)而与接触点处的位移相关。 The member displacement distance x from the point of contact by a transfer function H (ω; x) are related to the displacement at the contact point. 在距离大于波长λ=2π/k(ω)时,转移函数可近似为,H(&omega;;x)=Ak(&omega;)xeik(&omega;)x]]>其中A为常数且k(ω)为先前定义的波向量。 At distances greater than the wavelength λ = 2π when k (ω), the transfer function can be approximated / is, H (& omega ;; x) = Ak (& omega;) xeik (& omega;) x]]> wherein A is a constant and k (ω ) is the wave vector previously defined. 虽然严格地说,H(ω;x)仅适用于无限板上的弯曲波,但因为安装架强烈吸收弯曲波振动,故该关系得以满足。 Although strictly speaking, H (ω; x) only for the infinite plate bending waves, but because of the strong absorption mount bending wave vibration, so that the relation is satisfied. 转移函数显示,如果一弯曲波来源发射纯正弦频率,角频率为ω0,则对于该来源,在距离x1与x2处的两个位置与接触点的位移之间的相位差异Δθ12为exp(iΔθ12)=exp[ik(ω0)(x1-x2)]这意味着相位角差异、路径长度差异Δx=(x1-x2)以及一整数n12之间的下列关系。 Display transfer function, if the emission source of curved curvelet pure sinusoidal frequency, angular frequency [omega] 0, then the source for the phase difference between the two positions displaced from the contact point x1 and x2 at the Δθ12 is exp (iΔθ12) = exp this means that the phase difference angle [ik (ω0) (x1-x2)], the path length difference Δx = (x1-x2) and the following relationship between an integer n12.

Δθ1=θ1-θ2=k(ω0)Δx12+2πn12图6说明使用此等式来确定接触位置的方法中的步骤:a)使用每个感测器来测量一弯曲波信号,以提供已测量的弯曲波信号Wi(t)与Wj(t),b)计算所测量弯曲波信号Wi(t)与Wj(t)的相位角θi(t)与θj(t),c)计算两个相位角θi(t)与θj(t)之间的差异,d)从下式计算接触位置:k(ω0)Δxij=Δθij-2πnij图7a说明一装置的示意方块图,该装置用于计算这些感测器之一所测量的弯曲波Wj(t)的相位角θj。 Step Δθ1 = θ1-θ2 = k (ω0) Δx12 + 2πn12 6 illustrates the use of this equation to determine the contact position of the methods: a) using each sensor to measure a bending wave signal to provide a measured bending wave signal Wi (t) is calculated and Wj (t), b) the measured bending wave signal Wi (t) and the phase angle of Wj (t) of the theta] i (t) and θj (t), c) two phase angles calculated differences between θi (t) and θj (t), d) the contact position is calculated from the following equation: k (ω0) Δxij = Δθij-2πnij FIG 7a illustrates a schematic block diagram of an apparatus, the means for calculating the sensing It is one of the measured bending wave Wj (t) phase angle θj. 信号Wj(t)为随机信号,因而在长时间标度期间不相关。 Signal Wj (t) is a random signal uncorrelated so during extended scale. 该信号首先由放大器42加以放大,然后由模拟带通滤波器44加以处理,该带通滤波器的通带以ω0为中心,并且带宽为Δω。 The first signal to be amplified by the amplifier 42, and then from the analog bandpass filter 44 to be processed, the band-pass filter passband centered ω0, and bandwidth Δω.

弯曲波的移动来源可证明多普勒效应,其中具有频率ω0并由以速度v朝部件上的一点移动的来源所发射的弯曲波到达该点时具有ω0-k(ω0)v所定义的不同频率。 Source of bending wave movement may prove Doppler effect, which has a frequency [omega] 0 by bending waves in Origin point on the moving velocity v of the emitted toward the member having a different arrival time of the point ω0-k ([omega] 0) defined by v frequency. 因此,该部件上两个不同点处的弯曲波之间的最大角频率偏移为2k(ω0)vmax,其中vmax为移动来源的最大速度。 Accordingly, the maximum angular frequency between the bending wave member at two different points on the offset of 2k (ω0) vmax, wherein vmax is the maximum speed of the moving source. 如果角频率偏移变得大于带通滤波器的宽度,则以上相位差异等式不成立。 If the frequency offset becomes greater than the angular width of the band-pass filter, the phase difference in the above equation does not hold. 因此,将滤波器44的带宽Δω设定为大于此最大频率偏移,因而符合以下关系:Δω>>2k(ω0)vmax由滤波器44处理后,所产生的已过滤信号W′j(t)为一具有频率ω0的振幅与相位已调制载波,并由下式加以定义:W′j(t)=Aj(t)sin[ω0t+θj(t)]其中Aj(t)与θj(t)为该信号的振幅与相位。 Thus, bandwidth Delta] [omega filter 44 is set to be larger than this maximum frequency shift, thus meeting the following relationship: after (ω0) vmax processed by the filter 44 Δω >> 2k, the resulting filtered signal W'j (t ) having amplitude and phase of a modulated carrier frequency ω0, be defined by the following equation: W'j (t) = Aj (t) sin [ω0t + θj (t)] where Aj (t) and θj (t ) for the amplitude and phase signals. 两者都在由滤波器的带宽所确定的时间标度Δt,即Δt=2π/Δω上波动。 Both a time scale determined by the bandwidth of the filter Δt, i.e., Δt = 2π / fluctuations Δω. 可从带通滤波器输出作独立相位角测量的最大频率为1/Δt。 It can be measured independent phase angles output from the band pass filter maximum frequency 1 / Δt. 因为触摸感测器通常每10ms提供一更新的接触位置测量,位置测量的最小频率的条件为Δt<10ms。 Because the touch sensor is generally provided every 10ms update the contact position measurement of a condition of minimum frequency position measurement is Δt <10ms.

然后将已过滤的信号W′j(t)同时传送至两个模拟相位检测器46。 The filtered signal is then W'j (t) transmitted simultaneously to the two analog phase detector 46. 此类检测器在现有技术中已广为人知,例如,参见Horowitz与Hill的“The Art ofElectronics(电子技术)”第644页。 Such detectors are well known in the art, for example, see "The Art ofElectronics (electronics)" on page 644 Horowitz and Hill's. 也将每个都具有频率ω0但相位差异为π/2的参考信号馈送至两个相位检测器。 Also each having a frequency ω0 reference signal but phase difference π / 2 is fed to the two phase detectors. 相位检测器的输出通过各具有约Δω/2的截止频率的低通滤波器48。 Output of the phase detector 48 of each of the low-pass filter having a cutoff frequency of approximately Δω / 2's. 低通滤波器的输出分别与cos(θj)与sin(θj)成正比。 Output of the low pass filter are proportional to cos (θj) and sin (θj). 这些输出然后是通过数字化器50加以数字化并由处理器52加以处理,以便提供相位角θj。 These outputs are then digitized by a 50 to be digitized by the processor 52 to be processed to provide a phase angle θj.

