TW200817987A - Contact sensitive device and method of determining information relating to a contact thereon - Google Patents

Contact sensitive device and method of determining information relating to a contact thereon Download PDF

Info

Publication number
TW200817987A
TW200817987A TW096148292A TW96148292A TW200817987A TW 200817987 A TW200817987 A TW 200817987A TW 096148292 A TW096148292 A TW 096148292A TW 96148292 A TW96148292 A TW 96148292A TW 200817987 A TW200817987 A TW 200817987A
Authority
TW
Taiwan
Prior art keywords
contact
sensors
phase
pair
sensor
Prior art date
Application number
TW096148292A
Other languages
Chinese (zh)
Other versions
TWI348115B (en
Inventor
Nicholas Patrick Roland Hill
Darius Martin Sullivan
Original Assignee
New Transducers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Transducers Ltd filed Critical New Transducers Ltd
Publication of TW200817987A publication Critical patent/TW200817987A/en
Application granted granted Critical
Publication of TWI348115B publication Critical patent/TWI348115B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0436Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which generating transducers and detecting transducers are attached to a single acoustic waves transmission substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0433Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which the acoustic waves are either generated by a movable member and propagated within a surface layer or propagated within a surface layer and captured by a movable member

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Position Input By Displaying (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

A contact sensitive device comprises a member (12) capable of supporting bending waves, three sensors (16) mounted on the member (12) for measuring bending wave vibration in the member, whereby each sensor (16) determines a measured bending wave signal and a processor which calculates a location of a contact on the member from the measured bending wave signals. The processor calculates a phase angle for each measured bending wave signal and a phase difference between the phase angles of least two pairs of sensors so that at least two phase differences are calculated from which the location of the contact is determined.

Description

200817987 九、發明說明: 【發明所屬之技術領域】 ’ 本發明係關於接觸敏感裝置。 【先前技術】 視覺顯示器通常包含某種形式的觸控敏感螢幕。隨著下 一代可攜式多媒體裝置(如掌上型電腦)的出現,此種現象 變得日益普遍。使用波來偵測接觸之最完善的技術為表面 ^ 聲波(Surface Acoustic Wave ; SAW)技術,該技術在玻璃 ' 螢幕的表面上產生高頻波,並使用由手指接觸而引起的高 頻波衰減來偵測觸控位置。此技術為「飛行時間」型,其 中使用干擾到達-或多個感測器所需的時間來制接觸位 置。當介質以非分散的方式作用’即波的速度不會在有關 頻率範圍上大幅變動時,該方法可行。 在本發明人的 WO01/48684 與 PCT/GB2002/003073 中,提 出了兩種接觸敏感裝置及其使用方法。在該等兩份申請案 〇 中,該裝置可包括一能支承彎曲波振動的部件以及一安裝 於該部件上用於測量該部件中的彎曲波振動並且用於將一 信號發送至-處理器之感測器,其中從該部件之表面上所 作的接觸在該部件中所產生的,彎曲波振動變化來計算有關 該接觸的資訊。 /曲波振動意味著一激發,例如藉由接觸,該激發會使 違部件發生平面外的位移。許多材料都會彎曲,某些材料 具有完全平方根離差關係之純彎曲,而某些材料則具有純 弓曲與奂切考曲之混合彎曲。離差關係說明波的平面内速 127365.doc 200817987 度與波的頻率之相依性。 言曲波具有優點,如提高強固性以及降低對表面刮傷的 敏感性專。然而,彎曲波為分散波,即彎曲波的速度從而 氣行時間」與頻率有關。一般而言,一脈衝包含大範圍 的頻率成分,因此如果該脈衝行進一較短距離,高頻成分 會首先到達。在WO01/48684 與 PCT/GB2002/003073 中,可 應用將所測量的彎曲波信號轉換成一來自非分散波源的傳 播信號之校正,以便可應用雷達與聲納領域所使用之技術 來偵測接觸位置。 【發明内容】 根據本發明之一方面,會提供一接觸敏感裝置,該裝置 包括一能支承彎曲波之部件、安裝於該部件上用於測量該 部件中之彎曲波振動的三個感測器,其中每個感測器可決 定一所測量的彎曲波信號,以及一從該等所測量的彎曲波 信號計算該部件上一接觸之一位置的處理器,該接觸敏感 裝置之特徵在於該處理器計算每個所測量彎曲波信號之一 相位角,然後計算至少兩對感測器之相位角之間的一相位 差異’並從該相位差異決定該接觸之該位置。 根據本發明之一第二方面,會提供一種決定與一接觸敏 感裝置上一接觸有關的資訊之方法,該方法之步驟包括: 提供一能夠支承彎曲波的部件以及安裝於該部件上用於測 量該部件中的彎曲波振動之三個感測器;在該部件的一位 置處施加-接觸;使用每個感測器來決定一所測量的彎曲 波信號以及從該所測量的彎曲波信號計算一接觸之該位 127365.doc 200817987 置,該方法的特徵在於計算每個所測量彎曲波信號的一相 位角、計算至少兩對感測器之相位角之間的相位差異以及 從該等至少兩個所計算的相位差異決定該接觸之該位置。 、下列特徵可應歸該裝4與該m巾將該處理器調 適以提供該方法之許多計算或處理步驟。 可藉由將-吸收器放置成與該部件之邊緣接觸而抑制反 射波。該吸收n與料之力學阻抗可選擇為使得該部件之 Ο ϋ 邊緣的彎曲波反射減至最少。特定言之,所選擇的阻抗使 得彎曲波能量在圍繞所選頻率似。的頻帶中受到強烈的吸 收。該吸收器的阻抗可選擇成兼具抗性與相容性。該等阻 抗可選擇成滿足下列等式: 其中ΖΤ為吸收ϋ的終止阻抗’且〜為該部件邊緣的力學 阻抗。 該吸收II可由泡泳塑膠製成,該等泡沫歸可具有開孔 或閉孔且可為聚安g旨或命畜7 # ~久文四曰忒祆虱乙烯。例如,該泡沫可為一軟 爾、閉孔為主之泡珠,如MIERSTM,或—中等密度至高 密度開孔聚安醋泡沫。另-類已發現的合適泡沫為丙烯酸 閉孔泡床。此等泡汰可目女> > 禾了具有較尚的阻尼度以及較高的硬 度。此類特性尤其適合於硬、重材料如玻璃的邊緣終止。 範例包括3M序列號碼他、侧、495〇與4655。該吸收 器可實質上圍繞該部件之周邊而延伸。該吸收器可當作一 安裝架’用於將該部件支揮於—框架中或至另—表面。 該部件的表面上可包括一凸起的圖案,從而橫跨該表面 127365.doc 200817987 所拖拉的一接觸為該部件提供一可變的力以在該部件中產 生、弓曲波。該圖案可為具有一統計上良好定義之空間波動 分佈之週期性或準週期性圖案。該圖案可為隨機圖案,從 而在该部件之表面上行進的接觸產生一隨機彎曲波信號。200817987 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a touch sensitive device. [Prior Art] A visual display typically contains some form of touch sensitive screen. This phenomenon has become increasingly common with the advent of next-generation portable multimedia devices such as handheld computers. The most sophisticated technique for detecting contact using waves is the Surface Acoustic Wave (SAW) technique, which produces high-frequency waves on the surface of a glass' screen and uses high-frequency wave attenuation caused by finger contact to detect the touch. Control position. This technique is a "time-of-flight" type in which the time required for the arrival of the disturbance - or multiple sensors - is used to make the contact position. This method is feasible when the medium acts in a non-dispersive manner, ie the speed of the wave does not vary significantly over the relevant frequency range. In the inventors' WO01/48684 and PCT/GB2002/003073, two types of touch sensitive devices and methods of use thereof have been proposed. In the two applications, the apparatus can include a component capable of supporting bending wave vibrations and a component mounted thereon for measuring bending wave vibrations in the component and for transmitting a signal to the processor A sensor in which a contact made from a surface of the component produces a bending wave vibration change in the component to calculate information about the contact. / Curved wave vibration means an excitation, such as by contact, which causes an out-of-plane displacement of the offending component. Many materials bend, some have a pure curvature with a completely square root dispersion relationship, and some have a blend of pure bow and chopped test. The dispersion relationship indicates the in-plane velocity of the wave. 127365.doc 200817987 The dependence of the degree on the frequency of the wave. Words have advantages such as improved strength and reduced sensitivity to surface scratches. However, the bending wave is a scatter wave, that is, the speed of the bending wave and thus the pulsation time is related to the frequency. In general, a pulse contains a wide range of frequency components, so if the pulse travels a short distance, the high frequency component will arrive first. In WO 01/48684 and PCT/GB2002/003073, the correction of the measured bending wave signal into a propagating signal from a non-dispersive wave source can be applied so that the technique used in the radar and sonar fields can be applied to detect the contact position. . SUMMARY OF THE INVENTION According to one aspect of the invention, a touch sensitive device is provided, the device comprising a component capable of supporting a bending wave, and three sensors mounted on the component for measuring bending wave vibrations in the component Wherein each sensor determines a measured bending wave signal and a processor for calculating a position of a contact on the component from the measured bending wave signal, the touch sensitive device being characterized by the processing A phase angle is calculated for each of the measured bending wave signals, and then a phase difference between the phase angles of at least two pairs of sensors is calculated and the position of the contact is determined from the phase difference. According to a second aspect of the present invention, there is provided a method of determining information relating to a contact on a touch sensitive device, the method comprising the steps of: providing a component capable of supporting a bending wave and mounting on the component for measurement Three sensors for bending wave vibrations in the component; applying a contact at a location of the component; using each sensor to determine a measured bending wave signal and calculating from the measured bending wave signal a contact 127365.doc 200817987, the method is characterized by calculating a phase angle of each measured bending wave signal, calculating a phase difference between phase angles of at least two pairs of sensors, and from at least two The calculated phase difference determines the location of the contact. The following features may be adapted to the processor 4 and the m-pad to adapt the processor to provide a number of calculations or processing steps of the method. The reflected wave can be suppressed by placing the absorber in contact with the edge of the component. The mechanical impedance of the absorption n and the material can be selected to minimize bending wave reflection at the edge of the element. In particular, the impedance chosen is such that the bending wave energy is similar to the selected frequency. The frequency band is strongly absorbed. The impedance of the absorber can be selected to be both resistant and compatible. The impedances can be selected to satisfy the following equation: where ΖΤ is the termination impedance of absorption ’ and ~ is the mechanical impedance of the edge of the component. The absorption II can be made of a blistering plastic which can have an open or closed cell and can be a polyanthene or a live animal 7#~久文四曰忒祆虱 ethylene. For example, the foam can be a soft, closed cell-based bead, such as MIERSTM, or a medium to high density open cell vinegar foam. Another suitable foam that has been found is an acrylic closed cell bubble bed. These have a higher degree of damping and a higher hardness. Such properties are particularly suitable for edge termination of hard, heavy materials such as glass. Examples include the 3M serial number he, side, 495〇 and 4655. The absorber can extend substantially around the perimeter of the component. The absorber can be used as a mounting frame for supporting the component in the frame or to the other surface. The surface of the component can include a raised pattern such that a contact dragged across the surface provides a variable force to the component to create a bowing wave in the component. The pattern can be a periodic or quasi-periodic pattern having a statistically well defined spatial fluctuation distribution. The pattern can be a random pattern such that the contact traveling over the surface of the component produces a random bending wave signal.