图7b说明图7a中所用的参考信号可如何产生。 Figure 7b illustrates how the reference signal used in Figure 7a can be produced. 在第二感测器处测量第二弯曲波信号Wi(t)。 Measuring a second bending wave signal Wi (t) at the second sensor. 将该信号馈送通过放大器42以及模拟带通滤波器44,以便产生已过滤的信号W′j(t)。 The signal is fed through an amplifier 42 and an analog band pass filter 44, to generate a signal W'j (t) filtered. 已过滤的信号W′j(t)形成直接馈送至一个相位检测器46的参考信号。 The filtered signal W'j (t) is formed directly fed to a phase detector reference signal 46. 也经由一装置将已过滤的信号馈送至第二相位检测器46,该装置将该信号的相位偏移π/2。 Signal is also fed through a device to the second filtered phase detector 46, which means the phase of the signal shifted π / 2. 使用相位偏移信号作为第二相位检测器46的参考信号。 Using a second phase offset signal as a reference signal phase detector 46.

图8a至8d说明相位角差异因而路径长度差异如何用于计算接触位置。 Figures 8a to 8d illustrate a phase angle difference and thus the path length difference is used to calculate how the contact position. 图6的步骤(d)中的等式定义可覆盖于板12上的双曲线。 Equation defines the step (d) of FIG. 6 may be overlaid on the plate 12 hyperbola. 图8a说明使用一对感测器16(板12的短侧的各端均安装一个)的三个不同的n1m值以及所计算的相位角差异所产生的三条双曲线26。 FIG. 8a illustrates a pair of sensors 16 (each end of the short sides of the plate 12 are mounted a) of n1m three different values ​​and phase angle differences computed by the generated three hyperbolas 26. 同样地,图8b与8c说明通过两对其他的感测器的相位角差异以及不同的n1m值而产生的双曲线26。 Similarly, FIG. 8b and 8c illustrate a hyperbolic phase angle difference by two pairs of other and different sensor values ​​generated n1m 26. 图8d说明由感测器所产生的全部双曲线。 FIG. 8d illustrate all hyperbola generated by the sensor. 接触位置24为三条双曲线的交点,每条双曲线来自于每对感测器。 Contact position three of intersection of the hyperbolas 24, each pair of hyperbolas from each sensor. 可从接触位置24推断n1m的正确值。 Value can be accurately inferred from the contact position 24 of n1m.

可使用图9中所示的具体实施例来实施推断n的方法。 Shown in Figure 9 may be used in particular embodiments for practicing the method of estimation of n. 每个感测器所测量的弯曲波信号W1(t)由两个带通滤波器48、54同时处理。 Bending wave signal W1 (t) measured by each sensor simultaneously processed by two bandpass filters 48, 54. 计算两个相位角,每个滤波器各对应一个,例如,如图7所述。 Computing two phase angles, each corresponding to a respective filter, e.g., as described in Figure 7. 滤波器48、54具有略微不同的通带频率,其中由每对感测器提供两个相位角差异,每个通带频率各对应一个差异。 Filters 48, 54 have slightly different frequency passband, wherein the phase angle difference provided by the two sensors of each pair, each corresponding to a respective passband frequency difference.

来自感测器的相位角差异Δθa、Δθb可定义为:Δθa=k(ω0+ωδ)Δx+2πnaΔθb=k(ω0-ωδ)Δx+2πnb其中Δx为接触与感测器位置所定义的单路径长度差异。 ?? a phase angle difference from the sensor, Δθb defined as: Δθa = k (ω0 + ωδ) Δx + 2πnaΔθb = k (ω0-ωδ) Δx + 2πnb wherein [Delta] x is a single path in contact with a defined position sensor length difference.

正确的组合(na,nb)可确定为使以下表达式最小化的值组合:|&Delta;&theta;a-2&pi;nak(&omega;0+&omega;&delta;)-&Delta;&theta;b-2&pi;nbk(&omega;0-&omega;&delta;)|]]> Correct combination (na, nb) may be determined so that the following expression is minimized combinations of values: | & Delta; & theta; a-2 & pi; nak (& omega; 0 + & omega; & delta;) - & Delta; & theta; b-2 & pi; nbk (& omega; 0- & omega; & delta;) |]]>

路径长度差异则可估计为:&Delta;x=12(&Delta;&theta;a-2&pi;nak(&omega;0+&omega;&delta;)+&Delta;&theta;b-2&pi;nbk(&omega;0-&omega;&delta;))]]>另一对感测器则可用于确定第二路径长度差异。 Path length difference can be estimated as: & Delta; x = 12 (& Delta; & theta; a-2 & pi; nak (& omega; 0 + & omega; & delta;) + & Delta; & theta; b-2 & pi; nbk (& omega; 0- & omega; & delta;))]]> may be another pair of sensor means for determining a second path length difference. 每个路径长度差异在该面板上定义一双曲线。 Each path length difference defines a hyperbola on the panel. 这两条双曲线的交点为接触位置。 This intersection of the two hyperbolas contact position. 如图8a至8d所示,绘制双曲线,并且最大数目的双曲线的交点很可能为真实的接触位置。 As shown in FIG. 8a to 8d, hyperbolic drawn, and the intersection of the hyperbola of the maximum number is likely to be true of the contact position.

图10说明用于从以上等式计算接触位置的替代方法,即:i.测量一对弯曲波信号Wi(t)与Wj(t),每个信号分别由一感测器测量;ii.使用图11与11a中所述的方法计算两个信号的离差校正的相关函数;iii.使用离差校正的相关函数计算接触的初始位置,如图11与11a所述;iv.重新测量弯曲波信号Wi(t)与Wj(t);v.计算每个信号的相位角-例如,如图7a与7b所述;vi.计算相位角之间的差异;vii.选择使路径长度差异的变化最小化的n1m值;viii.绘制由下式所定义的双曲线:k(ω0)Δxij=Δθij-2πnijix.重复步骤(iv)至(viii),重新测量规则间隔Δt(例如Δt=2π/Δω)的弯曲波信号。 FIG 10 illustrates an alternative method for calculating the contact position from the above equation, namely:.. I a measured bending wave signal Wi (t) and Wj (t), respectively, each signal measured by a sensor; ii used the method of FIG. 11 and 11a of the correlation function is calculated from the difference between the two corrected signals;. III using the dispersion corrected correlation function calculates an initial position of the contact, as described in FIG 11 and 11a; IV measured bending wave again. signal Wi (t) and Wj (t); v calculates a phase angle of each signal - 7a of the example, and FIG. 7b;. vi calculates the difference between the phase angle; VII choose to make changes in the path length difference. the minimum value of n1m; VIII drawn by a hyperbola defined by the following formula:.. k (ω0) Δxij = Δθij-2πnijix repeating steps (iv) to (viii), re-measured at regular intervals [Delta] t (e.g. Δt = 2π / Δω ) of the bending wave signal.

在步骤(viii),需要来自不同对感测器的两条双曲线的最小值来确定接触位置。 In step (viii), the minimum required two different pairs from the sensors to determine the hyperbolic contact position. 因此,必须为至少两对感测器同时实行整个程序。 Therefore, it must also implement the entire program at least two pairs of sensors. 因此,必须确定两个相位角差异的最小值。 Therefore, we must determine the minimum of the two phase angle difference. 如图9所述,通过使用两个感测器并将该信号分成两个频带而产生两个相位角差异。 As shown in Figure 9, by using two sensors and the signal into two frequency bands to generate two phase difference angle. 或者,可使用多个感测器,以便使用不同对的感测器来计算多个相位角差异。 Alternatively, a plurality of sensors, in order to use different pairs of the plurality of sensors to calculate the phase angle difference.

图11说明计算离差校正的相关函数以显示接触位置与感测器之间的路径长度差异的方法。 11 illustrates deviation calculation corrected correlation function to reveal the method of the path between the contact position and the length difference of the sensor. 以下提出的方法概述了PCT/GB2002/003073中的信息。 The following outlines the method proposed information PCT / GB2002 / 003073. 该方法包括下列步骤:(a)测量两个弯曲波信号W1(t)与W2(t);(b)计算W1(t)与W2(t)的傅立叶变换以得到 The method comprises the steps of: (a) two measured bending wave signals W1 (t) and W2 (t); (b) calculating W1 (t) and W2 (t) is the Fourier transform to obtain versus 并因而得到中间函数 And thus obtain an intermediate function 其中 among them 为复数共轭傅立叶变换,t代表时间,ω为2πf,其中f为频率。 Is the complex conjugate Fourier transform, t represents the time, ω is 2πf, where f is the frequency.

(c)计算第二中间函数M(ω),其为 (C) calculating a second intermediate function M (ω), which is 的函数 The function

(d)与(e)在执行步骤(a)至(c)的同时,使用预定的面板离差关系k=(&mu;/B)1/4&omega;]]>来计算频率延伸运算f(&omega;)=v(&mu;/B)1/4&omega;.]]>(f)组合M(ω)与f(&omega;)=v(&mu;/B)1/4&omega;]]>以得到离差校正的相关函数:G(t)=12&pi;&Integral;-&infin;+&infin;M[f(&omega;)]exp(i&omega;t)d&omega;;]]>以及(g)对于时间绘制离差校正的相关函数,峰值发生在时间t12处,如图11a所示;(h)从t12计算Δx12;Δx12为从第一与第二感测器至接触的路径长度x1与x2之间的路径长度差异。 (D) and (e) while performing step (a) to (c) using the predetermined panel dispersion relation k = (& mu; / B) 1/4 & omega;]]> computing a frequency extending arithmetic f (& omega ;) = v (& mu; / B) 1/4 & omega;.]]> (f) a combination of M (ω) and f (& omega;) = v (& mu; / B) 1/4 & omega;]]> to give from the difference between the corrected correlation function: G (t) = 12 & pi; & Integral; - & infin; + & infin; M [f (& omega;)] exp (i & omega; t) d & omega ;;]]> and (g) plotted against time deviation corrected correlation function peak occurring at time t12, the shown in Figure 11a; (H) Δx12 calculated from t12; Δx12 path the path length between x1 and x2 from the first and second sensors to the contact length difference.

(i)Δx12定义一双曲线,其可如图7所示绘制,以计算接触位置。 (I) Δx12 definition of a hyperbola, which can be plotted as shown in Figure 7, to calculate a contact position.

如使用图10的方法,需要两条双曲线的最小值来确定接触位置。 The method of FIG. 10, the minimum required two hyperbolas to determine the contact position. 因此,上述产生更多双曲线的方式可应用于此方法。 Accordingly, the above-described embodiment can be produced more hyperbolas applied to this method.

第二中间函数M(ω)可简单地为 A second intermediate function M (ω) may simply be 其可提供一标准的离差校正的相关函数。 Which may provide a standard deviation of the corrected correlation function. 或者,M(ω)可从下列函数中选择,这些函数都会产生标准的离差校正的相关函数的相位等效函数:a)---M(&omega;)=W^1(&omega;)W^2*(&omega;)|W^1(&omega;)W^2*(&omega;)|]]>b)---M(&omega;)=W^1(&omega;)W^2*(&omega;)|W^1(&omega;)W^2*(&omega;)|]]> Alternatively, M (ω) may be selected from the following functions, these functions are generated from the corrected phase difference correlation function is equivalent to the standard functions: a) --- M (& omega;) = W ^ 1 (& omega;) W ^ 2 * (& omega;) | W ^ 1 (& omega;) W ^ 2 * (& omega;) |]]> b) --- M (& omega;) = W ^ 1 (& omega;) W ^ 2 * ( & omega;) | W ^ 1 (& omega;) W ^ 2 * (& omega;) |]]> 其中(x)为一实值函数d)---M(&omega;)=W^1(&omega;)W^2*(&omega;)&psi;(&omega;),]]>其中ψ(ω)为一实值函数或者,M(ω)可为函数 Wherein  (x) is a real valued function d) --- M (& omega;) = W ^ 1 (& omega;) W ^ 2 * (& omega;) & psi; (& omega;),]]> where ψ (ω ) is a real valued function or, M (ω) may be a function 其为相关函数D(t):D(t)=&Integral;-&infin;+&infin;W1(t+t&prime;)W2(t&prime;)dt&prime;]]>的傅立叶变换。 As a correlation function D (t): D (t) = & Integral; - & infin; + & infin; W1 (t + t & prime;) W2 (t & prime;) dt & prime;]]> Fourier transform.