Ik機浮雕圖案可為抗反射塗層、一防眩表面光製或一餘刻 光製如在電子顯示器之前部所放置的許多熟知透明面板 上所發現的圖案。 可藉由具有以所選頻率⑺。為中心且具有一頻寬Δω的帶通 濾、波器來處理每個所測量的彎曲波信號。濾波器的頻寬“ 最好選擇成解決Doppler(都卜勒)效應,其中一彎曲波到達 一點時的頻率與其原始頻率不同。因此,頻寬最好符合以 下關係: Δω»2^〇)ν_ 其中vmax為橫跨該表面之接觸的最大橫向速度,例如, 如果該接觸係由一觸控筆提供,則Vmax為使用者能夠移動 觸控筆的最大速度。 每個已過濾信號的相位可藉由與一參考信號比較而得 到。參考信號可具有一頻率%。所測量相位係輸入與參考 仏號之間的平均相位差異,最佳在間隔2 期間測量。 或者,參考信號可從一第二感測器之一已過濾的信號導 出,在該情形下,所測量的相位為兩個輸入信號之間的差 異。 曰、 相位差異可以2W-的間隔予以計算,該間隔可為小於 10 ms之間隔。可將參考與輸入信號饋 、 < —相位偵測 127365.doc 200817987 器。相位伯測器的輸出可饋送通過具有約心/ 2之截斷頻率 之低通濾波器、然後通過數位化器、最後通過一處理器以 計算相位角Θ。 兩個所測量彎曲波信號的瞬時相位θι⑴與&⑴可滿足相 位差等式: =k(ty〇)Axlm +2^nIm 〇The Ik machine embossed pattern can be an anti-reflective coating, an anti-glare surface light or a pattern of light found on many well-known transparent panels placed in front of the electronic display. Can be by having a selected frequency (7). A bandpass filter and a waver centered and having a bandwidth Δω are used to process each of the measured bending wave signals. The bandwidth of the filter is preferably chosen to solve the Doppler effect, where the frequency at which a bending wave reaches a point is different from its original frequency. Therefore, the bandwidth preferably satisfies the following relationship: Δω»2^〇)ν_ Where vmax is the maximum lateral velocity of contact across the surface, for example, if the contact is provided by a stylus, Vmax is the maximum speed at which the user can move the stylus. Obtained by comparison with a reference signal. The reference signal may have a frequency %. The average phase difference between the measured phase input and the reference apostrophe is preferably measured during interval 2. Alternatively, the reference signal may be from a second A filtered signal is derived from one of the sensors, in which case the measured phase is the difference between the two input signals. 曰 The phase difference can be calculated at intervals of 2 W-, which can be less than 10 ms. Interval. Reference and input signal feedback, < - phase detection 127365.doc 200817987. The output of the phase detector can be fed through a low pass with a cutoff frequency of about / 2 The waver, then through the digitizer, and finally through a processor to calculate the phase angle Θ. The instantaneous phases θι(1) and &(1) of the two measured bending wave signals satisfy the phase difference equation: =k(ty〇)Axlm + 2^nIm 〇

U 其中ΔΧΐ™=Χΐ-^,Um與X,分別為從接觸位置至標有爪與丨 之每個感測器的距離),且k(6))為波向量。如果兩個感測 器之間的路徑長度差異小於帶通錢器之相干長度,則可 滿足此等式,帶通濾波器之相干長度可定義為: 、一 2腳0 △cok(co0) 相干條件因此為^^。如果未滿足相干條件,則可 能不滿足上述相位等式。 囚此U where ΔΧΐTM=Χΐ-^, Um and X, respectively, from the contact position to the distance between each sensor marked with a paw and a ), and k(6)) is a wave vector. If the path length difference between the two sensors is less than the coherence length of the belt moneyer, the equation can be satisfied. The coherence length of the bandpass filter can be defined as: , 2 feet 0 △ cok (co0) coherent The condition is therefore ^^. If the coherent condition is not met, the above phase equation may not be satisfied. Prison this

而义^、相位角差異的值來決定接觸的位置。嗲 部件的形狀可選擇成將<的幅度限制為小於—波長之L ::值’即丨岣卜师。)。在此情形中,如果〜之所有可能 的值滿足條件堇有一個^值為 推斷。 〜《者,η可以某種方式加以估計或 ., b值的範圍可用以產生 一糸列的路徑長声莫s ^ ^ 展王 仅我度差異,從而在該部 列的離散雙曲繞,丨v主_ 面上疋義一系 線以表不可能的接觸位署。^τ #丄 個路徑長度差里娇置。可猎由繪製每 ^長度差異所定義的每條雙曲線 父或近乎相交的_$+ 、 里雙曲線相 4 ”、、占而決疋該接觸位罟 ,位置。此點可能為真實 127365.doc -10- 200817987 的接觸位置。 如果I未知’則決定接觸位置所需之雙曲線系列的最小 為一並且藉由增加欲繪製之雙曲線的數目而增加決 ,正確接觸位置的可能性。可使用多個感測器,其中可為 每對感測器計算-相位角差異,從而產生多條雙曲線。在 此項具體實施例中’感測器的最小數目為三。 Ο u 或者如果^未知’則可將來自每個感測器之所測量的 彎曲波信號分成兩個或多個離散頻帶,其中可為每個頻帶 並=每對感測11計算—相位角差異。《可從單對感測器 計算多個相位角差# ’但不同頻率下的相位角差異係從相 同的路徑長度差異導出。因此,感測器的最小數目為三。 可藉由具有不同通帶頻率之至少兩個帶通濾波器來處理彎 曲波信號,藉此分割頻帶。例如,使用具有頻以 及之兩個帶通濾波器,兩個感測器之相位角差異 △A ' A0b可定義為 A0a==kK+^,)Ax + 2^na A0b=:kK-^)Ax + 2^nb 其中ΔΧ為該接觸與感測器位置所定義之單路徑長度差 異。 因此’可選擇na與叫的值’使得所測量的相位角差異可 推斷出路徑長度差異的類似值。僅有一 (na,叫)值組合滿足 此點。在此情形下,可決定路徑長度差異的真實值。正確 的'匕合(na,nb)可夕定為使以下表達式最小化的 : △0a -2皿3 A0h -2mb Η^ο〇+ωδ) k(〇)0-^) 127365.doc -11 - 200817987 路徑長度差異則可估計為The value of the difference between the phase and the phase angle determines the position of the contact.形状 The shape of the part can be chosen to limit the amplitude of < to less than - the wavelength of the L::: ). In this case, if all possible values of ~ satisfy the condition, there is a ^ value to infer. ~ "The person, η can be estimated in some way or., the range of b values can be used to produce a collinear path long sounds s ^ ^ show the king only my degree difference, thus the discrete hyperbolic winding in the column, 丨v main _ face on the line of a line to the table of the impossible contact. ^τ #丄 The path length difference is pinned. You can hunt each hyperbolic parent or nearly intersecting _$+, the inner hyperbolic phase 4", and the position of the contact position 。, which is defined by the difference in length. This point may be true 127365. Doc -10- 200817987 Contact position. If I is unknown' then the minimum number of hyperbola series required to determine the contact position is one and the likelihood of correct contact is increased by increasing the number of hyperbola to be drawn. A plurality of sensors are used, wherein a phase angle difference can be calculated for each pair of sensors to produce a plurality of hyperbola. In this particular embodiment, the minimum number of sensors is three. Ο u or if ^ Unknown 'The measured bending wave signal from each sensor can be divided into two or more discrete frequency bands, where each phase band and = each pair of sensing 11 can be calculated - the phase angle difference. Calculating multiple phase angle differences # ' for the sensor but the phase angle differences at different frequencies are derived from the same path length difference. Therefore, the minimum number of sensors is three. It can be at least with different passband frequencies Two band pass filters The device processes the bending wave signal, thereby dividing the frequency band. For example, using two bandpass filters having frequency and two, the phase angle difference ΔA 'A0b of the two sensors can be defined as A0a==kK+^,) Ax + 2^na A0b=:kK-^)Ax + 2^nb where ΔΧ is the single path length difference defined by the contact and sensor position. Therefore 'can select the value of na and call' to make the measured phase angle The difference can be inferred from the similar value of the path length difference. Only one (na, called) value combination satisfies this point. In this case, the true value of the path length difference can be determined. The correct 'matching (na, nb) can be To minimize the following expression: △0a -2 3 A0h -2mb Η^ο〇+ωδ) k(〇)0-^) 127365.doc -11 - 200817987 Path length difference can be estimated as