这些步骤为计算D(t);计算 These steps to calculate D (t); calculated 并应用一频率延伸运算以得出离差校正的相关函数:G(t)=12&pi;&Integral;-&infin;+&infin;D^[f(&omega;)]exp(i&omega;t)d&omega;.]]>或者,在步骤(f),可计算下列离差校正的相关函数:G(t)=12&pi;&Integral;-&infin;+&infin;W1^[f(&omega;)]W^2*[f(&omega;)]&phi;12[f(&omega;)]exp(i&omega;t)d&omega;]]>其中&phi;12*(&omega;)=|&Sigma;jW^1,j(&omega;)W^2,j*(&omega;)exp[-ik(&omega;)&Delta;xj]|]]> And applying a frequency extending operation to obtain dispersion corrected correlation function: G (t) = 12 & pi; & Integral; - & infin; + & infin; D ^ [f (& omega;)] exp (i & omega; t) d & omega ;.] ]> Alternatively, in step (F), calculated following dispersion corrected correlation function: G (t) = 12 & pi; & Integral; - & infin; + & infin; W1 ^ [f (& omega;)] W ^ 2 * [f (& omega;)] & phi; 12 [f (& omega;)] exp (i & omega; t) d & omega;]]> wherein & phi; 12 * (& omega;) = | & Sigma; jW ^ 1, j (& omega;) W ^ 2, j * (& omega;) exp [-ik (& omega;) & Delta; xj] |]]>

其中 among them versus 为两个所测量的弯曲波信号{W1,j(t)}与{W2,j(t)}的傅立叶变换与复数共轭傅立叶变换,且{ΔXj}为路径长度差异。 Two bending wave signal is measured {W1, j (t)} and {W2, j (t)} and the Fourier transform of the complex conjugate Fourier transform, and {ΔXj} is the path length difference.

一感测器可当作第一与第二感测器两者,其中该离差校正的相关函数为一自相关函数。 A sensor can be used as both the first and second sensors, wherein the dispersion corrected correlation function is an autocorrelation function. 可使用W1(t)=W2(t)对该离差校正的相关函数应用相同的步骤而计算自相关函数。 Using W1 (t) = W2 (t) from the correlation functions of the same application step of calculating the difference between the corrected autocorrelation function.

图12a说明一兼作扬声器操作的接触敏感装置。 FIG. 12a illustrates a speaker serving as a contact sensitive device operations. 图12b说明用于将音频信号以及所测量的信号分成两个不同的频带以便抑制音频信号对已处理的所测量信号的贡献的方法。 Figure 12b illustrates a method for converting an audio signal and measured signal into two distinct frequency bands of the audio signal so as to suppress the contribution of the measured signal is processed. 该装置包括一部件106,其中通过一发射转换器或激励器108与接触产生弯曲波。 The device includes a member 106, which generates bending waves emitted by a transducer or actuator 108 and the contact. 发射转换器将一音频信号施加于部件106以产生一声输出。 The transmitter transducer means is applied to an audio signal 106 to generate sound output. 在施加于该部件之前,通过一低通滤波器112过滤该音频信号,如图12b所示,该滤波器移除临界频率f0以上的音频信号。 Before applied to the member, and filtered through a low-pass filter 112 of the audio signal, shown in Figure 12b, the filter removes at least the critical frequency f0 of the audio signal.

如图12b所示,该接触产生一信号,该信号的功率输出在一较大频带上实质上不变。 As shown in FIG. 12b of the contact generates a signal, the signal output power is substantially constant over a large frequency band. 将来自该接触的信号与该音频信号相加以得到一组合信号,该组合式信号通过高通滤波器114以移除临界频率f0以上的信号。 The signal from the contact with the audio signal to obtain a combined signal, the combined signal through a high pass filter 114 to remove signals above the threshold frequency f0. 然后将该已过滤的信号传送至数字化器116以及处理器118上。 116, and then the processor 118 transmits the filtered signal to a digitizer.

Claims (31)

1.一种接触敏感装置,包括:能够支持弯曲波的部件;安装于该部件上用于测量该部件中的弯曲波振动的三个感测器,从而每个感测器确定一所测量的弯曲波信号;以及从这些所测量的弯曲波信号计算该部件上的接触的位置的处理器,其特征在于,该处理器计算每个所测量弯曲波信号的相位角以及至少两对感测器的相位角之间的相位差异,以便计算至少两个相位差异,从该至少两个相位差异确定该接触的位置。 A touch-sensitive device, comprising: a member capable of supporting bending waves; three sensors mounted on the member for measuring bending wave vibration in the member, so that each sensor determines a measured bending wave signal; and a processor on the position of the contact member of the bending wave signal calculated from these measured, wherein the processor calculates the phase angle of each measured bending wave signal and at least two pairs of sensors the phase difference between the phase angle, in order to calculate the at least two phase differences, the phase difference between the at least two determined from the position of the contact.
2.如权利要求1所述的接触敏感装置,包括在该部件的边缘处的吸收器,从而使反射波得以抑制。 Contact sensitive device of claim 1, comprising the absorber at the edge of the member as claimed in claim 2, whereby the reflected wave is suppressed.
3.如权利要求2所述的接触敏感装置,其中选择该吸收器与该部件的机械阻抗以使来自该部件的边缘的弯曲波反射减至最小。 Contact sensitive device as claimed in claim 2, wherein selecting the absorber and the mechanical impedance of the member from the edge so that bending waves in the member to minimize reflections.
4.如权利要求3所述的接触敏感装置,其中选择这些阻抗,使得弯曲波能量在围绕所选频率ω0的频带中被强烈吸收。 4. A contact sensitive device according to claim 3, wherein selecting the impedance, so that the band bending wave energy is strongly absorbed in ω0 around the selected frequency.
5.如权利要求4所述的接触敏感装置,其中选择这些阻抗以满足下列等式:ZT=-iZB(ω0)其中ZT为吸收器的终止阻抗,且ZB为该部件的边缘的机械阻抗。 5. A contact sensitive device according to claim 4, wherein the impedance is selected to satisfy the following equation: ZT = -iZB (ω0) where ZT is the terminating impedance of the absorber, and that the mechanical impedance ZB edge member.
6.如权利要求4或5所述的接触敏感装置,包括用于过滤每个所测量的弯曲波信号的带通滤波器,该滤波器具有以该所选频率ω0为中心的通带以及带宽Δω。 6. A contact sensitive device according to claim 4 or claim 5, comprising a bandpass filter for filtering the bending wave signal is measured for each of the filter having the selected frequency ω0 a pass band centered and the bandwidth Δω.
7.如权利要求6所述的接触敏感装置,其中该滤波器的带宽Δω符合以下关系:Δω>>2k(ω0)vmax其中vmax为该接触的最大横向速度。 Δω >> 2k (ω0) vmax vmax for which the maximum lateral velocity of the contact: contact sensitive device as claimed in claim 6, wherein the bandwidth of the filter Delta] [omega corresponding to the relationship.
8.如权利要求2至7中任一项所述的接触敏感装置,其中该吸收器是由泡沫塑胶所制成。 8. The contact as claimed in any one sensitive device as claimed in claim 2-7, wherein the absorber is made of a foam plastic.
9.如前述权利要求中任一项所述的接触敏感装置,其中该部件在其表面上包括凸起的图案,从而横跨该表面所拖拉的接触为该部件提供一力,以在该部件中产生弯曲波。 9. The contact as claimed in any one of the preceding claims sensitive device, wherein the member comprises a raised pattern on its surface, so that the contact across the surface of the dragging member to provide a force to the member the bending waves.
10.如权利要求9所述的接触敏感装置,其中该图案为随机图案,从而在该部件的该表面上行进的接触产生随机弯曲波信号。 10. A contact sensitive device as claimed in claim 9, wherein the bending wave signal generating random pattern is a random pattern, so that the contact is traveling on the surface of the member.
11.如权利要求10所述的接触敏感装置,其中该图案是由抗反射涂层、防眩表面光制或蚀刻光制所形成。 11. A contact sensitive device as claimed in claim 10, wherein the pattern is formed of the anti-reflective coating, molding or etching the surface of the light glare light system.
12.如前述权利要求中任一项所述的接触敏感装置,包括至少两个带通滤波器,这些带通滤波器具有不同的通带频率并同时处理由一对感测器所测量的弯曲波信号,从而由一对感测器提供每个通带频率的相位角差异。 12. A contact sensitive device according to any preceding claim, comprising at least two bandpass filters of the preceding claims, the band pass filters having different pass band frequency and processed simultaneously by a pair of bending measured sensor wave signal to provide a phase angle difference between each of the pass band frequency by a pair of sensors.
13.如前述权利要求中任一项所述的接触敏感装置,包括在该部件上的四个感测器。 13. preceding claims one of the contact sensitive device comprising four sensors on the member.
14.如前述权利要求中任一项所述的接触敏感装置,包括:使用多对所测量的弯曲波信号的离差校正的相关函数来确定该接触的初始位置的构件;以及使用多对所测量的弯曲波信号之间的相位角差异来确定该接触的后续位置的构件。 14. A contact sensitive device according to any one of the preceding claims, comprising: a plurality of pairs using the dispersion corrected correlation function of the measured bending wave signal to determine the initial position of the contact member; and using the plurality of the phase angle difference between the measured bending wave signal to determine the position of the member subsequent contact.
15.如前述权利要求中任一项所述的接触敏感装置,其中该相位角确定构件包括相位检测器。 15. preceding claims one of the contact sensitive device, wherein the phase angle determining means includes a phase detector.
16.如权利要求15所述的接触敏感装置,其中该处理器包括低通滤波器与数字化器,用于确定该相位角。 Said contact sensitive device as claimed in claim 15, wherein the processor comprises a low pass filter and a digitizer for determining the phase angle.
17.如前述权利要求中任一项所述的接触敏感装置,其中该部件为声辐射器,并将发射转换器安装于该部件上以在该部件中激发弯曲波振动,从而产生声输出。 17. The contact according to any one of the preceding claims in the sensitive means, wherein the member is an acoustic radiator and transmitter transducer mounted on the member to excite bending wave vibration in the member to produce an acoustic output.
18.如权利要求17所述的接触敏感装置,其包括用于确保该声输出与所测量的弯曲波信号处于离散的频带中的构件。 18. A contact sensitive device according to claim 17, comprising means for ensuring that the band bending wave signal with the acoustic output is measured in discrete member.
19.如前述权利要求中任一项所述的接触敏感装置,其中该部件为透明部件。 19. The contact according to any one of the preceding claims in the sensitive means, wherein the member is a transparent member.
20.一种确定与接触敏感装置上的接触有关的信息的方法,包括下述步骤:提供能够支持弯曲波的部件以及安装于该部件上用于测量该部件中的弯曲波振动的三个感测器;在该部件的一位置处施加接触;使用每个感测器来确定一所测量的弯曲波信号以及从该所测量的弯曲波信号计算该接触的位置,其特征在于,计算每个所测量弯曲波信号的相位角、计算至少两对感测器的相位角之间的相位差异以及从所述至少两个所计算的相位差异确定该接触的位置。 20. A method of determining information relating to a contact on a contact sensitive device comprising the steps of: providing a member capable of supporting bending waves and three member mounted on the sensing bending wave vibration in the member for measuring detector; applied at a position of the contact member; each sensor used to determine a measured bending wave signal and calculating the position of the contact to the measured bending wave signal from, wherein each calculated phase angle of the measured bending wave signal, calculating a phase difference between the phase angles at least two pairs of sensors and determining the location of the contact from at least two of the phase difference calculated.
21.如权利要求20所述的方法,包括通过将一吸收器放置于该部件的边缘处而抑制反射波。 21. The method according to claim 20, comprising suppress reflected waves by an absorber is placed at the edge of the member.
22.如权利要求21所述的方法,包括选择该吸收器与该部件的机械阻抗以使来自该部件的边缘处的弯曲波反射减至最少。 22. The method according to claim 21, comprising selecting the absorber and the mechanical impedance of the member to cause bending waves at the edge of the member from the reflection minimized.
23.如权利要求22所述的方法,包括选择这些阻抗使得弯曲波能量在围绕所选频率ω0的频带中被强烈吸收。 23. The method according to claim 22, comprising selecting these impedances such that bending wave energy is strongly absorbed ω0 around a selected frequency band.
24.如权利要求23所述的方法,包括选择这些阻抗以满足下列等式:ZT=-iZB(ω0)其中ZT为该吸收器的阻抗,且ZB为该部件的边缘的阻抗。 24. The method according to claim 23, comprising selecting these impedances to satisfy the following equation: ZT = -iZB impedance ([omega] 0) where ZT for the absorber, and the impedance ZB of the edge of that member.
25.如权利要求第23或24所述的方法,包括通过一带通滤波器过滤每个所测量的弯曲波信号,该带通滤波器具有以该所选频率ω0为中心的通带以及带宽Δω。 25. The method of claim 23 or 24, comprising filtering each measured by the bending wave signal bandpass filter, the bandpass filter having the selected frequency ω0 a pass band centered and the bandwidth Δω .
26.如权利要求20至25中任一项所述的方法,包括应用下述相位差异等式:Δθ1m=θ1-θm=k(ω0)Δx1m+2πn1m来确定该接触的位置,其中θi为一所测量的弯曲波信号的相位角,xi为从该接触位置至每个感测器的距离,Δx1m=X1-xm为两个感测器的路径长度差异,k(ω)为波向量以及n1m为一未知整数。 26. The method of any one of 20 to 25 claim, comprising applying the following phase difference equation: Δθ1m = θ1-θm = k (ω0) Δx1m + 2πn1m to determine the position of the contact, where θi is a path length difference of the phase angle of the measured bending wave signal of, xi is the distance from each sensor to the contact position, Δx1m = X1-xm two sensors, k (ω) is the wave vector and n1m It is an unknown integer.
27.如权利要求26所述的方法,包括选择该部件以将Δx1m的幅度限制为小于波长的一半的值,以便从|Δθ1m-2πn1m|<π确定n1m。 27. The method according to claim 26, comprising selecting the Δx1m member to limit the amplitude value less than half the wavelength in order from | determine <π n1m | Δθ1m-2πn1m.
28.如权利要求26所述的方法,包括使用一对所测量的弯曲波信号的离差校正的相关函数来确定该接触的初始位置,并选择使该路径长度差异中的变化减至最小的n1m值。 28. The method according to claim 26, comprising using differential correlation function from the corrected pair of bending wave signal measured to determine the initial position of the contact, and choose to make the change in the path length difference in minimizing n1m value.
29.如权利要求26所述的方法,包括选择一系列的n1m值,将该系列的值与每个相位角差异组合以定义一系列的路径长度差异,绘制这些路径长度差异的系列曲线图,以及从大量这些曲线图相交的一点推断真实的n1m值。 29. The method according to claim 26, comprising selecting the value of n1m series, the series combination of the value of each phase difference angle to define a series of path length differences, the graph plotted series path length differences, and a number of these curves from the intersection point of FIG n1m determine the true value.
30.如权利要求20至29中任一项所述的方法,包括从这些多对相位角计算多个相位角差异,绘制每个路径长度差异的曲线图以及将大量双曲线相交的一点选择为该接触的位置。 20 30. The method according to claim 29, comprising a plurality of calculated from these plurality of phase angles the phase angle difference, graphed path length difference of each selected point and a large number of intersecting hyperbolas the position of the contact.
31.如权利要求20至30中任一项所述的方法,包括将来自每个感测器的这些所测量弯曲波信号分割成至少两个离散频带,以及针对每个频带计算一对感测器的相位角差异。 20 to 30 31. A method according to any one of claims, including those of the measured bending wave signal from each sensor is divided into at least two discrete bands, one pair of sensing and computing for each frequency band phase angle difference filter.
CN 200380104775 2002-12-06 2003-12-03 Contact sensitive device CN100405266C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB0228512.0 2002-12-06
GB0228512A GB0228512D0 (en) 2002-12-06 2002-12-06 Contact sensitive device