△X A0a ~2^na A0b -2mh ]<ί(ω0+ωδ) k(ty〇 -ωδ) 如果對兩對感測器重複此程序,則可決定兩個路徑長度 差異,該等兩個路徑長度差異進而可用於決定接觸位置。 或者’如果^未知’則可使用w〇01/48684與 PCT/GB2002/ 003073(如圖i i所概述)中所教導的方法來作 出接觸位置的初始決定。然後,可假定該接觸比彎曲波移 〇 〇 動更1*又’因此相位角差異在時間標度期間變動較小的增 量。因此,η的每個值可經過選擇以最小化路徑長度差異 的變動。 所測量的相位角差異可包含會導致選擇不正確η值之隨 機錯誤。例如可藉由狀態空間估計器如廣為人知的〖—an ;慮波器來評估n之連續序列的可能性,藉此減輕此錯誤。 會選擇具有最大可能性測量值的序列。 狀態空間估計器提供一系統(會對該系統進行雜訊測量) 態之估計。狀態空間估計器的必要輸人為系統狀 :之:i统計說明。該狀態的一範例為說明與該部件接 的位置與速度之座標組。廣為人知的係,一 :序二其他狀態空間估計器可提供所觀察到的雜訊測量 二列::糸統狀態之模型相一致之可能性的測量。 t ^狀態空間估計器因此可用以採取在不同時間(例如^ 2’ 3, ·.·)所作的一對路徑長度差異 , 爽祛斗外松 A2興之序列 來估叶该等時間的系統狀態,即接觸 且,可坪仕败斤e — 置興速度。而 127365.doc 路徑長度差異之該等值與系統模型相—致之總 -12- 200817987 體可能性。 如果從一相位角差異序列與_ 、組整數(^⑴),n(t2), n(t3),···)獲得該路徑長度差異序列, 斤列則精由狀態空間估計 器所產生之可能性的測量值可用地 里徂』用Μ推斷已選擇正確值 的可能性。由此得出結論,用於選摆 、、释整數η之正確序列的 方法係找到狀態空間估計器給予最 卞敢大可能性測量值的序 列〇ΔX A0a ~2^na A0b -2mh ]<ί(ω0+ωδ) k(ty〇-ωδ) If this procedure is repeated for two pairs of sensors, the difference between the two path lengths can be determined, the two The difference in path length can in turn be used to determine the location of the contact. Alternatively, if 'unknown', the initial decision of the contact location can be made using the method taught in w〇01/48684 and PCT/GB2002/003073 (as outlined in Figure i i). Then, it can be assumed that the contact is 1* more than the bending wave shift 因此 因此 so the phase angle difference varies less during the time scale. Therefore, each value of η can be selected to minimize variations in path length differences. The measured phase angle difference can include a random error that would result in the selection of an incorrect η value. For example, the state space estimator can be used to mitigate the possibility of a continuous sequence of n by means of a state-of-the-art estimator such as the well-known evaluator. The sequence with the largest possible measurement is selected. The state space estimator provides an estimate of the state of the system in which the noise is measured. The necessary input of the state space estimator is system-like: it: i statistical description. An example of this state is a set of coordinates that illustrate the position and velocity of the component. A well-known system, one: Preface two other state space estimators can provide the observed noise measurements. The second column: The measurement of the likelihood that the model of the state is consistent. The t^ state space estimator can therefore be used to take a pair of path length differences made at different times (eg ^ 2 ' 3 , ···), and the sequence of the cool A 2 兴 A2 is used to estimate the system state of the time. That is, contact, and can be down to the speed of the e-sports. The equivalent of the 127365.doc path length difference is related to the system model, which is the total -12-200817987. If the phase length difference sequence is obtained from a phase angle difference sequence and _, a group integer (^(1)), n(t2), n(t3), . . . , the matrix is generated by the state space estimator. The measured value of the possibility can be used to infer the possibility that the correct value has been selected. From this, it is concluded that the method used to select the correct sequence of the integer η is to find the sequence that the state space estimator gives to the most daunting probability measurement.

如上所述’狀態空間估計器使用系統狀態演變之某統計 說明。接觸移動的適當模型可為—簡單的隨機步行。或 者’該模型可採用使用者如何移動觸控筆或手指之詳細統 計說明。-範例為使用者在寫人文字或個別字元時如何移 動一鋼筆的統計說明。 處理器可進_步調適為在該衫料中包含任何有關接 觸預期位置的可用資訊。例如’如果該部件為一圖形使用 者介面之輸入裝置’其中使用者可選擇按下「按鈕」,則 有用的係,假定該部件上的任何接觸在與該等按鈕對應之 離散區域内發生。 或者,可使用接觸可能發生之機率的地圖,並且該機率 基於使用者的預期行為。該裝置可包括一具有圖形使用者 介面(GUI)之軟體應用程式,其利用一應用程式介面(Αρι) 與作業系統互動,其中API係調適用於產生機率地圖。該 機率地圖可基於圖形使用者介面所呈現之物體的位置、大 小以及使用頻率。該機率地圖亦可基於有關啟動各種Gm 元件之相對可能性的資訊。 127365.doc -13 - 200817987 下列特徵可應用於本發明的全部具體實施例。該裝置可 包括記錄構件,用於當該接觸橫跨該部件移動時,〆隨時間 記錄來自該感測器或每個感測器之所測量的f曲波广龙 二;:中央處理器中計算與接觸有關的資訊。該等二器 可以於該部件之邊緣處或與該部件之邊緣隔開。 可採用可將f曲波振動轉換成類 ,始° 的形式。 琥之感測轉換器 該部件可採用板或面板的形式。該部件可為透明或 =’例如具有一印刷圖案。該部件可具有均勾的厚度。或 =部件可具有一更複雜的形狀,例如—曲面及/或可 該裝置可為純被動感測器,其中藉由—初始衝擊或 該接觸的摩擦移動來產生彎曲波振 : 弯曲波信號。該接觸可採用 生所測篁的 按碉了知用一手指觸控或觸控筆(其可為 手持鋼筆的形式)觸控的弗々纽〜 1 J ^ Ο 可產生-連觸控筆在該部件上的移動 置L rT 信號受到觸控筆在該部件上的位 以速度之影響。該觸控筆可 例如,橡皮尖端,該尖端蕤由“ 難大^、 在該部件中產生f曲Γ 亥部件施加一可變的力而 表面m兮該可變的力可由黏著於該部件之 表面或杈跨該部件之妾 卞< 該部件之表面移動時F田大g跨 虚Λ θ屋生—張力,該張力在某臨界值 處會造成该尖端與該部件之間 = 尖端橫跨該表面滑動 71σ皮衣k而允許 内的的頻率成分。“波可具有超聲波區域⑽kHZ) 127365.doc -14· 200817987 该部件亦可為―聲轄射器’並可將—發射轉換器安裝於 该部件上’以便在該部件中激發彎曲波振動,以產生一聲 輸出。該轉換器的聲頻信號之頻帶最好不同於並且不重疊 於感測器之測量之頻帶。聲頻信號因而可得以過濾,: 如’聲頻頻帶可限於2G kHz以下的頻率,而振動測量可限 於20 kHz以上的頻帛。一❸則器可具有雙重功能性並且當 作發射轉換器。As mentioned above, the state space estimator uses some statistical description of the evolution of the system state. The appropriate model for contact movement can be - a simple random walk. Or the model can use a detailed description of how the user moves the stylus or finger. - The example is a statistical description of how the user moves a pen while writing a person's text or individual characters. The processor can be adapted to include any information available about the intended location of the contact in the garment. For example, 'If the component is a graphical user interface input device' where the user can choose to press a "button", then a useful system assumes that any contact on the component occurs in a discrete area corresponding to the button. Alternatively, a map of the probability of contact may occur, and the probability is based on the expected behavior of the user. The device can include a software application having a graphical user interface (GUI) that utilizes an application interface (Αρι) to interact with the operating system, wherein the API tuning is adapted to generate a probability map. The probability map can be based on the position, size, and frequency of use of the object presented by the graphical user interface. The probability map can also be based on information about the relative possibilities of launching various Gm components. 127365.doc -13 - 200817987 The following features are applicable to all specific embodiments of the invention. The apparatus can include a recording member for recording a measured f-wave wave from the sensor or each sensor over time as the contact moves across the component; Calculate information related to contact. The two devices may be spaced at or near the edge of the component. It can be used to convert the f-curve vibration into a class. A's Sensing Converter This part can be in the form of a plate or panel. The component can be transparent or =' for example having a printed pattern. The part can have a uniform thickness. Or = the component may have a more complex shape, such as a curved surface and/or the device may be a pure passive sensor, wherein the bending wave is generated by an initial impact or frictional movement of the contact: a bending wave signal. The contact can be touched by a finger or a stylus (which can be in the form of a hand-held pen). The touch can be generated - even the stylus is The movement of the LrT signal on the component is affected by the speed of the stylus on the component. The stylus can be, for example, a rubber tip that is "difficult to create a f-curve in the component to apply a variable force to the surface m. the variable force can be adhered to the component.表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面The surface slides 71σ leather k to allow internal frequency components. "The wave can have an ultrasonic region (10) kHZ) 127365.doc -14· 200817987 The component can also be a "acoustic ejector" and can be mounted on the transmitter 'on the part' to excite bending wave vibrations in the part to produce an acoustic output. The frequency band of the audio signal of the converter is preferably different and does not overlap the frequency band of the measurement of the sensor. The audio signal can thus be filtered, such as: the 'audio frequency band can be limited to frequencies below 2G kHz, and the vibration measurement can be limited to frequencies above 20 kHz. A timer can have dual functionality and acts as a transmit converter.