Publications (2)

Publication Number Publication Date
CN1720498A true CN1720498A (en) 2006-01-11
CN100405266C CN100405266C (en) 2008-07-23

Family

ID=9949218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200380104775 CN100405266C (en) 2002-12-06 2003-12-03 Contact sensitive device

Country Status (12)

Country Link
EP (1) EP1570414A2 (en)
JP (1) JP4613068B2 (en)
KR (1) KR101121891B1 (en)
CN (1) CN100405266C (en)
AR (1) AR042333A1 (en)
AU (1) AU2003288416A1 (en)
BR (1) BR0317049A (en)
CA (1) CA2506789A1 (en)
GB (1) GB0228512D0 (en)
MX (1) MXPA05006040A (en)
TW (2) TWI308709B (en)
WO (1) WO2004053781A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012766A (en) * 2011-01-04 2011-04-13 苏州瀚瑞微电子有限公司 Method for sensing multi-finger touch on touch panel
WO2011041944A1 (en) * 2009-10-09 2011-04-14 禾瑞亚科技股份有限公司 Method and device for dual-differential sensing
CN102043521A (en) * 2009-10-09 2011-05-04 禾瑞亚科技股份有限公司 Device and method for parallel-scanning differential touch detection
CN102099772A (en) * 2008-07-15 2011-06-15 3M创新有限公司 Systems and methods for correction of variations in speed of signal propagation through a touch contact surface
CN102594328A (en) * 2011-01-14 2012-07-18 禾瑞亚科技股份有限公司 Capacitance type sensor and detection method thereof
CN101512550B (en) 2006-02-10 2012-09-26 宸鸿控股有限公司 The touch detection
CN102834798A (en) * 2010-01-13 2012-12-19 电子触控产品解决方案公司 Noise reduction in electronic device with touch sensitive surface
US8400424B2 (en) 2009-10-09 2013-03-19 Egalax—Empia Technology Inc. Method and device for analyzing positions
CN103064558A (en) * 2013-01-07 2013-04-24 南京大学 Method for implementing touch gesture input in electronic white board and electronic white board allowing for touch gesture input
US8471826B2 (en) 2009-10-09 2013-06-25 Egalax—Empia Technology Inc. Method and device for position detection
US8537131B2 (en) 2009-10-09 2013-09-17 Egalax—Empia Technology Inc. Method and device for converting sensing information
US8587555B2 (en) 2009-10-09 2013-11-19 Egalax—Empia Technology Inc. Method and device for capacitive position detection
US8872776B2 (en) 2009-10-09 2014-10-28 Egalax—Empia Technology Inc. Method and device for analyzing two-dimension sensing information
TWI475451B (en) * 2011-01-07 2015-03-01 Egalax Empia Technology Inc Capacitive sensor and detection method using the same
CN104506178A (en) * 2011-01-14 2015-04-08 禾瑞亚科技股份有限公司 Capacitive sensor and detection method thereof
TWI584181B (en) * 2011-01-07 2017-05-21 Egalax_Empia Tech Inc Capacitive sensor and detection method using the same
US9864471B2 (en) 2009-10-09 2018-01-09 Egalax_Empia Technology Inc. Method and processor for analyzing two-dimension information

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003319A1 (en) * 2005-01-17 2006-07-27 E.G.O. Elektro-Gerätebau GmbH Electrical-household device e.g. baking oven, operating mechanism, has converter for determining position of article or finger of operating person to produce position-dependent operating signal
US7593005B2 (en) * 2005-12-13 2009-09-22 Awr Consulting Inc. Touch detection system
FR2916545B1 (en) * 2007-05-23 2009-11-20 Inst Pour Le Dev De La Science Method for locating a touch on a surface and device for implementing this method.
US8378974B2 (en) * 2007-07-02 2013-02-19 Elo Touch Solutions, Inc. Method and system for detecting touch events based on magnitude ratios
US8730213B2 (en) 2007-07-02 2014-05-20 Elo Touch Solutions, Inc. Method and system for detecting touch events based on redundant validation
AR064377A1 (en) 2007-12-17 2009-04-01 Rovere Victor Manuel Suarez Device for sensing multiple areas of contact against objects simultaneously
GB2462465B (en) 2008-08-08 2013-02-13 Hiwave Technologies Uk Ltd Touch sensitive device
GB2464117B (en) 2008-10-03 2015-01-28 Hiwave Technologies Uk Ltd Touch sensitive device
JP5526557B2 (en) * 2009-02-19 2014-06-18 日本電気株式会社 Electronic pen and an electronic pen system
GB0905692D0 (en) 2009-04-02 2009-05-20 Tno Touch sensitive device
KR101764932B1 (en) 2009-04-09 2017-08-03 엔브이에프 테크 리미티드 Touch sensitive device
GB2474047B (en) 2009-10-02 2014-12-17 New Transducers Ltd Touch sensitive device
US8488413B2 (en) 2009-10-16 2013-07-16 Casio Computer Co., Ltd. Indicated position detecting apparatus and indicated position detecting method
CN102597928A (en) 2009-10-29 2012-07-18 新型转换器有限公司 Touch sensitive device using bending wave vibration sensor detecting touching position and providing tactile feedback
US8576202B2 (en) * 2010-03-25 2013-11-05 Elo Touch Solutions, Inc. Bezel-less acoustic touch apparatus
GB2482190A (en) 2010-07-23 2012-01-25 New Transducers Ltd Methods of generating a desired haptic sensation in a touch sensitive device
TWI407346B (en) * 2010-07-30 2013-09-01 Ind Tech Res Inst Track compensation methods and systems for touch-sensitive input devices, and computer program products thereof
JP2012128668A (en) * 2010-12-15 2012-07-05 Nikon Corp Electronic device
JP5449464B2 (en) * 2012-06-27 2014-03-19 シャープ株式会社 Touch panel controller, a touch panel device and an electronic information device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691959A (en) 1994-04-06 1997-11-25 Fujitsu, Ltd. Stylus position digitizer using acoustic waves
JP3895406B2 (en) * 1996-03-12 2007-03-22 株式会社東邦ビジネス管理センター Data processing apparatus and data processing method
US5838088A (en) 1997-03-06 1998-11-17 Toda; Kohji Surface acoustic wave device for sensing a touch-position
US6414673B1 (en) 1998-11-10 2002-07-02 Tidenet, Inc. Transmitter pen location system
IL149657D0 (en) * 1999-12-23 2002-11-10 New Transducers Ltd Contact sensitive device
JP2002182841A (en) * 2000-12-15 2002-06-28 Ricoh Co Ltd Coordinates input device
JP3988476B2 (en) * 2001-03-23 2007-10-10 セイコーエプソン株式会社 Coordinate input device and a display device