該或每個發射轉換器或感測器可為一彎曲轉換器,其與 該部件例如-壓電轉換器直接焊接。或者,該或每個發射 轉換器或感測器可為一在單點處與該部件耦合的慣性轉換 恭。慣性轉換器可為電動轉換器或壓電轉換器。 根據本發明之接觸敏感裝置可包含於一行動電話、膝上 型電腦或個人資料助理中。例如,傳統上裝配於行動電話 的袖珍鍵盤可由一連續模具(其為根據本發明之觸控敏感 裝置)替代。在一膝上型電腦中,當作一滑鼠控制器發揮 作用的觸控板可由一連續模具(其為根據本發明之接觸敏 感裝置)替代。或者,該接觸敏感裝置可為一顯示器螢 幕,例如包含液晶之液晶顯示器螢幕,其可用於激發或感 測幫曲波。顯示器螢幕可呈現與接觸有關的資訊。 【實施方式】 圖1說明一接觸敏感裝置1〇,其包括一安裝於顯示裝置 14别方的透明觸控敏感板12。顯示裝置14可採用電視、電 月肉螢幕或其他視覺顯示裝置的形式。使用一鋼筆形式的觸 控筆18來將文字20或其他内容寫在觸控敏感板12上。 127365.doc -15- 200817987 透明觸控敏感板12為一能夠支承彎曲波振動的部件,例 如一聲裝置。如圖2所示,將用於測量板12中彎曲波振動 的四個感測器16安裝於該板的下側。感測器16採用壓電振 動感測器的形式,並且會在板12的每個角落安裝一個感測 器。至少一個感測器16亦可當作一發射轉換器,用於在板 中激發彎曲波振動。以此方式,該裝置可當作一組合式揚 聲器與接觸敏感裝置。 由泡沫塑膠製成的安裝架22係附著於板12的下側並實質 上圍繞板12的周邊而延伸。安裝架22具有黏性表面,從而 該部件可牢固地附著於任何表面。安裝架與板的力學阻抗 經過選擇而使板邊緣的彎曲波反射減至最小。 安裝架與板的力學阻抗之間的關係可藉由考慮圖3所示 的-維模型而加以近似。該模型包括一樑形式之波導34, 其終止於具有—終止阻抗的邊緣安I架36。沿波導34向下 行進的入射波38係由安裝架36反射而形成—反射波4〇。入 射與反射波係沿垂直於邊緣之方向行進的平面波。假定安 裝条3 6滿足下列邊界條件: (i) 終止阻抗僅耦合進橫 迷度’即其不提供任何扭矩[Ϊ 力;從而彎曲力矩在邊緣處等於零,以及 (ii) 邊緣處橫向剪切力盘亲 — 〇、又的比率等於終端阻抗; 女装术的反射係數係由下式給定: R(cd) = / ZR (ω) 一 j Ζτ/ΖΒ〇) + ι 其中ZT為安裝架的終止 , 阻抗,並且zB為波導末端的力辱 阻抗,由下式給定 127365.doc 200817987 ζβ(6,) = β^Μ(1+〇 2ω 其中k(«)為波向量,其根據面板的彎曲硬度3以及每單 位面積的質量/Z來表示,The or each transmit transducer or sensor can be a bend converter that is directly soldered to the component, such as a piezoelectric transducer. Alternatively, the or each transmit transducer or sensor can be an inertial conversion coupled to the component at a single point. The inertial converter can be a motorized converter or a piezoelectric converter. The touch sensitive device in accordance with the present invention can be included in a mobile phone, laptop or personal data assistant. For example, a keypad that is conventionally mounted to a mobile phone can be replaced by a continuous mold that is a touch sensitive device in accordance with the present invention. In a laptop, a touchpad functioning as a mouse controller can be replaced by a continuous mold which is a touch sensitive device in accordance with the present invention. Alternatively, the touch sensitive device can be a display screen, such as a liquid crystal display screen containing liquid crystal, which can be used to excite or sense the helper wave. The display screen can present information about the contact. [Embodiment] FIG. 1 illustrates a touch sensitive device 1A including a transparent touch sensitive panel 12 mounted on the display device 14. Display device 14 may take the form of a television, an electric moon screen or other visual display device. A touch pen 18 in the form of a pen is used to write text 20 or other content on the touch sensitive panel 12. 127365.doc -15- 200817987 The transparent touch sensitive panel 12 is a component capable of supporting bending wave vibrations, such as an acoustic device. As shown in Fig. 2, four sensors 16 for measuring bending wave vibrations in the panel 12 are mounted on the lower side of the panel. The sensor 16 takes the form of a piezoelectric vibration sensor and will mount a sensor at each corner of the panel 12. At least one of the sensors 16 can also function as a launch transducer for exciting bending wave vibrations in the panel. In this way, the device can be used as a combined speaker and touch sensitive device. A mounting bracket 22 made of foamed plastic is attached to the underside of the panel 12 and extends substantially around the perimeter of the panel 12. The mounting bracket 22 has a viscous surface so that the component can be securely attached to any surface. The mechanical impedance of the mounting bracket and the plate is selected to minimize bending wave reflection at the edge of the board. The relationship between the mounting frame and the mechanical impedance of the plate can be approximated by considering the -dimensional model shown in Figure 3. The model includes a waveguide 34 in the form of a beam that terminates in an edge mount 36 having a termination impedance. The incident wave 38 traveling downward along the waveguide 34 is reflected by the mount 36 to form a reflected wave. The plane waves of the incident and reflected waves traveling in a direction perpendicular to the edges. It is assumed that the mounting strip 36 meets the following boundary conditions: (i) the terminating impedance is only coupled into the transverse bulk' ie it does not provide any torque [Ϊ force; thus the bending moment is equal to zero at the edge, and (ii) the transverse shear force at the edge The disc pro- 〇, the ratio is equal to the terminal impedance; the reflection coefficient of the women's surgery is given by: R(cd) = / ZR (ω) a j Ζτ / ΖΒ〇) + ι where ZT is the termination of the mount , impedance, and zB is the force of the end of the waveguide, given by 127365.doc 200817987 ζβ(6,) = β^Μ(1+〇2ω where k(«) is the wave vector, which is bent according to the panel Hardness 3 and mass/Z per unit area,

因此,反射係數取決於波導末端與安裝架之阻抗的比 率。此外,波導的阻抗與頻率的平方根成正比,並且具有 權重相等的實與虛成分(即π/4相位角)。因此,反射係數可 ρ 能與頻率有很大關係。 如果下列條件得到滿足,則反射係數消失,即在圍繞⑺ 之頻帶中強烈吸收彎曲波能量: Ο ζτ = - iZB〇0) 因此’該安裝架的終止阻抗必須兼具實與虛成分,或等 效地’該安裝架必須兼具抗性與相容性。 該板可為例如1 mm厚的聚碳酸酯薄片,其每單位面積 質量為// =1.196 kg m·2,並且彎曲硬度為β = 〇·38 Nm。以 U 上等式可用於計算板的阻抗以及強烈吸收所選角頻率 叫=2 ;r(900 Hz)周圍的彎曲波能量所需之吸收器的阻抗。 板之每單位寬度阻抗(1 mm樑近似值)為·· ZB(%)=(l + i)33.8 N s πΓ2 〇 提供所需吸收之吸收器的特性因而為: 每單位寬度的阻力,Therefore, the reflection coefficient depends on the ratio of the end of the waveguide to the impedance of the mount. In addition, the impedance of the waveguide is proportional to the square root of the frequency and has real and imaginary components of equal weight (i.e., π/4 phase angle). Therefore, the reflection coefficient ρ can be greatly related to the frequency. If the following conditions are met, the reflection coefficient disappears, that is, the bending wave energy is strongly absorbed in the frequency band around (7): Ο ζτ = - iZB 〇 0) Therefore, the termination impedance of the mount must have both real and imaginary components, or etc. Effectively' the mount must be both resistant and compatible. The plate may be, for example, a 1 mm thick polycarbonate sheet having a mass per unit area of // 1.196 kg m·2 and a bending hardness of β = 〇·38 Nm. The U-upper equation can be used to calculate the impedance of the plate and strongly absorb the impedance of the absorber required for the selected angular frequency called =2; r (900 Hz) around the bending wave energy. The impedance per unit width of the board (approx. 1 mm beam) is · ZB (%) = (l + i) 33.8 N s π Γ 2 〇 The characteristics of the absorber providing the required absorption are thus: resistance per unit width,

Re(ZT)=Im[ZB〇0)] = 33.8 N s ηΓ2 〇 每單位寬度的硬度, 127365.doc -17- 200817987 -i Im(ZT)%=Re|;ZB(必。乃仍。=1 91χ1〇5 Ν m.2。 反射係數為無單位複數。圖4a以及4b為說明反射係數 R (一之振幅與相位隨頻率變動的曲線圖。當近似等於 900 Hz時,反射係數的振幅為零,反射係數的相位為倒 相。Re(ZT)=Im[ZB〇0)] = 33.8 N s ηΓ2 硬度 Hardness per unit width, 127365.doc -17- 200817987 -i Im(ZT)%=Re|;ZB (must. still.) 1 91χ1〇5 Ν m.2. The reflection coefficient is a unitless complex number. Figures 4a and 4b are graphs illustrating the reflection coefficient R (the amplitude and phase as a function of frequency. When approximately equal to 900 Hz, the amplitude of the reflection coefficient is Zero, the phase of the reflection coefficient is inverted.

ϋ 在圖5a與5b中,板12具有均勻的表面縫度且採用凸起表 面圖案28、29的形式。沿路徑3〇橫跨該表面拖拉觸控筆 18 ’當觸控筆18通過圖案上_凸起部分或線時,便在該部 件中產生彎曲波32。因此’觸控筆18的接觸在該部件中提 供-彎曲波振動來源。在圖5a中’表面圖案28為凸起交又 線之週期性圖案,而在圖5 b中,表面岡安ο 0达 T 衣面圖案29為隨機浮雕圖 案0 在圖2、5a與5b之具體實施例中,當接觸在該部件之粗 輪表面上移動時,f曲波在該部件中從接觸點各向同性地 輻射。該部件在距離X處從接觸點的位移藉由_轉㈣數 Η(ω; X)而與接觸點處的位移相關。在距離大於波長入 =2 Wk(一時,轉移函數可近似為,图 In Figures 5a and 5b, the panel 12 has a uniform surface seam and is in the form of raised surface patterns 28,29. Dragging the stylus 18 ′ along the path 3 〇 across the surface creates a bending wave 32 in the component as the stylus 18 passes over the pattern _ convex portion or line. Thus the contact of the stylus 18 provides a source of bending wave vibration in the component. In Fig. 5a, the 'surface pattern 28 is a periodic pattern of raised intersections and lines, and in Fig. 5b, the surface of the surface of the ο0 达 T 面面 pattern 29 is a random relief pattern 0 in Figures 2, 5a and 5b. In an embodiment, the f-curved wave is isotropically radiated from the contact point in the component as the contact moves over the surface of the coarse wheel of the component. The displacement of the component from the contact point at distance X is related to the displacement at the contact point by the _ turn (four) number Η(ω; X). At a distance greater than the wavelength into = 2 Wk (at a time, the transfer function can be approximated,

Η(0>,χ)= __厂 A lkfV/>W ^(ω)χ 為常數且k(6°為先前定義的波向量。雖歸格地 說,H(.;x)僅適用於無限板上的彎曲波,但因為安裝架強 烈吸收f曲波振動’故該關係得以滿足。轉 如果一彎曲波來源發射-純正弦頻率,角頻率為::則對 於该來源’在距離Xl與X2處的兩個位置與接觸點的位移之 間的相位差異Δθ12為 127365.doc 200817987 exp(iA(912) = exp[ik(6>0)(x1 - χ2)] 這意味著相位角差異、路徑長度差異如气XU〗)以及一 整數η12之間的下列關係。 Αθη =: ^ ~(92 = k(ty0)Ax12 + 2mn 圖6說明使用此等式來決定接觸位置之方法中的步驟·· a) 使用各感測器來測量一彎曲波信號,以提供已測量的 彎曲波信號Wi⑴與Wj(t), b) 計算所測量彎曲波信號%⑴與Wj⑴之相位角⑴與 ⑴, C)計算兩個相位角0i(t)與0j(t)之間的差異, d)從下式計算接觸位置; = Αθ1} - 2m{- 圖7a說明一裝置之示意方塊圖,該裝置用於計算該等感 測器之一所測量之彎曲波Wj⑴的相位角θ』。%⑴為隨機信 號,因而在長時間標度期間不相關。該信號首先由放大器 42加以放大,然後一類比帶通濾波器44加以處理,該帶通 濾波器的通帶以⑺。為中心,並且頻寬為△仍。 ’考曲波的移動來源可證明D〇ppier效應,其中一具有頻 率%並由一以速度〃朝部件上一點移動的來源所發射之彎 曲波到達該點時具有%_k(iy())v所定義的一不同頻率。因 此,該部件上兩個不同點處的彎曲波之間的最大角頻率偏 移為2k(%)vmax,其中Vmax為移動來源的最大速度。如果角 頻率偏移變得大於帶通濾波器的寬度,則以上相位差異等 式不成立。因此,將濾波器44的頻寬△⑺設定為大於此最大 127365.doc -19- 200817987 頻率偏移,因而符合以下關係: » 2kK)vraax 由攄波器44處理後’所產生的已過遽信號%⑴為一具 有頻率W。之振幅與相位調變載體,並由下式加以定義:Η(0>,χ)= __Factory A lkfV/>W ^(ω)χ is a constant and k(6° is the previously defined wave vector. Although it is said that H(.;x) is only applicable. The bending wave on the infinite plate, but because the mounting frame strongly absorbs the f-curve vibration, the relationship is satisfied. If a bending wave source emits - pure sinusoidal frequency, the angular frequency is:: for the source 'at the distance Xl The phase difference Δθ12 between the two positions at X2 and the displacement of the contact point is 127365.doc 200817987 exp(iA(912) = exp[ik(6>0)(x1 - χ2)] which means the phase angle difference , the difference in path length such as gas XU) and the following relationship between an integer η12. Αθη =: ^ ~(92 = k(ty0)Ax12 + 2mn Figure 6 illustrates the steps in the method of determining the contact position using this equation · a) use each sensor to measure a bending wave signal to provide measured bending wave signals Wi(1) and Wj(t), b) calculate the phase angles (1) and (1) of the measured bending wave signals %(1) and Wj(1), C) Calculate the difference between the two phase angles 0i(t) and 0j(t), d) calculate the contact position from the following formula; = Αθ1} - 2m{- Figure 7a illustrates the schematic of a device FIG., The means for calculating the bending wave Wj⑴ sensing device such as one of the measured phase angle θ. " %(1) is a random signal and is therefore uncorrelated during long-term calibration. This signal is first amplified by amplifier 42 and then processed by a class of bandpass filters 44 whose passband is (7). Centered, and the bandwidth is △ still. The moving source of the test curve can prove the D〇ppier effect, in which a bending wave emitted by a source having a frequency % and moving by a velocity 〃 toward a point on the component has %_k(iy())v when it reaches the point. A different frequency is defined. Therefore, the maximum angular frequency offset between the bending waves at two different points on the part is 2k (%) vmax, where Vmax is the maximum speed of the moving source. If the angular frequency offset becomes larger than the width of the band pass filter, the above phase difference equation does not hold. Therefore, the bandwidth Δ(7) of the filter 44 is set to be larger than the maximum 127365.doc -19-200817987 frequency offset, and thus the following relationship is satisfied: » 2kK) vraax is processed by the chopper 44. The signal %(1) has a frequency W. The amplitude and phase modulation carrier is defined by:

Wj ⑴=Aj(t)sin[必。t + 0j(t)] 、中j(t)與Gj(t)為该#號的振幅與相位。在時間標度 期間=波動取決於濾波器的頻寬,即心。可從帶通 濾波器輸出作獨立相位角測量之最大頻率為&。因為觸控 感測器通常每10 ms提供一更新的接觸位置測量,位置測 量的最小頻率之條件為Δί<10 ms。 然後將已過遽的信號W,j(t)同時發送至兩個類比相位偵 ’貝J器46。此類偵測器在本技術中已廣為人知,例如,參見 Horowitz與Hill的「電子技術」第644頁。亦將各具有頻率 叫但相位差異為;r/2的參考信號饋送至兩個相位偵測器。 相位偵測器的輸出通過各具有約Δα/2之截斷頻率的低通濾 波器48。低通濾波器的輸出分別與c〇s(0j)與sin(ej)成正 比。此等輸出然後係藉由數位化器50加以數位化並由處理 器5 2加以處理,以便提供相位角㊀』。 圖7b說明圖7a中所用之參考信號可如何產生。在一第二 感測器處測量一第二彎曲波信號Wi(t)。將該信號饋送通過 一放大器42以及類比帶通濾波器44,以便產生一已過濾的 信號W’j(t)。已過濾的信號w,j(t)形成直接饋送至一相位偵 測器46的參考信號。亦經由一裝置將已過濾的信號饋送至 第二相位偵測器46,該裝置將該信號的相位偏移^/2。使 127365.doc -20- 200817987 用相位偏移仏虎作為第二相位偵測器⑽參考信號。 謂說明相位角差異因而路徑長度差異如何用於計 异接觸位置。圖6之步驟 I J甲的等式疋義可覆盍於板12上 的雙曲線。圖8a說明使用一斜成 抑 對感測益16(板12之短側的各 端均安裝一個)之二個;^ @ Μ 一個不冋的^值以及所計算的相位角差 異所產生的三條譬曲_ 9 < mu, 雙線26。同樣地,圖8b與8c說明藉由兩 對其他的感測器之相位角差里 月差異以及不同的〜值而產生的雙 Ο Ο 曲線26。圖8峨明由感測器所產生的全部雙曲線。接觸位 置24為三條雙曲線的交點,每對感測器各對應-條雙曲 線。可從接觸位置24推斷^的正確值。 可使用圖9中所不之具體實施例來實施推斷〇之方法。每 個感測器所測量的彎曲波信號恥⑴係由兩個帶通減波写 …同時處理。計算兩個相位角,每個漶波器各對庫一 個’例如,如圖7所述。遽波器…具有略微不同的通 f頻率中由每對感測器提供兩個相位角差異,每個通 帶頻率各對應一個差異。 感測器的相位角差異△&、么4可定義為: = Ηω0 + ωδ )Δχ + Aθb:=^ω0^ωδ)Ax^2mh 合: 其中Δχ為接觸與感測器位置所定義之單路徑長度差異。 正確的組合(na,nb)可衫為使以下表達式最小化的值組 A0a - 2;ma Aeb -2mh Κω0+ωδ) )^{ω^ωδ) 路徑長度差異則可估計為: 127365.doc -21 . 200817987 Δχ A^a~2^na ^ A9h-2Tmh 2 ^ k(<2>0 + co5 ) k(it)0 —6?^) 另一對感測器則可用於決定一 路徑長度差異在該面板上定義一雙曲線 的父點為接觸位置。如圖8 a至8 j所示, 最大數目之雙曲線的交點很可能為真實 第二路徑長度差異。每個 。此等兩條雙曲線 繪製雙曲線,並且 的接觸位置。 圖10說明一用於從以上等式計算接觸位置的替代方法 即:Wj (1) = Aj (t) sin [must. t + 0j(t)] , and j(t) and Gj(t) are the amplitude and phase of the #. During the time scale = fluctuation depends on the bandwidth of the filter, ie the heart. The maximum frequency that can be measured from the bandpass filter for independent phase angle measurement is &. Since the touch sensor typically provides an updated contact position measurement every 10 ms, the minimum frequency of the position measurement is Δί < 10 ms. The transmitted signal W,j(t) is then simultaneously sent to two analog phase detectors. Such detectors are well known in the art, for example, see Horowitz and Hill, "Electronic Technology," page 644. Reference signals each having a frequency but having a phase difference of; r/2 are also fed to the two phase detectors. The output of the phase detector passes through a low pass filter 48 each having a cutoff frequency of about Δα/2. The output of the low pass filter is proportional to c 〇 s (0j) and sin (ej), respectively. These outputs are then digitized by the digitizer 50 and processed by the processor 52 to provide a phase angle of one. Figure 7b illustrates how the reference signal used in Figure 7a can be generated. A second bending wave signal Wi(t) is measured at a second sensor. The signal is fed through an amplifier 42 and an analog bandpass filter 44 to produce a filtered signal W'j(t). The filtered signal w,j(t) forms a reference signal that is fed directly to a phase detector 46. The filtered signal is also fed via a device to a second phase detector 46 which shifts the phase of the signal by ^/2. Let 127365.doc -20- 200817987 use the phase offset 仏 tiger as the second phase detector (10) reference signal. It is used to explain the phase angle difference and thus how the path length difference is used to count the contact position. The equation of Figure 6 can be overlaid on the hyperbolic curve on the plate 12. Figure 8a illustrates the use of a skewed pair of senses 16 (one of each end of the short side of the panel 12); ^ @ Μ an unambiguous value and three calculated differences in phase angles譬 _ 9 < mu, double line 26. Similarly, Figures 8b and 8c illustrate a double Ο 曲线 curve 26 resulting from a difference in phase angle between two pairs of other sensors and a different value of ~. Figure 8 illustrates all hyperbolic curves produced by the sensor. Contact position 24 is the intersection of three hyperbola, each pair of sensors corresponding to a double hyperbolic line. The correct value of ^ can be inferred from the contact location 24. The method of inferring 〇 can be implemented using a specific embodiment not shown in FIG. The bending wave signal shame (1) measured by each sensor is processed by two bandpass subtraction writes. Two phase angles are calculated, one for each pair of choppers', for example, as described in FIG. The chopper...having a slightly different pass f frequency provides two phase angle differences by each pair of sensors, each passband frequency corresponding to a difference. The phase angle difference Δ&, 4 of the sensor can be defined as: = Ηω0 + ωδ ) Δχ + Aθb:=^ω0^ωδ)Ax^2mh combination: where Δχ is the single defined by the contact and sensor position Path length difference. The correct combination (na, nb) can be used to minimize the following expression: A0a - 2; ma Aeb - 2mh Κ ω0 + ω δ) ) ^ {ω^ωδ) The path length difference can be estimated as: 127365.doc -21 . 200817987 Δχ A^a~2^na ^ A9h-2Tmh 2 ^ k(<2>0 + co5 ) k(it)0 —6?^) Another pair of sensors can be used to determine a path The difference in length defines the parent point of a hyperbola on the panel as the contact position. As shown in Figures 8a through 8j, the intersection of the largest number of hyperbola is likely to be the true second path length difference. Each. These two hyperbolas draw a hyperbola and the contact position. Figure 10 illustrates an alternative method for calculating the contact position from the above equation:

Ο i.測量-對彎曲波信號1⑴與⑴,每個信號分別係由 一感測器測量; ii·使用圖MUa中所述之方法計算兩個信號之離差校正 的相關函數; ni.使用離差校正的相關函數計算接觸的初始位置,如圖 11與1 la所述; iv. 重新測量彎曲波信號Wi⑴與Wj(t); v. 計算每個信號的相位角—例如,如圖〜與%所述; vi·計算相位角之間的差異; vii·選擇使路徑長度差異的變動最小化的i值; viii·繪製由下式所定義的雙曲線·· k(to0)A^ij - 2πη^ IX·重複步驟(iv)至(viii),重新測量規則間隔以(例如 △t = 2;r/^)的彎曲波信號。 在步驟(Viii),需要來自數對不同感測器的兩條雙曲線之 最小值來決定接觸位置。因此,必須為至少兩對感測器同 時κ行整個程序。因此,必須決定兩個相位角差異的最小 127365.doc -22- 200817987 值如圖9所述,藉由使用兩個感測器並將該信號分成兩 個頻帶而產生兩個相位角差異。或者,可使用多個感測 器,以便使用數對不同的感測器來計算多重相位角差異。 圖11說明計算離差校正的相關函數以顯示接觸位置與感 測器之間的路徑長度差異之方法。以下提出的方法概述了 PCT/GB2GG2/G()3G73中之資訊。該方法包括下列步驟: (a) 測量兩個彎曲波信號Wi⑴與W2(t); (b) 計算Wl⑴與W2⑴的傅立葉變換以得至⑼⑻與%㈣並因 而得到中間函數―一;其W⑻為複數共輛傅立葉 變換’ t代表時間’ α為2 ;rf,其中^為頻率。 ⑷計算一第二中間函數,其為一农⑻勾⑽之函數 (d)與(e)在實行步驟(a)s(c)的同時,使用預定的面板離差 關係k = (A/B)1/4‘來計算頻率延伸運算咖卜心/时/4“。 (f) 組^ ^㈣與咖)=以得到離差校正之相關函數·· G(〇 = I £ M[f(iy)]exp(iiyt)diy ;以及 (g) 根據時間繪製離差校正之相關函數,峰值發生在時間 ti2處’如圖11a所示; 〇)從tu計异Δ、; ΔΧΐ2為從第一與第二感測器至接觸的路徑 長度Χι與x2之間的路徑長度差異。 ⑴Δχ】2疋義一雙曲線,其可如圖7所示繪製,以計算接觸位 置。 如使用圖10之方法,需要兩條雙曲線的最小值來決定接 觸位置。因此,上述產生更多雙曲線之方式可應用於此方 法0 127365.doc -23· 200817987 第一中間函數Μ⑻可簡單地為夾⑻命:⑻,其可提供一標 準的離差校正之相關函數。或者,Μ(的可從下列函數中選 擇,此等函數皆會產生標準的離差校正之相關函數的相位 等效函數: c) M⑻=免⑻古2»||免⑻先>:)|j其中〆χ)為一實值函數Ο i. Measurement - for bending wave signals 1 (1) and (1), each signal is measured by a sensor; ii · Calculate the correlation function of the dispersion correction of the two signals using the method described in Figure MUa; The correlation function of the dispersion correction calculates the initial position of the contact, as described in Figures 11 and 1 la; iv. Re-measures the bending wave signals Wi(1) and Wj(t); v. Calculates the phase angle of each signal—for example, as shown in Figure Vi. Calculate the difference between the phase angles; vii·Select the i value that minimizes the variation of the path length difference; viii·Draw a hyperbola defined by: k(to0)A^ij - 2πη^ IX. Repeat steps (iv) to (viii) to re-measure the bending wave signal at regular intervals (for example, Δt = 2; r/^). In step (Viii), the minimum of the two hyperbola from several pairs of different sensors is required to determine the contact position. Therefore, it is necessary to have the entire program for at least two pairs of sensors at the same time. Therefore, the minimum of the two phase angle differences must be determined. 127365.doc -22-200817987 The values are as shown in Figure 9, which produces two phase angle differences by using two sensors and splitting the signal into two bands. Alternatively, multiple sensors can be used to calculate multiple phase angle differences using pairs of different sensors. Figure 11 illustrates a method of calculating the correlation function of the dispersion correction to show the difference in path length between the contact position and the sensor. The method presented below outlines the information in PCT/GB2GG2/G()3G73. The method comprises the steps of: (a) measuring two bending wave signals Wi(1) and W2(t); (b) calculating a Fourier transform of W1(1) and W2(1) to obtain (9)(8) and %(4) and thus obtaining an intermediate function "one; its W(8) is The complex total Fourier transform 't represents time' α is 2; rf, where ^ is the frequency. (4) Calculate a second intermediate function, which is a function of the agricultural (8) hook (10) (d) and (e) while performing the step (a) s (c), using a predetermined panel dispersion relationship k = (A/B) ) 1/4' to calculate the frequency extension operation avatar / hour / 4". (f) group ^ ^ (four) and coffee = = to get the correlation function of the dispersion correction · · G (〇 = I £ M[f( Iy)]exp(iiyt)diy; and (g) plot the correlation function of the dispersion correction according to time, the peak occurs at time ti2' as shown in Fig. 11a; 〇) from Δ, ΔΧΐ2 is from the first The path length difference between the path lengths Χι and x2 of the contact with the second sensor. (1) Δχ] 2 疋 a hyperbola, which can be plotted as shown in Fig. 7 to calculate the contact position. If the method of Fig. 10 is used, The minimum of the two hyperbola is required to determine the contact position. Therefore, the above method of generating more hyperbola can be applied to this method. 0 127365.doc -23· 200817987 The first intermediate function Μ(8) can simply be the clip (8): (8) , which can provide a standard deviation correction correlation function. Or, Μ (can be selected from the following functions, all of which will produce standard deviation Equivalent function of the phase correction correlation function: c) M⑻ = Free ⑻ ancient 2 »|| Free first ⑻ > :) | j wherein 〆χ) is a real-valued function

d) Μ⑻=灾⑽古2»⑻,其中㈧甽為一實值函數 或者,Μ(的可為函數ό㈣,其為相關函數D⑴的傅立葉變 換:ο(ΐ)〇(ί + ί,)\ν2(〇ώ, 該等步驟為計算D(t);計算&叫並應用一頻率延伸運算 以得出離差校正之相關函數:G(t)=去仁如⑻㈣㈣)如。贫 或者,1在步驟(f),可計算下列離差校正之相關函數: G(t) = 5 f>i[f ⑽撕[f(WM2[f ㈣哪⑽)d ⑺ 其中 私2 ⑻=Σ免»化』(_χρ[-ϋί(ω)Δχ ]d) Μ(8)= Disaster (10) Ancient 2»(8), where (8) is a real-valued function or Μ( can be a function ό(4), which is the Fourier transform of the correlation function D(1): ο(ΐ)〇(ί + ί,)\ Ν2 (〇ώ, these steps are to calculate D(t); calculate & call and apply a frequency extension operation to obtain the correlation function of the dispersion correction: G(t) = go to Ren as (8) (four) (four)) such as poor or, 1 In step (f), the following correlation function of the dispersion correction can be calculated: G(t) = 5 f>i[f (10) tear [f(WM2[f (4) which (10)) d (7) where private 2 (8) = forgiveness » 』(_χρ[-ϋί(ω)Δχ ]

j J J 其中{九㈣}與{ }為兩個所測量之彎曲波信號{ Wi』⑴} 與{ W2,j(t)}的傅立葉變換與複數共輛傅立葉變換,且{知]為 路徑長度差異。 ^ -感測器可當作第-與第二感測器,其中該離差校正之 相關函數為-自動相關函數。可使用W1⑴,⑴對該離差 校正之相關函數應用相同的步驟而計算自動相關函數。 127365.doc -24- 200817987 圖12a祝明一兼作揚聲器操作的接觸敏感裝置。圖以^說 明用於將聲頻信號以及所測量的信號分成兩個不同的頻帶 ,便抑制聲頻信號對已處理之所測量信號的貢獻之方法。 装置〇括°卩件106,其中藉由一發射轉換器或驅動器 108與该接觸產生彎曲波。反射轉換器將一聲頻信號施加 於。卩件106以產生一聲輸出。在施加於該部件之前,藉由 一低通濾波器112過濾該聲頻信號,如圖12b所示,該瀘波 器移除臨界頻率f〇以上的聲頻信號。 如圖12b所示,該接觸產生一信號,該信號之功率輸出 在一較大頻帶上實質上不變。將來自該接觸的信號與該聲 頻化唬加總以得到一組合式信號,該組合式信號通過高通 濾波器114以移除臨界頻率心以上的信號。然後將該已過濾 的信號傳送至一數位化器116以及一處理器118上。 【圖式簡單說明】 上文已藉由範例在附圖中概略性說明本發明,其中: 圖1為根據本發明一方面之觸控敏感裝置之示意平面 圖, 圖2為圖1之裝置之示意透視圖; 圖3為一維樑之示意側視圖; 圖4a為說明反射係數之振幅對頻率(Hz)之曲線圖,因振 幅為一比率故無單位; 圖化為說明反射係數之相位(以弧度為單位)對頻率(Hz) 之曲線圖; 圖5a與5b為替代性觸控敏感裝置之示意透視圖; 127365.doc -25- 200817987 圖6為根據本發明找到接觸位置之方法之流程圖; 圖7a為用於計算相位角之設備之示意方塊圖; 圖7b為結合W7a之設備使用之設備的示意方塊圖; 圖8a至8d為根據本發明之設備之平面圖,說明路徑長度 差異之雙曲線; 圖9為用於計算相位角之替代性設備之示意方塊圖,· 圖10為說明計算接觸位置之替代性方法之流程圖;j JJ where {9(4)} and {} are the two measured Four-Dimensional and Four-Fourier Fourier transforms of the bending wave signal {Wi"(1)} and {W2,j(t)}, and {know] is the path length difference. ^ - The sensor can be regarded as a first-and second-sensor, wherein the correlation function of the dispersion correction is an auto-correlation function. The autocorrelation function can be calculated by applying the same steps to the correlation function of the dispersion correction using W1(1), (1). 127365.doc -24- 200817987 Figure 12a shows a touch sensitive device that also serves as a speaker. The figure illustrates a method for suppressing the contribution of an audio signal to a processed signal that has been processed by dividing the audio signal and the measured signal into two different frequency bands. The device includes a device 106 in which a bending wave is generated by a transmit transducer or driver 108. The reflection converter applies an audio signal to it. Element 106 is used to produce an output. The audio signal is filtered by a low pass filter 112 prior to application to the component, as shown in Figure 12b, which removes the audio signal above the critical frequency f〇. As shown in Figure 12b, the contact produces a signal whose power output is substantially constant over a larger frequency band. The signal from the contact is summed with the audio frequency to obtain a combined signal that passes through the high pass filter 114 to remove signals above the critical frequency center. The filtered signal is then passed to a digitizer 116 and a processor 118. BRIEF DESCRIPTION OF THE DRAWINGS The present invention is schematically illustrated in the accompanying drawings in which: FIG. 1 is a schematic plan view of a touch sensitive device according to an aspect of the present invention, and FIG. 2 is a schematic view of the device of FIG. Figure 3 is a schematic side view of a one-dimensional beam; Figure 4a is a graph illustrating the amplitude versus frequency (Hz) of the reflection coefficient, since the amplitude is a ratio, there is no unit; the graph is the phase of the reflection coefficient (in terms of Graph of radians (in radians) versus frequency (Hz); Figures 5a and 5b are schematic perspective views of alternative touch sensitive devices; 127365.doc -25- 200817987 Figure 6 is a flow chart of a method for finding contact locations in accordance with the present invention Figure 7a is a schematic block diagram of an apparatus for calculating a phase angle; Figure 7b is a schematic block diagram of an apparatus for use with a device incorporating W7a; Figures 8a to 8d are plan views of a device according to the present invention, illustrating a difference in path length Figure 9 is a schematic block diagram of an alternative device for calculating a phase angle, and Figure 10 is a flow chart illustrating an alternative method of calculating a contact position;

圖11為使用離差校正之相關函數計算接觸位置之方法之 流程圖; 圖11 a為離差校正之相關函數對時間的曲線圖,以及 圖12a為兼作一揚聲器操作之接觸敏感裝置之示意方塊 圖,以及 圖12b說明在圖12a之裝置中分離聲頻信號與所測量彎曲 波信號之方法。 【主要元件符號說明】 10 接觸敏感裝置 12 觸控敏感板 14 顯示裝置 16 感測器 18 觸控筆 20 文字 22 安裝架 24 接觸位置 26 雙曲線 127365.doc Ο 200817987 28 凸起表面圖案(週期性) 29 凸起表面圖案(隨機) 30 路徑 32 彎曲波 34 波導 36 邊緣安裝架 38 入射波 40 反射波11 is a flow chart of a method for calculating a contact position using a correlation function of dispersion correction; FIG. 11a is a graph of correlation function of dispersion correction versus time, and FIG. 12a is a schematic block of a touch sensitive device that doubles as a speaker operation. Figure, and Figure 12b illustrate a method of separating an audio signal from a measured bending wave signal in the apparatus of Figure 12a. [Main component symbol description] 10 Touch sensitive device 12 Touch sensitive panel 14 Display device 16 Sensor 18 Stylus 20 Text 22 Mounting bracket 24 Contact position 26 Hyperbola 127365.doc Ο 200817987 28 Raised surface pattern (periodic 29 raised surface pattern (random) 30 path 32 bending wave 34 waveguide 36 edge mount 38 incident wave 40 reflected wave

ϋ 42 放大器 44 類比帶通濾波器 46 類比相位偵測器 48 低通濾波器 50 數位化器 52 處理器 54 帶通濾波器 106 部件 108 轉換器或驅動器 112 低通濾波器 114 高通濾波器 116 數位化器 118 處理器 127365.doc -27-ϋ 42 Amplifier 44 Analog Bandpass Filter 46 Analog Phase Detector 48 Low Pass Filter 50 Digitalizer 52 Processor 54 Bandpass Filter 106 Component 108 Converter or Driver 112 Low Pass Filter 114 High Pass Filter 116 Digital Processor 118 processor 127365.doc -27-

Claims (1)

200817987 、申請專利範圍: 一種接觸敏感裝置,包括: 一能夠支承彎曲波之部件; :褒於该部件上用於測量該部件中之彎曲波振動之複數 固感測器,其中每個感測器測定一所測量的彎曲波作 號; 13 :處理器’該處理器藉由該等所測量的彎曲波信號計算 该部件上一接觸之位置; 该處理器計算每個所測量f曲波信號之—相位角以及至 少兩對感測器之相位角之間的一相位差,以便計算至少 兩個相位差,並從該等至少兩個相位差計算該接觸之位 置; 其中每對感測器之相位角間之該相位差由下列等式決 定: ' △6L = Hk〇0)AXim + 2_m, 其中^及心為個別經測定之彎曲波信號之相位角, AXlm-X/-xw為感測器對中該兩個感測器間的路徑長度 差,X/及X所為該接觸位置到該兩個感測器之每一個的相 對距離’ k(仍。)為波向量以及&為一整數。 2·如申請專利範圍第丨項之接觸敏感裝置,其中該部件係一 圖形使用者介面之輸入裝置;該處理器被用於利用與預期 的接觸位置相關之信號計算該接觸位置。 3 .如申明專利範圍第2項之接觸敏感裝置,其中該圖形使 用者介面讓使用者可以看到用於接觸的選擇按鈕位置,· 127365.doc 200817987 且該處理n於測定該接觸位置時,被假設成在該部件上 的任何接觸均發生在該等選擇鈕位置内。 如申凊專利範圍第3項之接觸敏感裝置,其中利用一接 觸可此^生於何處之機率值,於便測定該接觸位置。 5·如申睛專利範圍第4項之接觸敏感裝置,其中該機率值 係β亥圖$使用者介面上的顯示的物件的一個或多個的 位置、大小及頻率為基礎。 f ϋ &如中請專利範圍第i項之接觸敏感裝置,其中的感測器 為壓電振動感測器。 7·如申睛專利範圍第丨項之接觸敏感裝置,其中對每一對 感測器測定出-個別的路徑長度差之數值;由兩個路徑 長度差的數值定義出兩個雙曲線,利用該等雙曲線決定 出的一個交又點來定義出該接觸位置。 8·如中#專利||圍第7項之接觸敏感$ f,其進一步包 括.-複數個帶通遽波器,且其中每_個感測器藉由兩 個帶通遽波器以便測量該彎曲波信號,且計算相對於每 個感測器的兩個相位角及相對於每一對感測器計算出兩 個相位角差。 9. -種決定一能夠支承彎曲》皮之部件上之一接觸位置之方 亡’ 4部件之内具有一複數個用於測量彎曲波動的感測 器該方法之步驟包括: 才應於在忒邛件上之一位置施加之一接觸,該等感測器 分別量測彎曲波信號;且 利用至少兩感測器對的每一感測器對之至少一路徑長度 127365.doc 200817987 路徑長 的該彎 差測定4接觸之位置’該每—感測器對之至少一 度差係根據該感測器對的該等感測器分別鎖測得 曲波信號之一相位角差而測定。 ίο. 11.200817987, Patent Application Range: A touch sensitive device comprising: a component capable of supporting a bending wave; a plurality of solid sensors for measuring bending wave vibrations in the component, wherein each sensor Determining a measured bending wave number; 13: The processor calculates the position of the last contact of the component by the measured bending wave signal; the processor calculates each measured f-wave signal - a phase angle and a phase difference between phase angles of at least two pairs of sensors to calculate at least two phase differences and calculate a position of the contact from the at least two phase differences; wherein each pair of sensors is in phase The phase difference between the angles is determined by the following equation: ' △6L = Hk〇0)AXim + 2_m, where ^ and the heart are the phase angles of the individual measured bending wave signals, AXlm-X/-xw is the sensor pair The path length difference between the two sensors, X/X is the relative distance 'k (still) of the contact position to each of the two sensors is a wave vector and & is an integer. 2. The touch sensitive device of claim 3, wherein the component is an input device of a graphical user interface; the processor is operative to calculate the contact location using a signal associated with the expected contact location. 3. The touch sensitive device of claim 2, wherein the graphical user interface allows the user to see the position of the selection button for contact, 127365.doc 200817987 and the process n determines the contact position Any contact assumed to be on the component occurs within the selector button position. The contact sensitive device of claim 3, wherein the contact position is determined by a probability value of where the contact can be made. 5. The touch sensitive device of claim 4, wherein the probability value is based on the position, size and frequency of one or more of the displayed objects on the user interface. f ϋ & As in the touch sensitive device of the patent scope i, the sensor is a piezoelectric vibration sensor. 7. The contact sensitive device of claim 3, wherein the value of the individual path length difference is determined for each pair of sensors; two hyperbolic curves are defined by the values of the two path length differences, The intersections determined by the hyperbola define the contact position. 8·如中#Patent||The contact sensitive $f of item 7 further includes: - a plurality of bandpass choppers, and each of the sensors is measured by two bandpass choppers The bending wave signal is calculated and two phase angles are calculated relative to each sensor and two phase angle differences are calculated relative to each pair of sensors. 9. A method of determining the position of a contact on a part of a part that can support the bending of the skin. There are a plurality of sensors for measuring the bending fluctuations within the 4 parts. The steps of the method include: Applying one of the contacts on one of the components, the sensors respectively measuring the bending wave signal; and utilizing at least one path length of each sensor pair of the at least two sensor pairs 127365.doc 200817987 path length The difference in position 4 of the measurement of the difference is determined by measuring the phase angle difference of one of the curved wave signals of the sensors of the pair of sensors. Οο. 11. 如申請專利範圍第9項之方法,其進一步包括; 於測定該接觸位置時利用關於接觸預期位置的資訊。 如申請專利範圍第Η)項之方法,其中該部件係1形使 用者介面,且該部件對使用者顯示一種選擇,該 具有數個按鍵的接觸位置;且 該方法進一步包含: 於決疋該接觸位置時, 會發生在該等按鍵位置 設定成在該部件上的該任何接觸 内。 12.如申請專利範圍第10項之方法,其進一步包括 於便測定 使用一接觸可能發生於一特定位置之機率值, 該接觸位置。 Β如中請專利範圍第12項之方法,其中該接觸發生於 U 定位置的機率值係以該圖形使用者介面上的顯示的物件 的一個或多個的位置、大小及頻率為基礎。 14.如申請專利範圍第9項之方法,其中該每對感測器之相 位角間之該相位差由下列等式決定·· A6im - θι-θπι — k(6>0)Axim + 2^mm , 其中^及‘為個別經測定之彎曲波信號之相位角 △Xlm=X/-X所為感測器對中該兩個感測器間的路徑長戶 差’ X/及Xm為該接觸位置到該兩個感測器一 '^一 1固的相 對距離,k(⑺〇)為波向量以及^為一整數;且 127365.doc 200817987 該方法進一步包括; 使用一狀態空間估計器估計 Φ A ^1 ^ m此的連續序列並於該序列 中選擇具有最大測置可能性的—連續序列。 15·如申請專利範圍第14項之方 、 / 其進一步向枯· 該狀態空間估計器利用於不同 b · 子間取仔的一對路押县庚 差構成的續列,估計該等 對路仅長度 度。 專不问時間之該接觸的位置及速 Ο 16.如申請專利範圍第15項之方法,進—牛 選擇該等整數^的一個正 ^ 乂匕. 1 ’该狀態空間估計器對該正 確序列給予一最大可能性測量值。 17·如申請專利範圍第14項 、 法’其中狀態空間估計器使 用一隨機步行模式作為對 了 接觸的動作的一統計說明模 式0 、 18.=請專利範圍第9項之方法,其中於—處理器内進行 測疋該接觸之位置之處理。 Ο 19·如申請專利範圍第9 、之方法,其中對每一對感測器測 疋出一個別的路經長产莫 1二食度爰之數值;且由兩個路徑長度差 的數值定義出兩個簪曲合 ^ 雙曲線’利用該等雙曲線決定出的一 個交又點來定義出該接觸位置。 請專利範圍第19項之方法,其進一步包括: i 、]器使用刀離的數個帶通濾波器對該彎曲波信 進行量測; 對母個感測器量得的該f曲波信號計算出兩個相位 角’该專相立fe A- 角的母一個相應於每一個帶通濾波器;及 127365.doc 200817987 對每一對感測器提供兩個相位角差; 對於該每一對感測器的兩個相位角差,被用於計算對於 該每一對感測器的該個別的路徑長度差之數值。 21.如申請專利範圍第9項之方法,其中於一處理器内進行 測定該接觸位置之處理。 Γ 127365.docThe method of claim 9, further comprising: utilizing information about the expected location of contact when determining the contact location. The method of claim 2, wherein the component is a 1-shaped user interface, and the component displays a selection to the user, the contact position having a plurality of buttons; and the method further comprises: When the position is touched, it occurs that the button positions are set to be within any of the contacts on the component. 12. The method of claim 10, further comprising determining a probability value at which a contact may occur at a particular location, the contact location. For example, the method of claim 12, wherein the probability that the contact occurs at the U position is based on the position, size, and frequency of one or more of the displayed objects on the graphical user interface. 14. The method of claim 9, wherein the phase difference between the phase angles of the pair of sensors is determined by the following equation: · A6im - θι-θπι — k(6>0) Axim + 2^mm , where ^ and ' are the measured phase angles of the bending wave signals ΔXlm=X/-X, which are the path length difference between the two sensors in the sensor pair 'X/ and Xm are the contact positions To the relative distance of the two sensors, k((7)〇) is the wave vector and ^ is an integer; and 127365.doc 200817987 The method further comprises: estimating a Φ A using a state space estimator A contiguous sequence of ^1 ^ m and a contiguous sequence with the greatest probability of being set is selected in the sequence. 15. If the patent application is in accordance with item 14 of the patent scope, / or further, the state space estimator is used to continually construct a pair of roads, and the pair of roads are different. Only length. Specifically, regardless of the location and speed of the contact. 16. If you apply for the method of item 15 of the patent, enter the cow to select a positive ^ 乂匕. 1 'the state space estimator for the correct sequence Give a maximum likelihood measurement. 17. If the scope of patent application is 14th, the law 'where the state space estimator uses a random walking mode as a statistical description of the action of the contact mode 0, 18. = the method of claim 9 of the patent scope, where - The processing of detecting the position of the contact is performed in the processor. Ο 19. The method of claim 9, wherein each pair of sensors measures a value of a long path of production and is defined by a value of two path length differences. The two warpings ^ hyperbola ' define the contact position by using a point and point determined by the hyperbola. The method of claim 19, further comprising: i, the device measuring the bending wave signal using a plurality of band pass filters of the knife; calculating the f curve wave signal measured by the mother sensor Two phase angles 'the one of the exclusive fe A- angles corresponds to each bandpass filter; and 127365.doc 200817987 provides two phase angle differences for each pair of sensors; for each pair The two phase angle differences of the sensor are used to calculate the value of the individual path length difference for each pair of sensors. 21. The method of claim 9, wherein the processing of determining the contact position is performed in a processor. Γ 127365.doc
TW096148292A 2002-12-06 2003-12-05 Contact sensitive device and method of determining information relating to a contact thereon TWI348115B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB0228512.0A GB0228512D0 (en) 2002-12-06 2002-12-06 Contact sensitive device