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101512550B (en) 2006-02-10 2012-09-26 宸鸿控股有限公司 The touch detection
CN102099772A (en) * 2008-07-15 2011-06-15 3M创新有限公司 Systems and methods for correction of variations in speed of signal propagation through a touch contact surface
US10101372B2 (en) 2009-10-09 2018-10-16 Egalax_Empia Technology Inc. Method and device for analyzing positions
CN102043521A (en) * 2009-10-09 2011-05-04 禾瑞亚科技股份有限公司 Device and method for parallel-scanning differential touch detection
CN102043526A (en) * 2009-10-09 2011-05-04 禾瑞亚科技股份有限公司 Method and device for dual-differential sensing
US9977556B2 (en) 2009-10-09 2018-05-22 Egalax_Empia Technology Inc. Controller for position detection
WO2011041944A1 (en) * 2009-10-09 2011-04-14 禾瑞亚科技股份有限公司 Method and device for dual-differential sensing
US9864471B2 (en) 2009-10-09 2018-01-09 Egalax_Empia Technology Inc. Method and processor for analyzing two-dimension information
US8400424B2 (en) 2009-10-09 2013-03-19 Egalax—Empia Technology Inc. Method and device for analyzing positions
US8400425B2 (en) 2009-10-09 2013-03-19 Egalax—Empia Technology Inc. Method and device for analyzing positions
US8400422B2 (en) 2009-10-09 2013-03-19 Egalax—Empia Technology Inc. Method and device for analyzing positions
US8400423B2 (en) 2009-10-09 2013-03-19 Egalax—Empia Technology Inc. Method and device for analyzing positions
US9798427B2 (en) 2009-10-09 2017-10-24 Egalax_Empia Technology Inc. Method and device for dual-differential sensing
US8473243B2 (en) 2009-10-09 2013-06-25 Egalax—Empia Technology Inc. Method and device for analyzing positions
US8471826B2 (en) 2009-10-09 2013-06-25 Egalax—Empia Technology Inc. Method and device for position detection
US8497851B2 (en) 2009-10-09 2013-07-30 Egalax—Empia Technology Inc. Method and device for analyzing positions
US8537131B2 (en) 2009-10-09 2013-09-17 Egalax—Empia Technology Inc. Method and device for converting sensing information
US8564564B2 (en) 2009-10-09 2013-10-22 Egalax—Empia Technology Inc. Method and device for position detection
US8570289B2 (en) 2009-10-09 2013-10-29 Egalax—Empia Technology Inc. Method and device for position detection
CN102043526B (en) 2009-10-09 2013-11-06 禾瑞亚科技股份有限公司 Method and device for dual-differential sensing
US8583401B2 (en) 2009-10-09 2013-11-12 Egalax—Empia Technology Inc. Method and device for analyzing positions
US8587555B2 (en) 2009-10-09 2013-11-19 Egalax—Empia Technology Inc. Method and device for capacitive position detection
US8600698B2 (en) 2009-10-09 2013-12-03 Egalax—Empia Technology Inc. Method and device for analyzing positions
US8633917B2 (en) 2009-10-09 2014-01-21 Egalax—Empia Technology Inc. Method and device for capacitive position detection
US8643613B2 (en) 2009-10-09 2014-02-04 Egalax—Empia Technology Inc. Method and device for dual-differential sensing
US9069410B2 (en) 2009-10-09 2015-06-30 Egalax—Empia Technology Inc. Method and device for analyzing two-dimension sensing information
US8842079B2 (en) 2009-10-09 2014-09-23 Egalax—Empia Technology Inc. Method and device for determining a touch or touches
US8872776B2 (en) 2009-10-09 2014-10-28 Egalax—Empia Technology Inc. Method and device for analyzing two-dimension sensing information
US8890821B2 (en) 2009-10-09 2014-11-18 Egalax—Empia Technology Inc. Method and device for dual-differential sensing
US8896548B2 (en) 2009-10-09 2014-11-25 Egalax—Empia Technology Inc. Capacitive touch screen with method and device for converting sensing information including zero cross point
US8941597B2 (en) 2009-10-09 2015-01-27 Egalax—Empia Technology Inc. Method and device for analyzing two-dimension sensing information
US9606692B2 (en) 2009-10-09 2017-03-28 Egalax_Empia Technology Inc. Controller for position detection
US8970551B2 (en) 2009-10-09 2015-03-03 Egalax—Empia Technology Inc. Method and device for position detection
US8970552B2 (en) 2009-10-09 2015-03-03 Egalax—Empia Technology Inc. Method and device for position detection
US9483152B2 (en) 2009-10-09 2016-11-01 Egalax_Empia Technology Inc. Method and device for dual-differential sensing
US9285940B2 (en) 2009-10-09 2016-03-15 Egalax—Empia Technology Inc. Method and device for position detection
US9141216B2 (en) 2009-10-09 2015-09-22 Egalax—Empia Technology Inc. Method and device for dual-differential sensing
US8816979B2 (en) 2009-10-09 2014-08-26 Egalax—Empia Technology Inc. Method and device for determining a touch or touches
US9081441B2 (en) 2009-10-09 2015-07-14 Egalax—Empia Technology Inc. Method and device for analyzing two-dimension sensing information
US9046959B2 (en) 2010-01-13 2015-06-02 Elo Touch Solutions, Inc. Noise reduction in electronic device with touch sensitive surface
CN102834798A (en) * 2010-01-13 2012-12-19 电子触控产品解决方案公司 Noise reduction in electronic device with touch sensitive surface
CN102012766A (en) * 2011-01-04 2011-04-13 苏州瀚瑞微电子有限公司 Method for sensing multi-finger touch on touch panel
TWI584181B (en) * 2011-01-07 2017-05-21 Egalax_Empia Tech Inc Capacitive sensor and detection method using the same
TWI475451B (en) * 2011-01-07 2015-03-01 Egalax Empia Technology Inc Capacitive sensor and detection method using the same
CN102594328B (en) * 2011-01-14 2015-05-20 禾瑞亚科技股份有限公司 Capacitance type sensor and detection method thereof
CN104506178A (en) * 2011-01-14 2015-04-08 禾瑞亚科技股份有限公司 Capacitive sensor and detection method thereof
CN102594328A (en) * 2011-01-14 2012-07-18 禾瑞亚科技股份有限公司 Capacitance type sensor and detection method thereof
CN104506178B (en) * 2011-01-14 2018-06-05 禾瑞亚科技股份有限公司 Capacitive sensor and detection method
CN103064558A (en) * 2013-01-07 2013-04-24 南京大学 Method for implementing touch gesture input in electronic white board and electronic white board allowing for touch gesture input
CN103064558B (en) * 2013-01-07 2015-12-23 南京大学 A method implemented in whiteboard touch gesture can be input to the touch gesture input whiteboard

Also Published As

Publication number Publication date
JP2006509301A (en) 2006-03-16
AR042333A1 (en) 2005-06-15
CN100405266C (en) 2008-07-23
GB0228512D0 (en) 2003-01-15
JP4613068B2 (en) 2011-01-12
TW200424916A (en) 2004-11-16
WO2004053781A3 (en) 2004-12-02
TW200817987A (en) 2008-04-16
TWI348115B (en) 2011-09-01
KR20050088103A (en) 2005-09-01
BR0317049A (en) 2005-10-25
EP1570414A2 (en) 2005-09-07
TWI308709B (en) 2009-04-11
MXPA05006040A (en) 2006-01-27
CA2506789A1 (en) 2004-06-24
WO2004053781A2 (en) 2004-06-24
KR101121891B1 (en) 2012-03-20
AU2003288416A1 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
US6087599A (en) Touch panels having plastic substrates
US5308936A (en) Ultrasonic pen-type data input device
US8325159B2 (en) Acoustic touch sensor
US9733747B2 (en) Method for measuring touching position, touching energy and display device thereof
US5708461A (en) Acoustic touch position sensor using a low-loss transparent substrate
US9019209B2 (en) Touch location determination involving multiple touch location processes
CN100426205C (en) Acoustic touch sensor with low-profile diffractive grating transducer assembly
US4980518A (en) Coordinate input apparatus
US9035918B2 (en) Touch sensitive device employing bending wave vibration sensors that detect touch location and provide haptic feedback
US8316324B2 (en) Method and apparatus for touchless control of a device
KR101852549B1 (en) Localized haptic feedback
EP0123043B1 (en) Velocity sensing cursor control device and method
US7834850B2 (en) Method and system for object control
CN100347519C (en) Apparatus and method for ultrasonic measuring of length for coordinate input
US8169404B1 (en) Method and device for planary sensory detection
US5750941A (en) Ultrasonic coordinates input device
US5379269A (en) Position determining apparatus
US8354997B2 (en) Touchless user interface for a mobile device
JP3677035B2 (en) Touch panel for acoustic touch position sensor
US20020167862A1 (en) Method and apparatus for approximating a source position of a sound-causing event for determining an input used in operating an electronic device
US4910363A (en) Coordinates input apparatus with plural pulse train whose phases differ
CN100524178C (en) Touch sensing with touch down and lift off sensitivity
US6741237B1 (en) Touch screen
CN104169848B (en) Detecting a touch input force
US8907930B2 (en) Methods and devices for determining user input location using acoustic sensing elements

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
EXPY Termination of patent right or utility model