Publications (2)

Publication Number Publication Date
TW200817987A true TW200817987A (en) 2008-04-16
TWI348115B TWI348115B (en) 2011-09-01

Family

ID=9949218

Family Applications (2)

Application Number Title Priority Date Filing Date
TW096148292A TWI348115B (en) 2002-12-06 2003-12-05 Contact sensitive device and method of determining information relating to a contact thereon
TW092134393A TWI308709B (en) 2002-12-06 2003-12-05 Contact sensitive device and method of determinign information relating to a contact thereon

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW092134393A TWI308709B (en) 2002-12-06 2003-12-05 Contact sensitive device and method of determinign information relating to a contact thereon

Country Status (12)

Country Link
EP (1) EP1570414A2 (en)
JP (1) JP4613068B2 (en)
KR (1) KR101121891B1 (en)
CN (1) CN100405266C (en)
AR (1) AR042333A1 (en)
AU (1) AU2003288416A1 (en)
BR (1) BR0317049A (en)
CA (1) CA2506789A1 (en)
GB (1) GB0228512D0 (en)
MX (1) MXPA05006040A (en)
TW (2) TWI348115B (en)
WO (1) WO2004053781A2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003319A1 (en) * 2005-01-17 2006-07-27 E.G.O. Elektro-Gerätebau GmbH Electrical-household device e.g. baking oven, operating mechanism, has converter for determining position of article or finger of operating person to produce position-dependent operating signal
US7593005B2 (en) * 2005-12-13 2009-09-22 Awr Consulting Inc. Touch detection system
US8013846B2 (en) * 2006-02-10 2011-09-06 Tpk Holding Co., Ltd. Touch detection
FR2916545B1 (en) * 2007-05-23 2009-11-20 Inst Pour Le Dev De La Science METHOD FOR LOCATING A TOUCH ON A SURFACE AND DEVICE FOR IMPLEMENTING SAID METHOD
US8378974B2 (en) 2007-07-02 2013-02-19 Elo Touch Solutions, Inc. Method and system for detecting touch events based on magnitude ratios
US8730213B2 (en) 2007-07-02 2014-05-20 Elo Touch Solutions, Inc. Method and system for detecting touch events based on redundant validation
AR064377A1 (en) 2007-12-17 2009-04-01 Rovere Victor Manuel Suarez DEVICE FOR SENSING MULTIPLE CONTACT AREAS AGAINST OBJECTS SIMULTANEOUSLY
KR20110052621A (en) * 2008-07-15 2011-05-18 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Systems and methods for correction of variations in speed of signal propagation through a touch contact surface
GB2462465B (en) 2008-08-08 2013-02-13 Hiwave Technologies Uk Ltd Touch sensitive device
GB2464117B (en) 2008-10-03 2015-01-28 Hiwave Technologies Uk Ltd Touch sensitive device
JP5526557B2 (en) * 2009-02-19 2014-06-18 日本電気株式会社 Electronic pen and electronic pen system
GB0905692D0 (en) 2009-04-02 2009-05-20 Tno Touch sensitive device
JP2012523603A (en) 2009-04-09 2012-10-04 ニュー トランスデューサーズ リミテッド Touch sense device
GB2474047B (en) 2009-10-02 2014-12-17 New Transducers Ltd Touch sensitive device
TWI441049B (en) 2009-10-09 2014-06-11 Egalax Empia Technology Inc Method and device for determining a touch or touches
WO2011041941A1 (en) 2009-10-09 2011-04-14 禾瑞亚科技股份有限公司 Method and apparatus for converting sensing information
TWI430150B (en) 2009-10-09 2014-03-11 Egalax Empia Technology Inc Method and device for analyzing two dimension sensing information
WO2011041944A1 (en) 2009-10-09 2011-04-14 禾瑞亚科技股份有限公司 Method and device for dual-differential sensing
TWI506486B (en) 2009-10-09 2015-11-01 Egalax Empia Technology Inc Method and device for analyzing positions
CN102043551B (en) 2009-10-09 2013-05-08 禾瑞亚科技股份有限公司 Method and device for capacitive position detection
US9864471B2 (en) 2009-10-09 2018-01-09 Egalax_Empia Technology Inc. Method and processor for analyzing two-dimension information
CN102043557B (en) 2009-10-09 2013-04-24 禾瑞亚科技股份有限公司 Method and device of position detection
US8488413B2 (en) 2009-10-16 2013-07-16 Casio Computer Co., Ltd. Indicated position detecting apparatus and indicated position detecting method
KR20120101359A (en) 2009-10-29 2012-09-13 하이웨이브 테크놀러지스 (유케이) 리미티드 Touch sensitive device employing bending wave vibration sensors that detect touch location and provide haptic feedback
JP2013517548A (en) * 2010-01-13 2013-05-16 イーロ・タッチ・ソリューションズ・インコーポレイテッド Noise reduction in electronic devices with touch-sensitive surfaces
US8576202B2 (en) * 2010-03-25 2013-11-05 Elo Touch Solutions, Inc. Bezel-less acoustic touch apparatus
GB2482190A (en) 2010-07-23 2012-01-25 New Transducers Ltd Methods of generating a desired haptic sensation in a touch sensitive device
TWI407346B (en) * 2010-07-30 2013-09-01 Ind Tech Res Inst Track compensation methods and systems for touch-sensitive input devices, and computer program products thereof
JP2012128668A (en) * 2010-12-15 2012-07-05 Nikon Corp Electronic device
CN102012766A (en) * 2011-01-04 2011-04-13 苏州瀚瑞微电子有限公司 Method for sensing multi-finger touch on touch panel
TWI584181B (en) * 2011-01-07 2017-05-21 禾瑞亞科技股份有限公司 Capacitive sensor and detection method using the same
TWI475451B (en) * 2011-01-07 2015-03-01 Egalax Empia Technology Inc Capacitive sensor and detection method using the same
CN104506178B (en) * 2011-01-14 2018-06-05 禾瑞亚科技股份有限公司 Capacitance type sensor and its method for detecting
CN102594328B (en) * 2011-01-14 2015-05-20 禾瑞亚科技股份有限公司 Capacitance type sensor and detection method thereof
JP5449464B2 (en) * 2012-06-27 2014-03-19 シャープ株式会社 Touch panel controller, touch panel device, and electronic information device
CN103064558B (en) * 2013-01-07 2015-12-23 南京大学 Method and the electronic whiteboard that inputs of tangible gesture of touch gestures input is realized in electronic whiteboard

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691959A (en) * 1994-04-06 1997-11-25 Fujitsu, Ltd. Stylus position digitizer using acoustic waves
JP3895406B2 (en) * 1996-03-12 2007-03-22 株式会社東邦ビジネス管理センター Data processing apparatus and data processing method
US5838088A (en) * 1997-03-06 1998-11-17 Toda; Kohji Surface acoustic wave device for sensing a touch-position
US6414673B1 (en) * 1998-11-10 2002-07-02 Tidenet, Inc. Transmitter pen location system
WO2001048684A2 (en) 1999-12-23 2001-07-05 New Transducers Limited Contact sensitive device
JP2002182841A (en) * 2000-12-15 2002-06-28 Ricoh Co Ltd Coordinates input device
JP3988476B2 (en) * 2001-03-23 2007-10-10 セイコーエプソン株式会社 Coordinate input device and display device

Also Published As

Publication number Publication date
WO2004053781A3 (en) 2004-12-02
TWI348115B (en) 2011-09-01
CA2506789A1 (en) 2004-06-24
JP4613068B2 (en) 2011-01-12
KR20050088103A (en) 2005-09-01
GB0228512D0 (en) 2003-01-15
TWI308709B (en) 2009-04-11
EP1570414A2 (en) 2005-09-07
JP2006509301A (en) 2006-03-16
KR101121891B1 (en) 2012-03-20
AR042333A1 (en) 2005-06-15
BR0317049A (en) 2005-10-25
CN100405266C (en) 2008-07-23
MXPA05006040A (en) 2006-01-27
AU2003288416A1 (en) 2004-06-30
CN1720498A (en) 2006-01-11
TW200424916A (en) 2004-11-16
WO2004053781A2 (en) 2004-06-24

Similar Documents

Publication Publication Date Title
TW200817987A (en) Contact sensitive device and method of determining information relating to a contact thereon
US7376523B2 (en) Contact sensitive device
US6922642B2 (en) Contact sensitive device
AU778231B2 (en) Contact sensitive device
US8830211B2 (en) Contact sensitive device
US7499039B2 (en) Iterative method for determining touch location
US20120081337A1 (en) Active Acoustic Multi-Touch and Swipe Detection for Electronic Devices
TWI292884B (en)
JPH065496B2 (en) Ultrasonic application tablet
AU2002317294A1 (en) Contact sensitive device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees