CN1692295B - 用于检测多个光波长的方法和设备 - Google Patents
用于检测多个光波长的方法和设备 Download PDFInfo
- Publication number
- CN1692295B CN1692295B CN038199912A CN03819991A CN1692295B CN 1692295 B CN1692295 B CN 1692295B CN 038199912 A CN038199912 A CN 038199912A CN 03819991 A CN03819991 A CN 03819991A CN 1692295 B CN1692295 B CN 1692295B
- Authority
- CN
- China
- Prior art keywords
- wavelength
- waveguide
- grating
- bsg
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title abstract description 105
- 230000008878 coupling Effects 0.000 claims abstract description 52
- 238000010168 coupling process Methods 0.000 claims abstract description 52
- 238000005859 coupling reaction Methods 0.000 claims abstract description 52
- 230000005855 radiation Effects 0.000 claims abstract description 51
- 230000004044 response Effects 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 43
- 230000007246 mechanism Effects 0.000 claims description 33
- 230000032258 transport Effects 0.000 claims 2
- 230000006870 function Effects 0.000 abstract description 33
- 230000003595 spectral effect Effects 0.000 abstract description 15
- 238000010586 diagram Methods 0.000 description 38
- 230000000875 corresponding effect Effects 0.000 description 36
- 238000013461 design Methods 0.000 description 36
- 238000004088 simulation Methods 0.000 description 34
- 238000001228 spectrum Methods 0.000 description 30
- 239000006185 dispersion Substances 0.000 description 25
- 230000008859 change Effects 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 22
- 239000013307 optical fiber Substances 0.000 description 22
- 230000008569 process Effects 0.000 description 19
- 230000008901 benefit Effects 0.000 description 14
- 239000011159 matrix material Substances 0.000 description 14
- 238000011002 quantification Methods 0.000 description 13
- 238000005457 optimization Methods 0.000 description 10
- 238000005070 sampling Methods 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 230000003068 static effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000013139 quantization Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000000737 periodic effect Effects 0.000 description 6
- 238000005086 pumping Methods 0.000 description 6
- 230000002194 synthesizing effect Effects 0.000 description 6
- 238000001914 filtration Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000000985 reflectance spectrum Methods 0.000 description 5
- 238000010189 synthetic method Methods 0.000 description 5
- 241001270131 Agaricus moelleri Species 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000001795 light effect Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000009022 nonlinear effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000005316 response function Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000019463 artificial additive Nutrition 0.000 description 1
- 238000001210 attenuated total reflectance infrared spectroscopy Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005571 horizontal transmission Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012905 input function Methods 0.000 description 1
- 238000007620 mathematical function Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- -1 rayed Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- GOLXNESZZPUPJE-UHFFFAOYSA-N spiromesifen Chemical compound CC1=CC(C)=CC(C)=C1C(C(O1)=O)=C(OC(=O)CC(C)(C)C)C11CCCC1 GOLXNESZZPUPJE-UHFFFAOYSA-N 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29316—Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
- G02B6/29323—Coupling to or out of the diffractive element through the lateral surface of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02061—Grating external to the fibre and in contact with the fibre, e.g. evanescently coupled, gratings applied to the fibre end
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29331—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
- G02B6/29332—Wavelength selective couplers, i.e. based on evanescent coupling between light guides, e.g. fused fibre couplers with transverse coupling between fibres having different propagation constant wavelength dependency
- G02B6/29334—Grating-assisted evanescent light guide couplers, i.e. comprising grating at or functionally associated with the coupling region between the light guides, e.g. with a grating positioned where light fields overlap in the coupler
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29379—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
- G02B6/2938—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
- G02B6/29382—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM including at least adding or dropping a signal, i.e. passing the majority of signals
- G02B6/29383—Adding and dropping
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29379—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
- G02B6/29391—Power equalisation of different channels, e.g. power flattening
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/025—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/061—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electro-optical organic material
- G02F1/065—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electro-optical organic material in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/0208—Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
- G02B6/02085—Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/02123—Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
- G02B6/02147—Point by point fabrication, i.e. grating elements induced one step at a time along the fibre, e.g. by scanning a laser beam, arc discharge scanning
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/02123—Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
- G02B6/02152—Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating involving moving the fibre or a manufacturing element, stretching of the fibre
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/02195—Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29316—Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
- G02B6/29317—Light guides of the optical fibre type
- G02B6/29319—With a cascade of diffractive elements or of diffraction operations
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29316—Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
- G02B6/29317—Light guides of the optical fibre type
- G02B6/29322—Diffractive elements of the tunable type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29379—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
- G02B6/29395—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/30—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
- G02F2201/307—Reflective grating, i.e. Bragg grating
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Communication System (AREA)
- Optical Integrated Circuits (AREA)
Abstract
执行在各种波长上的多个功能的光栅是通过各种保存波长带内的谱信息的方法来形成的,所述功能包括:把辐射从一个波导耦合到另一个,可控制的光栅在不同波长上工作以响应于外部控制信号。
Description
发明背景
1.发明领域
本发明总体上涉及检测光信号,并且更具体地涉及用超级光栅检测多个光波长。
2.现有技术
光栅是借助于光的干涉效应用来得到依赖于波长的特性的光学器件。这些依赖于波长的光的特性例如可以用来反射特定波长的光,同时传输或折射所有其他的波长的光。这样的特性在各种各样的情形下是有用的,包括在波分复用(WDM)光通信系统中提取各个波长信道,或提供特定于波长的反馈以用于可调谐的或多波长半导体激光器。光栅通常是通过调制(改变)波导结构的有效折射率来实施的。折射率的这些改变引起入射光波长被反射或折射:在两个折射率数值之间的突变的交界面上,直接入射到交界面的光按照熟知的菲涅耳反射定律被反射。
术语“多波长光栅”通常指能够在多个波长上呈现光特性的光栅。例如,多波长光栅可以是一种在几个选择波长(它们可相应于特定的光通信信道)上反射光、而对于其他波长的光是透明的光栅。然而,在某些情形下,需要设置对于连续的波长范围的光特性,而不是在特定的波长数值上。例如当试图借助于光栅补偿激光腔和光放大器中光的增益轮廓(profile)的不均匀性时。然而,很难用传统的光栅技术达到满足这个对于连续的波长范围的要求。
同样地,在通过利用不同波长的光把许多通信信道编码到单个光缆的情形下,可以使用一定范围的光波长;更一般地称为波分复用(WDM)技术。周期性光栅常常被使用来分离或处理这些信道。然而,周期性光栅技术处理一个波长,迫使打算处理多个波长的器件采用多个单波长周期性光栅。这不是一个吸引人的解决方案,因为除了每个光栅引起的附加损耗以外,甚至单个光栅按照今天的集成化和小型化标准也占用了大量空间。因此,希望有一种能够以空间经济的方式处理几个波长的单个器件。
在半导体激光器领域,半导体激光器的输出波长主要是由在激光器增益部分的周围或里面起到把想要的波长的光反射回激光器作用的“反馈元件”的存在决定的。对于多波长运行,需要多个波长反馈。再者,单波长光栅技术只能用单个光栅的级联解决这个要求,导致上述的同样的(即使不更明显)损耗和空间问题。
一个这样的单波长光栅器件是布拉格光栅。布拉格光栅包含折射率的周期性变化,并且充当对于与折射率图案的周期性(称为栅距(pitch),Λ)有关的单个波长的光的反射器;以及经常被使用于半导体系统和光纤系统。然而,在实践上,布拉格光栅实际可以在相应于它的基波栅距的谐波的几个波长上反射。然而,这些高阶波长往往是在与基波栅距有很大不同的光谱区域,因此使得布拉格光栅作为多波长反射器是不太有用的。而且,这些高阶波长互相不能被独立地调谐。
其他多波长光栅技术包括:模拟叠加光栅、采样光栅(SG)、超结构光栅(SSG)和双态超级光栅(BSG)。
模拟叠加光栅是广义布拉格光栅并且是基于叠加原理:包含单波长光栅的折射率轮廓(profile)的和值的光栅轮廓在它的所有组成波长上反射。这样的光栅依赖于模拟折射率变化,即沿光栅长度连续改变的折射率(图30)。然而,使用熟知的光折变效应很难刻出强的模拟光栅,因为折射率的改变在照射下非线性地变化,并且通常在更强的照射下呈现饱和。同样地,在表面上可再现地蚀刻模拟特性的困难使得提供表面起伏的模拟光栅(用于半导体的典型实施例)是不实际的。后者的困难导致引入了双态光栅,即依赖于相应于材料被蚀刻或不被蚀刻、被照射或不被照射的两个折射率值的光栅。
多波长双态光栅的两个代表是采样光栅(SG)和超结构光栅(SSG)。SG是利用交替波导的有光栅和无光栅区域的部分而构建的。交替部分产生具有包含在(典型地)对称包络内的多个反射峰值的衍射光谱。SG是固有地受限于位置的灵活性和反射峰值的相对强度,并且因为大部分无光栅的空间,它也是空间不经济的。所以,SG特别不适合于其中需要短的光栅或波导损耗高的情形。
对于超结构光栅(SSG),通过精细改变相应于一个齿槽周期的长度的光栅栅距,光栅周期被做成啁啾的(chirped)。这可被看作精细调谐的相移的序列;通常的相位轮廓包括线性和二次啁啾。这样的实施方案在原理上允许任意峰值位置和相对高度,但是却以极其高的分辨率为代价,相应于光栅齿本身的尺寸的非常小的部分。
关于双态叠加光栅合成的现有技术在以下文章中给出:Ivan A.Avrutsky,Dave S.Ellis,Alex Tager,Hanan Anis,和Jimmy M.Xu,“Design of widely tunable semiconductor lasers and theconcept of Binary Superimposed Gratings(BSG)(各种各样可调谐的半导体激光器的设计和双态叠加式光栅的概念)”IEEE J.Quantum Electron.,vol.34,pp.729-740,1998。
现有技术中的其他方法解决“多峰值”光栅的合成,所述“多峰值”光栅即特征为在几个“峰值”上反射的光栅,其可以在它们的位置和强度上被控制。在这些方法中,光栅工程师从一组正弦波开始,每个正弦波相应于单个反射峰值,并且按照该峰值的想要的相对强度被加权。这些峰值相加在一起(即进行叠加;因此BSG被称为叠加光栅)以产生“模拟轮廓”。这个轮廓然后通过简单的阈值方法被数字地量化。例如,如果模拟轮廓值是正的(大于预选的参考值),则相应的BSG分段是高的或双态1的折射率数值;如果它是负的,则相应的BSG分段是低的或双态零的折射率数值。
然而,这个方法在至少两个方面是不适合的:首先,阈值量化过程引入了交叉调制,它大大限制了照这样合成的BSG对于有源应用(激光器反馈单元等等)的可应用性。第二,这个合成过程局限于多峰值光栅,并且对于各个峰值形状几乎不提供或完全不提供控制。例如,它完全不能生成如某些通信应用想要的平顶信道,或不能生成由某些增益补偿和色散补偿方法要求的几乎任意的反射光谱。
用于BSG合成的其他方法包括通常计算上困难并且不经济的尝试法。
所以,希望提供一种用于克服在设计和合成用于检测光的波长的超级光栅方面的上述缺点的方法和设备。
附图简述
在以下的描述中结合附图说明本发明的上述方面和其他特征,其中:
图1是深光栅BSG的示意图;
图2是基带排除后k空间图的基本原理;
图3是在脊形波导中横向BSG的原型图;
图4是原型的二维(2D)超级光栅的示意图;
图5是用2D BSG实施的多级别一维(1D)超级光栅示意图;
图6是原型的三维(3D)超级光栅的示意图;
图7a-7d示出了可编程的超级光栅的实施例;
图8是同向定向不对称波导BSG耦合器的示意图;
图9是反向定向不对称波导BSG耦合器的示意图;
图10是反向定向对称波导BSG耦合器的示意图;
图11是栅格拓扑纵横接线器(cross bar switch)的示意图;
图12是利用6个开关元件的4光纤开关的实施例的示意图;
图13说明在光纤中实施BSG的单光子方法;
图14说明在光纤中实施BSG的多光子(示出了两个光子)方法;
图15是采用1D BSG的多路分解器的示意图;
图16是采用2D BSG的多路分解器的示意图;
图17是静态加上/卸下(add/drop)滤波器的示意图;
图18是Vernier调谐动态加上/卸下滤波器的示意图;
图19是可编程的BSG加上/卸下滤波器的示意图;
图20a-20c是基于BSG的波长稳定性监视器的实施例的示意图;
图21是2D BSG网络监视器的示意图;
图22是BSG动态WDM均衡器的示意图;
图23是增益平坦光放大器的示意图;
图24a-24b是λ路由器的实施例的示意图;
图25a-25d是BSG色散斜率补偿器的实施例的示意图;
图26a-26b是可调谐色散补偿器的示意图;
图27a-27c是可变反馈超级光栅激光器的示意图;
图28是在耦合波导与2D BSG实施例中的光束组合器的示意图;
图29a是基于BSG的隔离器的示意图;
图29b-29c是4端口耦合波导环行器的示意图;
图30是根据折射率改变Δn(Δn)对距离(x)的曲线的模拟折射率轮廓;
图31显示Δn对距离x的BSG折射率轮廓和相应的表面起伏的实施方案;
图32是显示用于增量总和调制的标准拓扑的方框图;
图33说明使用感生对称性的用于BSG的合成技术;
图34说明使用超奈奎斯特合成的用于BSG的合成技术;以及
图35是一个显示用于合成一个BSG的本发明的一个实施例的方法步骤的流程图。
图36a和36b说明与分立元件相比较的多路分解器的简化例子。
图37-45说明采用提供光子带隙结构的像素图案的实施例。
优选实施例的详细说明
虽然本发明是参照附图所示的实施例描述的,但应当理解,本发明可以以实施例的许多替换形式来体现,并且本发明不打算只限于所显示的实施例。
对于本发明来说,光栅被看作为用来借助于光的干涉效应达到依赖于波长的特性的光学器件。
从双态超级光栅(BSG)开始,将会认识到有两个主要的特性来区分BSG与其他光栅技术。第一,BSG依赖于折射率级别的离散的数目。这个数目在历史上是2,并且因此BSG被称为双态光栅。为了清晰和说明起见,本说明将集中在本发明的双态实施例,然而,将会认识到,在替换实施例中可以使用任何适当的离散级数的折射率。为了在权利要求中方便起见,术语超级光栅将用来指具有两个或多个数值的折射率的光栅,除非专门阐述。BSG的第二个规定的特性在于光栅像一个特征为采样长度的采样结构。这是指在光栅折射率层之间的过渡不能在任意位置发生、而是发生在采样长度的倍数的位置的事实。BSG因此在定义上类似于数字信号图案-即离散的采样波形。因此,BSG可以通过一系列(常常是双态)的数字来描述,所述数字表示在每个采样点处设置的折射率(见图31)。
现在参照图35,BSG设计牵涉到几个关键选择。步骤351选择用于器件的折射率级别,正如从材料参数和平版印刷或照相雕刻约束条件确定的那样。然后,步骤352确定想要的采样长度,考虑了用于光栅的想要的波长范围和可用的平版印刷分辨率。步骤353设置用于光栅的总的器件长度,由可用的物理空间和雕刻处理的技术限制条件限制。将会认识到,这里描述的方法是用于确定用于表面起伏光栅的光栅图案的;然而,在替换实施例中,所述方法可以容易地适合于光纤光栅图案或可编程的实施方案。下一个步骤354使用傅里叶近似把想要的光栅衍射特性变换到傅里叶域。这些衍射特性可以是反射的、传输的、同向或反向定向耦合或相称的散射或其任何组合;将会认识到,在全文中“反射系数”和“反射”可以用“交叉传输系数”和“交叉传输”代替。根据傅里叶近似,设计者可以初始地通过它的傅里叶谱设计光栅。正如下面将示出的,这个步骤考虑到近似的各种误差也可实施反馈,以便改进最后的结果。替换地,任何用于设计模拟折射率轮廓以达到想要的衍射特性的方法都是适当的,并且许多是现有技术上已知的。
下一个步骤355执行模拟折射率轮廓的量化。增量总和(delta-sigma)调制是可被使用和可被有效地实施的一个这样的量化技术。将会认识到,在替换实施例中可以使用任何合适的保留光谱带内的傅里叶信息的量化技术。使用诸如在所引用的Avrutsky等人的参考文献中显示的技术之类的不保留光谱带内的傅里叶信息的阈值量化技术的合成的方法和最终得到的光栅是不受欢迎的,但在某些情况下可能是有用的。在二维或三维辐射处理的情形下,其中在两个或三个维度上行进的辐射是重要的,以及在两个或三个维度上扩展的像素阵列是重要的,则任何量化方法可用来设计属于本定义范围内的设备。
下一个步骤356使用诸如称为转移矩阵方法之类的精确技术来确定BSG实际的衍射特性。这个计算确定傅里叶近似或所使用的其他合成方法的残留误差,并且如果步骤357确定误差超过预定的阈值,则量化可以被取回到傅里叶域并加到步骤353的结果上的误差。这个过程如有必要可以重复进行,尽管一次重复常常是足够的。将会认识到,可以使用任何合适的用于确定在想要的衍射特性与实际的衍射特性之间的误差的技术。
现在更详细地参考以上的每个步骤;在步骤353,傅里叶近似是把光栅的衍射特性(它可以是反射的、传输的、或相称的散射,或其任何组合)与它的折射率轮廓的结构相联系的数学关系式。换句话说,单波长光栅具有特征精确地在于它们的周期性结构的反射光谱,以及简单的叠加光栅具有特征在于它们的波长的反射光谱或反射光谱分量。所以,光栅的衍射光谱可以涉及到它的结构的傅里叶变换-傅里叶变换是用于估计波形的“频率内容”或“波长内容”的标准方法。
因此,将会认识到,本发明有利地使用傅里叶近似以提供一种用于从想要的反射技术规范生成模拟折射率轮廓的方法(逆傅里叶变换)。
还将会认识到,可以执行量化模拟折射率轮廓的步骤(步骤355)而不管模拟轮廓如何被确定。换句话说,不需要使用基于傅里叶的方法来得到模拟轮廓。
下面的例子说明了用于BSG合成的傅里叶近似:
简单峰值的合成
在某些情形下,例如具有激光器反馈元件,希望BSG在给定组的波长处反射光,并且以最高可能的波长选择性做到这一点。也就是,技术规范是用于具有最小信道宽度的简单峰值。这样的峰值可以从正弦曲线的叠加得到:
其中ai、ωi、和φi分别是第i个峰值的幅度、空间频率和相位,以及x是沿着光栅的长度的位置。大多数情形规定了幅度系数。然而,许多时候不需要相位的任何特定的数值。
通常,分量相位应当被选择为使得它们在给定分量幅度后让叠加的最大高度最小化(因此它使得总的包络平坦化)。使用相位信息以产生平坦的包络可大大地提高光栅的效率。这说明了BSG设计的总的原理:在大多数情形下,模拟折射率轮廓(在量化以前)应当优选地具有尽可能平坦的包络。这是想要的,因为平坦的包络代表光栅强度的均匀的分布,并且使得可用的折射率调制的使用更加有效。
按照本发明的相位最优化步骤促进了在BSG的反射效率方面的大大的增加。将会认识到,增加反射峰值的数目产生了需要的折射率调制的亚线性增加。也就是,为了加倍峰值的数目而保持相同的峰值反射系数,折射率步长不需要被加倍。
通带信道的合成
常常需要光栅分离或选择波分复用的光通信信道。这些信道由它们的波长(位置)和它们的带宽(宽度)来描述。光栅也典型地伴随有反射的强度和信道的频谱平坦度的技术规范。这样的带通滤波器设计通常是在FIR滤波器理论中遇到的,并且因此存在对于它的解决的许多方法。这里给出的技术是基于加窗的方法:
在诸如带通滤波器之类的构建的光栅光谱的合成方面的主要原理是对于近似的设计问题的分析确定的解决方案的使用:诸如平顶滤波器之类的某些滤波器形状被认为相应于某些数学函数。例如,已知具有以下形式的sinc函数:
其中i是BSG分段数,相应于宽度δω的理想低通滤波器。这个滤波器可以通过把它乘以适当的正弦产生以下的滤波器而变换成以频率ωc为中心的带通滤波器:
其中峰值以ωc为中心并具有Δω的宽度。
可惜的是,这个特征在于从通带到阻带的突然的过渡的滤波器的实施需要无限长度。简单地截断该滤波器到想要的长度产生了被称为Gibbs现象的不想要的振荡特性。这是FIR设计中的常见问题,并且它的解决的一个方法是加窗的方法。
加窗的方法把截断看作与在截断的区域是零的窗函数的乘法。理论上把截断操作看作与“矩形窗口”的乘法,该矩形窗口在区域内保持等于1而在区域以外要被截断的部分等于0。理论证明这个矩形窗口引起了Gibbs现象。
可用于截断的窗函数通常通过在通带与阻带之间产生有限的“过渡宽度”来产生非理想的带通滤波器,这与对于该过渡不需要宽度的理想滤波器相反。然而,FIR滤波器理论提出了几个虽然非理想但可接受的窗函数。
一个这样的窗函数是Kaiser窗-一个具有理想低通(并因此是带通的)滤波器的窗函数,并且其允许设计者通过参数β定制过渡特性。Kaiser窗因此适合用于BSG的合成,并提供控制反射信道的形状和锐度的附加的灵活性。然而,这仅仅是可用来达到这个结果的许多FIR技术之一,并且通过傅里叶方法的BSG合成不限于这个特定的方法。
将会认识到,相应于平顶信道的模拟轮廓最大程度地利用了光栅的中心。对于多峰值情形,这种情形是不希望的,因为它不经济地使用了远离中心的光栅资源。这个问题的方便的解决方案是在叠加它们时交错与各个信道有关的波形。连同诸如用于多峰值光栅的技术之类的相位最优化技术一起,这个过程能够非常有效地使用光栅资源。
在一些实施例中,反射技术规范并不相应于特定的基本形状,例如带通信道或峰值。用于光放大器和色散补偿光栅的增益补偿轮廓属于这个类别。在这些实施例中,使用离散傅里叶变换(DFT)光栅可以被合成。
离散傅里叶变换和相关的快速傅里叶变换(FFT)是运行在有限的数目的采样点上的傅里叶变换的形式。与正常的傅里叶变换有关,傅里叶近似和它关于BSG合成的结论转移到了DFT。运行在一组1个实值点的DFT返回一组1/2个独立的频率分量。因此,具有1个分段的想要的光栅可以被指定在1/2波长上的反射系数值,而不是在波长之间。
使用DFT的BSG合成的例子如下地实行:
频域技术规范以适合用于逆DFT运算的方式被插入到长度1的阵列,所述长度1即打算的器件长度(以样本数计)。这可以通过在某些点上“采样”傅里叶域技术规范的连续形式或替换地通过以适合于DFT的形式直接“画出”技术规范而完成。然后确定该阵列的逆DFT。各种已知的“平滑”的形式可应用于最终得到的波形,以便减小在频率样本之间的振荡特性。
一旦模拟折射率轮廓被合成,它就需要几个修正方案。一个这样的修正方案由离散和值滤波器进行滤波。另一个修正方案是波形应当被缩放到适合于将来的增量总和调制级的电平。例如,这可以通过重新缩放波形到具有幅度1来完成。
量化或增量总和调制(DSM)
至今为止给出的傅里叶域合成产生了模拟光栅轮廓。然而,BSG需要只利用小的数目(通常是2)的折射率值的离散轮廓。将会认识到,在替换实施例中可以使用任何适当数目的离散数值,举例来说例如八进制超级光栅(OSG)。用于量化(即离散提供)光栅轮廓的一个技术是增量总和调制。然而,可以使用任何合适的量化技术。
对于通过傅里叶方法的模拟轮廓的量化的优选的要求是它保留在重要频段中的谱信息。增量总和调制例如被设计成能从给定的频段中“滤除”量化噪声,保持该频段中的谱信息大部分不受干扰。为了改进也可应用其他量化方法,例如引起在频域中不明显的光栅效应。总之,选择的量化方法优选地保留正如傅里叶近似需要的在重要频段中小幅度的谱特征,其在小幅度域中成为精确的。
将会认识到,通过傅里叶技术的BSG合成的方法和这里给出的以下的量化并不限于增量总和量化。
参照图32,显示了DSM反馈过程320,它通过使用测量的量化误差321改进在环路滤波器322后的量化。也就是,DSM使用在单元323中的阈值量化它的输入,而记录由单元323中的量化丢失的任何重要的信息并把这个信息馈送回到滤波器322中它的输入。将会认识到,在替换实施例中可以使用任何合适的数字量化器。
误差反馈和迭代
一旦傅里叶光栅反射谱被量化,合成几乎就完成了。光栅的性能可以通过使用诸如转移矩阵方法之类的标准测试被估计,以确定合成误差。合成误差是指在想要的反射谱与由转移矩阵方法测量的谱之间的差值。在一个实施例中可以估计该误差,并且通过从光栅的频域技术规范中减去该误差而使用该误差来偏移设计技术规范。新的技术规范然后可用来重复该合成过程并生成改进的光栅。在替换实施例中,在频域中测量的误差可被适当地变换成空间域,并被加到模拟光栅轮廓(在量化之前的光栅)。此后者的形式是通用的和有效的技术,它可以独立于在频域中使用的合成方法而被利用。误差反馈过程可以按希望被重复,但单次迭代常常是足够的。对于小幅度的频率区域的反馈的收敛由上述的傅里叶近似来保证。
将会认识到,本发明有利地允许设计者把误差反馈校正与光栅校正技术进行比较,以便校正衍射特性域中的失真。例如,某些峰值可能具有其在反射域中失真的特性形状,上述的误差反馈中的任一个都可以对其进行校正。本发明允许设计者权衡与光栅资源的应用相比较时误差反馈的优点。
BSG合成的替换实施例
感生的对称性合成
参照图33,采样信号的基本性质在于它们的傅里叶谱显示关于称为奈奎斯特频率的特征频率的整数倍的对称性。在某些应用中,例如具有大量相同峰值的滤波器,在反射技术规范中存在类似的对称性。感生对称性合成的原理是反射技术规范的对称性可以通过关于奈奎斯特频率的对称性被重现,以便光栅的资源仅仅需要用来创建谱特性的一半。
对于这个方法的一个好的例子是具有十个相等间隔的反射系数峰值的滤波器的合成。使用感生对称性合成的原理,设计者可以选择采样长度,其把奈奎斯特频率精确地放置在十个峰值的中间,也就是,在技术规范的对称性的直线上。设计者然后可以进行合成用于五个较低峰值的光栅。由于频域对称性,较高的五个峰值自动地呈现。
超级奈奎斯特合成
对于光栅雕刻需要的分辨率常常超过可用的分辨率。例如,当以砷化镓(n=3.2)材料设计用于1550nm波长范围的BSG时,可以方便地设置奈奎斯特速率为1550nm(例如使用感生对称性合成),它相应于约120nm的样本长度。这个特征尺寸对于光的照相平板印刷太小,并且需要使用更昂贵的电子束平板印刷。
然而,奈奎斯特认为,在奈奎斯特极限值以上的频率内容由在奈奎斯特极限值以下称为图像的频谱信息的重复拷贝组成。因此,在奈奎斯特速率以上的光栅特性(超级奈奎斯特)可以通过合成在奈奎斯特极限值以下发现的它们的光栅图像来生成。
这样,超级奈奎斯特合成例如对于减小以上讨论的1550nm的砷化镓光栅所需要的分辨率是有用的。选择“三阶”合成,设计者可以选择样本长度使得1550nm区域相应于三倍奈奎斯特频率,如图34所示。设计者然后可以把傅里叶域光栅特性移位整数倍的采样速率(两倍奈奎斯特频率),使得它们处在奈奎斯特频率以下的“基带”中。用于这些移位特性的合成的光栅在打算的场合下显示光栅特性,由于成像现象,刚好在三倍奈奎斯特频率下面。而且,用于这个新光栅的样本长度是360nm,这更适合于光的平板印刷。将会认识到,应用超级奈奎斯特合成有利地减少了分辨率的要求。
超级光栅应用
超级光栅散射减少
参照图1,显示了在上部包层13中形成的深光栅BSG 14的示意图,该上部包层13与核心12和下部包层11相组合形成该结构。在超级光栅设计中所关心的是由于起自光栅中的低的空间频率分量的辐射的包层模引起的散射损耗。这个散射是由于在垂直于光栅的方向上相位匹配条件的不完全执行引起的,并且对于浅光栅更普遍。
本发明的更深的蚀刻特性通过在法线方向上占用较大的距离来减少此散射,从熟知的惠更斯原理和傅里叶来考虑,这导致在正常尺寸上更加坚固的相位匹配要求;由此减小(不想要的)散射效率。更加定量地,光栅特性应当理想地深刻齿到超过包层中材料的波长(λmat=λ0/nclad)的深度,并且模尾部的衰减常数应当小于光栅区域中的1/λmat(替换地,BSG可以在模中心的核心区域12中实施,在这种情形下,核心12应当比λmat宽;或以这样的方式,即折射率扰动范围是整个模态轮廓)。这保证来自光栅的正常范围的相对较均匀的贡献,由此增强散射分量的抵销。
在所述分析后接着考虑折射率轮廓和模态轮廓15的乘积:这个乘积越宽且越平坦,则它的傅里叶变换越窄,并且因此在法线方向上的k空间表示也越窄。对于相位匹配条件的这个增加的限制减小了在其上导波可耦合到辐射模式的范围(例如以输出角度计),并因此减少了聚集的散射损耗。
同样参照图2,显示了基带排除后k空间图的基本原理。包括作为附加的“感兴趣区域”的k空间基带(即低的空间频率)通过大大地减少由小的k分量调节的不想要的更高阶耦合来改进合成。
在替换实施例中,可以使用改变有效的(或模态的)折射率的任何方法来实施超级光栅,包括表面起伏实施例(见图31)。一个替换例是通过改变一维波导的横向尺寸来实现模态折射率的改变。这可以在脊形波导30的情形下通过改变它的宽度来完成,如图3所示从逻辑0改变到逻辑值1。这个实施例具有许多优点:波导30和BSG 31可以一起被制作图案和蚀刻,由此简化了制造;波导和光栅被自动地自对准,减少了容差;并且刻制的多层超级光栅可以如同两层BSG一样容易地被产生。
2D(二维)超级光栅
在一个实施例中,BSG采取高折射率和低折射率行的一维序列的形式,并且可以模拟不同幅度但同样方向的k矢量(即空间频率分量)的几乎任意的叠加。BSG可被扩展到二维,其中它采取在平面波导的平面上实施的高的和低的折射率像素的矩阵的形式;这还可被扩展成包括任意数目的离散层。2D BSG(以及更一般的2D超级光栅)可以模拟不同幅度和不同方向(在光栅的平面内)的k矢量的几乎任意的叠加。实际上,这意味着2D BSG可以按照波长和平面内输入和输出角度来路由和聚焦光,由此允许诸如波束成形、波长选择性透镜化、以及空间复用和分解之类的功能。
2D超级光栅实施例
现在参照图4,显示了原型2D“超级光栅”40的示意图,所述“超级光栅”40被称为BSG,代表双态超级光栅。2D超级光栅是一种具有折射率调制的、有效折射率调制的、增益调制的和/或损耗调制的像素的2维阵列的光学器件,标称地采用有限组的两个或多个级别的调制参数,并且以光在阵列平面内传播这样的方式被使用。术语“传播层”用来指光行进通过的层。术语“调制层”用来指载送造成结构的模态折射率的改变的物理变化的层。在一些情况下,所述两层将是相同的-例如当使用离子实施方案时。在其他情况下,它们当包层被蚀刻时或当可控指被应用来造成与传播层的接触时将是不同的。当使用这些术语时,本领域技术人员将能够容易地明白。像素可以以任何有序的或周期性的结构被安排,例如格型排列,并且可以采用任何任意但重复的形状。有阴影的像素表示高的折射率值,以及空白的像素表示低的折射率值。例子是在矩形阵列上的矩形像素的阵列、在三角形网格中的点散射器的阵列、或在六边形网格中的六边形像素的阵列。这种器件的制造形式由于与产生理想的物理结构有关的技术困难可以呈现非双态或甚至连续性的调制级别,但像素仍然是用相应于制造器件为2DBSG的理想组的级别的有限组的雕刻方法或参数雕刻的。这样的器件除了模拟诸如镜子和透镜之类的传统光学器件以外,还允许特定于角度和波长的光处理。
2D BSG的像素是通过在光栅的二维空间频率表示中保留在一个或多个感兴趣区域中的傅里叶信息(没有显著地添加或减去特性)的方法来量化的模拟轮廓的量化表示,其相应于在特定于角度和波长的衍射特性方面感兴趣的区域。
2D超级光栅的合成
合成二维超级光栅的一个方法可以如下:
A)确定一组描述在所有运行模式和波长下在BSG的输入端和输出端处的电磁场的数学条件。
B)通过求解相应于比如说具有相应于输入-输出条件的边界条件的Born近似的方程组来计算模拟轮廓。
C)使用被设计为在一个或多个感兴趣区域内保持傅里叶分量的二维技术来将模拟轮廓数字化。一个适当的方法是Floyd-Steinberg抖动,其中在每个像素处造成的量化误差通过使用包含感兴趣区域中的光谱信息的有限脉冲响应函数被扩展到还要被量化的像素。
光栅合成的过程可以参照简化的例子来说明。图36A显示了一个简单的多路分解器36-10,用于把从波导36-2下面进入的和具有两个波长La和Lb的辐射分离到两个输出路径36-4和36-6,每个路径具有单个波长。图36B显示使用执行相同功能的分立元件的简单多路分解器。图36B的例子使用棱镜3沿两个路径24’和26’分离输入的波长(两个光束以相同的方向弯曲)。分离的辐射束被棱镜34和36弯曲回到正确的路径,以进入输出波导4和6。光束然后通过透镜34’和36’被聚焦到波导4和6。图36A显示由固态技术在平面波导中形成的实施例实现的相同功能。像素的X-Y(由轴36-15表示的方向)阵列由沿着方框36-10的左边缘和底部的线表示,它形成一个BSG,其执行以随距离变化的角度(角度A1和A2以及B1和B2)分离光束(在本例中把一个波长弯曲到左面而把另一个波长弯曲到右面)的功能以提供分离。所述角度在由括号36-34和36-36表示的区域中被颠倒,其中像素执行角度改变并且也聚焦辐射。在方框36-10的下部,波前用直线表示,以及在上部,波前用曲线表示,所述曲线表示聚焦到输出波导36-4和36-6的结果。
将会认识到,图36A的例子被简化成上部的像素只处理单个波长,因为辐射已在空间上被分离。在多路分解器的许多实际的实施例中,输出路径将被关闭或被叠加,并且像素将处理一个以上的波长。本发明的有利特征在于,实行需要的功能的折射率轮廓的合成被在数学上执行,而不是如过去那样用第一干涉图案照射材料层,然后用第二干涉图案,等等。
参照图5,2D BSG可用于使用1D超级光栅50或其他类型光栅的应用和器件中,以便提供潜在的优点。这些优点来源于这样的事实:二维光栅具有在光栅平面的两个维度上定义明确的耦合波矢量,因此提供了对于具有辐射模式的耦合的直接控制,所以具有减少散射的潜力。相反,1D光栅50常常由它的窄的宽度造成在垂直于波导的方向上具有定义很差的耦合波矢量。
相应于给定二维光栅的“有效一维光栅”可被看作为通过沿着垂直于一维导引的横向行合并2D光栅而得到的ID折射率轮廓。有效1D光栅具有的折射率水平横跨在两个双态水平之间的很宽范围的数值上,并具有的足够高的横向采样在性质上几乎是模拟的(对于1个双态横向样本,级别数将是21)。由于模拟光栅没有受到量化问题的影响,这可用作一种用于多级别光栅设计的方法,其还享有双态式物理结构的坚固性和容易制造的好处。
该方法可总结为包括以下步骤:
·如同以前的方法一样计算模拟轮廓。
·把每个像素变换成双态(或多级别)像素行,沿垂直于1D光栅轴的横向方向放置,以使得沿该行所取的平均值紧密地适合于想要的模拟值。这组像素值优选地被限制为保持一定的对称性,以便减少到高次模的耦合(限制可用横向平均的数目的折衷)。此行可以通过使用像DSM那样的过程(馈送以想要的平均值或想要的横向轮廓)、用随机搜索最优化方法(对于小数目的像素)、或通过其他方法而被计算。
2D超级光栅可以通过首先将1D波导充分展宽成包含2D超级光栅来在1维结构中实施。波导可扩展到区域以外,以及缩小到较小的(可能是单模)尺寸。另外,两个波导可扩展成这样的2D光栅区域(以及类似地在另一面缩小)以创建波导耦合器。2D超级光栅在结合超级光栅波导耦合器实施时也提供减小的散射。
3D(三维)超级光栅
BSG还可以扩展到三维,其中它采取高的和低的折射率像素的三维阵列的形式。如前,这个定义可被扩展到包括任何数目的离散层。3D BSG(以及更一般的3D超级光栅)可以模拟在3D空间频率的空间中规定的一个或多个感兴趣区域内任何幅度和取向的k矢量(即空间频率分量)的几乎任意的叠加。实际上,这意味着3D BSG可以按照波长、输入角度(即极性和方位)和输出角度来路由和聚焦光,由此允许诸如对于二维光栅描述的但在三维的波长、极角和方位角下的功能之类的功能。
参照图6,显示了在包括折射率、有效折射率-、增益-和/或损耗-调制的像素的3维阵列的光学器件中原型3D超级光栅的示意图;标称地采用有限组的两个或多个级别的调制参数。像素可以按任何有序的或周期性的结构被安排,并且可以采用任意的但重复的形状。这种器件的制造的形式可以或者通过设计或者由于与产生理想的样品有关的技术困难来呈现非双态或甚至连续性的调制级别,但像素仍然是使用相应于制造器件为3D BSG的理想组的级别的有限组的雕刻方法或参数雕刻的。这样的器件除了模拟诸如镜子和透镜之类的传统光学元件以外,还可以允许成斜面地和上色地特定光学处理。
3D超级光栅的合成
用于合成3D超级光栅的方法包括非常类似于上述用于2D超级光栅的方法的方法,除了这些方程描述3维空间和这些量化方法使用3维脉冲响应函数来分布量化误差以外。
2维或3维超级光栅可被设计成能创建一个特征为完全的或不完全的光子带隙(PBG)的结构。这可以通过用任何BSG设计方法设计光栅来完成,所述BSG设计方法拥有在想要的带隙内或附近的谱特性,并具有足够的强度和密度来创建带隙。合成可牵涉到整个可应用的区域,或以较小规模应用以创建图案,该图案可被平铺以覆盖较大的区域。所述设计也可以使用高阶合成方法以允许减少的分辨率要求。
一种完全的光子带隙材料是一种呈现一段范围的频率的材料,所述范围的频率不能传播通过该介质而不管传播的方向。这种介质的应用在文献中有许多且是丰富的。一些例子是:滤光器和谐振器、光学辐射的抑制器或增强器、用于(超级)棱镜的材料、用于新颖的激光器和检测器结构的环境、以及用于光的导引和连线的基片。
基于BSG的光子带隙提供了优于现有技术的PBG材料的关键的优点,包括:较低的折射率对比度要求以及宽松的分辨率要求(二者导致与光学器件的较高的兼容性和容易进行制造)。
通过最优化的超级光栅的合成
除了上述的方法以外,这里还给出设计一维、二维、或三维种类的超级光栅的一般方法:
·用诸如第一合成方法之类的过程生成模拟轮廓(令函数称为P)。
·生成确定重要的波长范围(其中谱特性被保留)和它们的权值的滤波器H。H实质上指定对于每个频率的权值,其中高的权值比起低的权值导致更好地保留谱信息。滤波器H可以以矩阵算子的形式被写入以允许以下步骤的矩阵解决方案,但也可采用脉冲响应或极-零点形式。
·求解最优化问题:
其中X是包含BSG的数值的矢量,V是拉格朗日乘数的矢量,以及L确定用于最优化的规范的类型(例如L=2相应于最小二乘最优化)。拉格朗日乘数迫使BSG数值为允许的折射率数值之一(nlow或nhigh),导致了双态形式。功能可按照本发明的教导被修正以允许多值的超级光栅。
最优化可以通过使用任何最优化方法来实行,虽然因为方程的矩阵性质,所以牛顿型方法是特别有用的并且当前是优选的。
该方法可以通过采取由相应的合成方法生成的模拟轮廓并执行类似的最优化过程而被应用到2D和3D光栅的合成,其矩阵方程被修正以适当地考虑维度。这可以通过把二维光栅的行堆叠成一行X变量以及同样地用于P变量并合成相应的H矩阵来完成。
H矩阵可被生成为给定的脉冲响应函数的Toeplitz矩阵,或用其他方法,包括:
令hf是表示空间频率f的重要性的权值。然后,H被给出为:
H=F-1diag(hf)F,
其中n维的F是由下式给出的傅里叶矩阵:
与矩阵F的乘法等价于取矢量的傅里叶变换,这是一种可以通过使用快速傅里叶变换(FFT)方法而被加速的运算。这个事实可被用于这种H滤波器以将成本函数和它的导数的计算加速到nlog(n)阶。
另一个替换例是通过把P和X变量看作它们的傅里叶表示(通过与F相乘而生成的)来在傅里叶域中执行最优化,同时适当地变换等式的约束条件:
用于超级光栅的调谐机制
超级光栅的谱特性可以通过任何产生有效的模态折射率的改变的机制被移位。如果存在电光的、电致伸缩的、磁光的、电致变色的和/或光敏的介质作为器件的一部分从而允许使用电子控制修正一个或多个设计参数,则这可以被完成。替换地,一个或多个设计参数的修正可以通过使用温度的改变、机械应力的应用和/或整个器件或其一部分的照射而被实施。
调谐机制可包括但不限于以下:热的、电光的、磁光的、光限制的、机械应变(外部的、压电的、静电的、静磁的、声的)、电流注入、光照射、液晶、可重新配置的分子、化学相互作用和机械变换。
对于一些器件,所述好处相应于谱特性的强度的移位或改变;对于其他,呈现在此以外的功能。总之,贯穿本专利申请以及在下面的所有的器件说明中暗示,采用静态超级光栅的器件的功能可以通过用可调谐的超级光栅替代这些静态超级光栅而被进一步增强。
可编程的超级光栅
参照图7a-7d,显示了可编程超级光栅的示例性实施例。可编程超级光栅是部分地包括电可寻址的电极的阵列以及适当的介质的器件,由此电极用来建立在介质中的光栅图案。光栅图案是可编程的、动态的或固定的。光栅图案可以标称地利用有限数目的调制级别(例如用于BSG的两个级别,用于超级光栅的多个),或利用连续性的调制级别。
另一个实施例(图7a)包括被放置在一个或多个波导7a3上面的MEMS(微电子机械系统)7a2指的阵列;其中每个指相应于BSG的一个“比特”,并且可以单独地向下偏转以接触到波导7a2表面。替换地,“关断”状态可以相应于在指与波导之间的接触,以及“接通”相应于向上偏转并远离波导。总之,与波导接触的状态通常将产生较高的有效折射率,以及不接触将产生较低的折射率。优选实施例具有的关断波导分离足够大,这样在这个数值中的轻微误差可忽略地改变较低的有效折射率值,由此促进真正的双态运行。
如图7b所示的又一个实施例包括多个放置在影响传播的封装的液晶7b2(LC)上的电极。在向列相,LC呈现双折射,它可以由电压进行调谐,由此产生调谐有效折射率的装置。这个电压依赖性典型地具有某个阈值电压Vt(相应于向列的LC的完全对准),超过该电压将几乎不发生或完全不发生折射率的改变。采用V=0和V>Vt的控制电压的方法所以应当促进真正的双态运行,即使面临诸如场边缘之类的混杂效应。
同向的和反向的定向不对称波导BSG耦合器
我们从描述许多更复杂的器件中的以下两个基本元件开始:即同向定向的和反向定向的不对称波导BSG耦合器。这些元件(它们事实上本身是器件)把光从一个波导耦合到另一个平行的波导,具有想要的谱响应:即给定波长的光可以完全地、部分地、或完全没有地进行耦合,并具有想要的相位。一般的实施例图7c包括两个平行的不对称波导,它们具有不同的有效模态折射率(neff)1和(neff)2,因此具有不同的传播矢量k1(λ0)=2π(neff)1/λ0和k2(λ0)=2π(neff)2/λ0,其中λ0是自由空间波长。
有效折射率通常依赖于波长λ0。来自电子驱动器7c3的信号被施加到由7c2表示的电极上,它改变感应耦合的模态分布。
光将从一个波导同向定向耦合到另一个相邻的波导,如果它们的各自模态的轮廓重叠的话;这称为固有耦合,并且通常对于所有的输入波长发生。固有耦合是在BSG增强耦合情形下的寄生效应,并且最优设计寻求保证后者使得前者显得小。当波导不对称性(即在(neff)1和(neff)2之间的差值)增加时,这个条件变得更加容易满足。
同向定向不对称波导BSG耦合器
参照图8,显示了同向定向不对称波导BSG耦合器80的示意图。从一个波导81同向定向耦合到另一个相邻的波导82(即具有重叠的模态轮廓)将在特定的波长被增强,如果波导的有效折射率被空间频率Kg(λ0)=k1(λ0)-k2(λ0)干扰的话。这可以使用任何的BSG实施例来完成,所述实施例包括,例如但不限于如上所述地把BSG 83放置在两个波导之间或也如上所述在一个或两个波导中横向地实施BSG的可能性。任意空间耦合特性通过使BSG 83模拟Kg(λ0)的适当的谱来得到。
反向定向不对称波导BSG耦合器
参照图9,显示了耦合波导91和92的反向反向不对称波导BSG耦合器90的示意图。对于以上实施例,对于给定的输入波长λ0将发生反向定向耦合,如果折射率扰动代替地包括Kg(λ0)=k1(λ0)+k2(λ0)的空间频率。BSG 93应当保持在感兴趣的整个谱段上不存在2k1(λ0)和2k2(λ0)的空间频率,因为这些空间频率将在各个波导内产生后向反射,由此减小耦合效率和产生不想要的后向反射。满足这个条件需要波导的不对称性是足够的,以避免在所有感兴趣的波长范围内在产生波导间耦合的光栅空间频率(Kg’)与产生波导内耦合的那些空间频率之间的任何重叠;在数学上,这可表示为:
k1(λ1)+k2(λ1)≠2k1(λ2)和k1(λ1)+k2(λ1)≠2k2(λ2)
其中k1和k2是早先用取决于波长的有效折射率定义的,以及λ1和λ2是位于感兴趣范围内的波长的任何组合。
将会认识到,如果任一个波导是多模的,则应当避免即在属于想要的和不想要的耦合(是同向还是反向)的光栅频率范围之间的其他重叠。
反向定向对称波导BSG耦合器
参照图10,显示了反向定向对称波导BSG耦合器的示意图。对称BSG反向定向耦合器执行与不对称反向定向耦合器(可编程、动态或静态)相同的功能,但允许两个波导在它们的有效折射率上弱的不对称或甚至对称。因此,在以前的表示式中表示的限制可被超过,虽然这通常导致波导内反射。下面概述的方法允许在相邻的对称波导之间的有效耦合,而抑制波导内反射。
所述器件包括两个具有放置在其间的BSG 612的波导(对称或相反)。BSG可以按需要是静态的、可调谐的、或可编程的。另外两个BSG 611和622与中间的BSG相同但具有相反的对比度(1变为0及反之亦然),它们被放置在两个波导的任一边,以便它们与中心BSG关于相应的波导成镜像。
工作原理如下:令m1是波导1的模态轮廓,以及m2是波导2的模态轮廓。利用宽松的表示法,关于两个波导的耦合系数可以以光栅强度的一阶被写为:
其中G12是中心光栅,以及G11与G22分别是在波导1和2的远侧上的光栅。第二项被忽略,因为两侧的光栅离相反的波导非常远(更精确地,相反的波导的模态轮廓在这个区域中可忽略)。
然而,从第一波导到它本身的耦合系数(相应于波导内反射)如下:
结果对于第二波导是相同的。为了抵销所必须的唯一假设是两个波导的模态轮廓实质上是对称的(关于它们的波导不必互相相同;将会认识到,波导耦合通常引入至少某个不对称元件),以及光栅关于波导被适当地对称化。抵销是与许多材料参数无关的,例如波导的有效折射率,即使它们独立地变化。
使用横向波导变化的BSG耦合器
实施BSG的这个特定的实施例在这里给予特别的提及是由于它特定的优点以及后面将讨论的一些预期的另外的精细之处:例如用于不对称波导耦合的最优宽度变化,特别是关于每个波导中相对BSG强度,以及如何设计对称波导耦合器的相反对比度的光栅,以使得波导内反射最小化。
这个实施例的优点类似于以上描述的那些优点,特点在于现在有两个(或多个)波导的事实,其中关键的是波导对准。将会认识到,波导和BSG可以有利地一起做成图案和蚀刻,由此简化了制造过程;而且,波导和光栅被自动地自对准,减少了容差。
BSG纵横接线器
参照图11,显示了栅格拓扑纵横接线器的示意图。纵横接线器是一种把波长信道从多个输入波导路由到多个输出信道(通常匹配于输入波导的数目)的器件。纵横接线器通常需要能够把任何波长从任何输入波导路由到任何输出波导。这些接线器典型地由N×N符号来表示,其中N表示输入/输出波导数与波长信道数的乘积;例如,具有4个输入波导、4个输出波导和每个波导16个波长信道的接线器被称为64×64接线器。
传统的纵横接线器使用栅格拓扑,其中n个输入波导的每一个首先被多路分解成它的c个波长信道,导致n×c个输入“行”,它们与n×c个输出“列”交叉。这些列然后被多路复用成组,馈送到n个输出波导。路由是借助于放置在行与列的交叉点处的光开关进行的。这个设计对于微电子机械系统(MEMS)是特别普通的,其中开关通过使用可移动的镜子来实施。显然,这个拓扑需要(n×c)2个开关元件。
另一个拓扑可以使用2×2接线器,也就是具有两个输入(I1和I2)和两个输出(O1和O2)的开关元件;它或者连接I1到O1和I2到O2,或者连接I1到O2和I2到O1。问题在于选择开关的排列和数目,以使得输入的光信号可被重新安排成在输出端处所有可能的置换。为了确定所需要的开关的数目,我们可以注意到有(n×c)!个可能的输入置换;因为每个2×2接线器提供一个控制比特,我们可以说:
O(log2(nc)!)=O((nc)log2(nc))
将会认识到,可编程的BSG(例如如上所述的可调谐的同向定向或反向定向耦合器)可用来形成2×2接线器。因此,每个BSG开关元件可以为每个输入波长独立地提供2×2个功能。有利地,这消除了首先多路分解输入波导的需要,并减少了所需要的开关数目:
开关元件的数目=O(nlog2n)
其中n仅仅是输入波导的数目,保持与波长信道的数目c无关。(见图12,显示了利用6个开关元件120的4光纤开关的一个实施例的示意图。)另一个实施例可以使用分层的2×2BSG开关元件,其中每个层具有等于n/2的相同数目的开关元件,其中n表示输入波导的数目,每个输入波导载送c个波长信道。在此实施例中,开关可以以下面的方式互相连接:
·令波导w连接到波导w+2l-1,其中l是层的号码(从1开始)。
·当2l=n时,通过再次设置l=1(回绕)来使用以上公式。
这是唯一的一个特定的连线方法,并且可以设想更多的方法,特别是通过在双态交换树设计中从现有技术得出的。
由这类设计采用的开关元件的数目:
其中ceil函数生成大于它的自变量的最小整数。
将会认识到,由这个设计方法生成的节省可以是巨大的,并且在表1中进行说明。
表1
在超级光栅的情形下开关元件的数目由以上的公式给出,在栅格设计情形下的开关的数目由c·n2确定,而在分层的设计中单波长开关的数目由BSG设计中开关元件的数目的c倍来给出。
另外,使用可编程BSG的实施例避免对于复用器和多路分解器的需要,进一步增强了节省。单波长设计也可以采用布拉格光栅而不是BSG的同向定向和反向定向耦合器来实施。
光纤中BSG的直接写入
下面的部分描述在其折射率和/或有效模态折射率可以经由暴露在强烈的和/或高能量激光下而改变的光纤中实施BSG的方法。
单光子的过程
参照图13,显示了在光纤中实施BSG的一种单光子的方法。在此实施例中,利用双态或多层的特性(折射率或有效折射率改变、烧蚀、损耗调制等等)的光栅通过可切换的、聚焦的激光束13-10被施加在光敏光纤13-1上,当它相对于由箭头指示的激光器的焦点以恒定的或可变的速度运动时,它把光栅信息直接刻印在光纤上。在替换实施例中,光纤是静态的并且激光器的焦点被操纵以扫描光纤。
多光子的过程
参照图14,显示了在光纤中实施BSG的多光子装置(这里显示两个光子)140。类似于以上的方法,除了两个或多个激光束144、145用于该过程以外,信息(即在折射率上的偏移)优选地被刻在这些光束的子集相交143和/或相长干涉的地方。将会认识到,这个实施例提供了不管基础的感光灵敏度机制是取决于强度还是取决于能量的优点。在前者的情形下,N个(相等的幅度)光束的相长干涉产生单个光束强度的N2倍;在后者的情形下,布置可以被安排成使得只在光束相交的场合下才存在聚集的光子能量足以实施所考虑的过渡。
这个实施例允许增加对在其上施加信息的光纤内的区域的控制(例如,如果光束被使得在这里相交,则折射率只能在核心141处改变),并且也可以简化制造,因为外部的包层不必像对单光子过程所需要的那样被剥开。
下面描述了本发明的替换实施例,它采用超级光栅与以前的部分的模块单元的某些组合。将会认识到,这里提到的任何BSG都可以由更一般的多层超级光栅实施例代替,所述多层超级光栅实施例又可以被按照本发明教导的可调谐的和/或可编程的实施例代替。
波长多路分解器
多路分解器把多波长(即多个信道)输入分离成它的组成信道。这个多路分解器的功能可以使用在下面更详细描述的各种实施例中的BSG来取得。
按照本发明教导的多层超级光栅也适于具有不均匀的信道间隔(或任何其他信道间隔方案)的多路分解器和滤波器。将会认识到,本发明的这样的多路分解器的优点有利地减少了诸如SRS(受激拉曼散射)之类的问题,它是在信道按光子频率(能量)相等地间隔时被增加的。
利用1D超级光栅的多路分解器
参照图15,显示了利用1D BSG的多路分解器的示意图。这个器件部分地包括一组使用反向定向和/或同向定向BSG耦合器15-1-15-3耦合的波导,如上所述,效果是通过特定的输入端口进入该器件的多波长光被分成它的波长分量,并且所述波长分量通过它们的指定的输出端口离开该器件。
特定的实施例包括:同向定向和反向定向BSG的级联,它们把信道连续地划分成两个子带直至各个信道都被提取;以及倾斜的单信道光栅的序列,它把各个信道引导到它们各自的输出波导。
利用2D超级光栅的多路分解器
图16所示的这个实施例包括2D BSG,其效果是通过指定的输入端口进入该器件的多波长光被分成它的波长分量,所述波长分量通过它们的指定的输出端口离开该器件。
加上/卸下滤波器
在这个实施例中,如图17所示的光的加上/卸下滤波器是一种光学器件170,它包括“进入”端口171,其接受多个波长信道的输入;“卸下”端口172,从“进入”流分离的一个或多个信道通过该“卸下”端口被路由;以及“通过”端口174,从该端口呈现剩余的信道。还可以存在附加的“加上”端口,它接受在从“进入”流中被卸下的波长信道上的输入,并把它们路由到“通过”端口输出。
静态加上/卸下滤波器
参照图18,显示了本发明的光学器件实施例,它包括一个或多个2D BSG和/或一组使用反向定向和/或同向定向BSG耦合器耦合的波导。在此实施例中,通过指定的输入(“进入”)端口181进入该器件的一个或多个波长分量被分离并通过指定的输出(“卸下”)端口184离开该器件。输入的光的剩余部分通过不同的输出(“通过”)端口182离开该器件。另外,该器件可包括附加的输入(“加上”)183端口,其特性是通过该端口进入该器件的特定的或所有的波长分量也通过“通过”端口182离开,由此被加到由“进入”端口路由到那里的光上。
仍旧参照图18。BSG 1把来自波导A的输入的λ的子集耦合到波导B。BSG 2把来自B的第一子集的子集耦合到C。这个过程继续进行直至只有想要的波长在卸下波导中被留下为止。将会认识到,BSG-1和BSG-2可被调谐以选择在超过固有的调谐范围Δλ/λ≈Δn/n的范围内的想要的λ。将会进一步认识到,在替换实施例中可以采用反向定向耦合。在此实施例中,加上端口183可以通过类似的Vernier方法使λ成为选择性的。
动态加上/卸下滤波器
参照图19,显示了光学器件的实施例190,它包括一个或多个2DBSG和/或一组波导,其中波导是使用可调谐的或固定的反向定向和/或同向定向BSG耦合器来耦合的,具有与静态BSG加上/卸下滤波器相同的有效功能,但增加的是从“进入”端口被引导到“卸下”端口的波长和/或从“加上”端口被引导到“通过”端口的波长是可借助于外部控制信号控制的。
一个特定的实施例利用了Vernier调谐原理,其设计由以下事实促成:通过折射率调谐可接入的谱移位常常远小于总的想要的调谐范围。多信道输入沿一个波导进入,通过多峰值可调谐的BSG(具有的峰值间隔通常小于可用的调谐范围)光被耦合到相邻的波导。随后的可调谐BSG(通常具有不同的间隔的多峰值,该间隔也小于可用的调谐范围)把这个第一组的信道的子集耦合到第三波导。这个抽取过程可以按想要的继续进行,BSG互相相对独立地调谐以卸下想要的信道。信道选择范围因此可以大大地超过可用的折射率调谐的谱移位。相同组的BSG可用来加上从第二个输入卸下的信道,如图18所示。
另一个实施例使用可编程BSG,使得诸如图19所示的之类的结构能够动态地加上和卸下任何输入信道的子集。
波长稳定性监视器
为了适当地起作用,光网络需要信道波长保持在它们标称值的某个范围内。漂移可以由多个因素引起,包括环境条件的变化、器件老化和机械破坏。
波长漂移可以通过使用按照本发明教导的1D超级光栅进行监视,如图20a所示。虽然以给定输入角度入射在倾斜的1D 20a3光栅上的光将标称地只在一个特定的输出角度上衍射,从中心峰值反射波长的失谐事实上将产生角度的失谐,以及衍射效率的降低。
这个特性可用来检测波长的移位,或假设波长是正确的,则检测器件特性的移位,它们然后可以通过各种各样的机制(例如温度调谐)进行补偿。在一个实施例中,沿着想要的中心波长的衍射路径20a2对称地对准的光电检测器阵列20a4可用来检测波长移位;在这种配置下,如果本地波长匹配于想要的数值,则来自每个的信号将是匹配的。(注意,衍射效率通常故意是低的,以便大部分功率不偏离地通过。)本地波长的偏离然后通过光电检测器20a4的相对数值的改变来显示,其可以通过使它们的输出通过对数减法处理器20a5被监视(可以采用其他更敏感的功能)。这些偏离然后可以通过使用温度或任何其他影响参数被校正。
类似地,替换实施例可以用如图20b所示的2D BSG 20b4来实施,它可以把衍射的光聚焦到检测器20b3和/或同时检测在几个信道上波长的漂移;或用如图20c所示(检测和处理在单元20c3和20c4中完成)的沿波导20c2蚀刻的准1D(即点源)特性20c3的序列来实施,这将导致在两个横向方向上的对称衍射。镜子可任选地被蚀刻在一侧,用于散射光的最优收集。
分接网络监视器
为了动态重新配置信道分配(“波长供应”),网络需要在信道使用上的反馈;这样的可重新配置性对于城域光网络(MON)是特别需要的。
网络监视可以使用按照本发明教导的1D或2D超级光栅(图21显示2D网络监视器实施例)以分接输入的光的一部分(典型地故意是小的)并把它分离成各个信道来完成。分离的信道然后被聚焦在检测器阵列212上,其中它们的功率被测量并且信息被变换成单个电信号。这个信号可以被处理器214处理并沿电网络发送到城市网的监视站(未示出),以及提供促进波长供应的诊断数据;或帮助识别网络中的问题(例如显示信道损失功率的地方);汇编负载统计;以及测量容错。
多波长均衡器和增益平坦滤波器
对于最优的运行,光网络通常需要波长信道在功率上是平衡的。平衡典型地发生在放大级内或在放大级后,并相应地分别称为“增益平坦”或“均衡”。功率平衡器件可以附加地用来抑制不想要的信号,例如在光放大器中的泵浦波长。
动态多波长均衡器
在这个均衡器实施例中,动态均衡可以通过把输入波长路由通过分接网络监视器(图22A)而达到,该监视器分离信道并监视它们的各个功率电平(见图22B,显示了功率对波长的曲线)。信号然后被发送到电子处理器,它的输出调谐(或编程)按照本发明教导的BSG序列,其例如通过去除在各种波长带中的功率来均衡信道上的功率。图22C显示了被去除的功率作为波长的函数的例子。用于限幅波长功率的适当的方法包括使用BSG把输入信道以较低的效率耦合到输出波导或使用BSG以施加较高的散射损耗。图22D显示了减去在一组波长带中的适当的功率量的结果,由此在每个频带中产生了实际上相等的功率。
一个实施例利用包括“基本功能”的BSG的级联,它们可被独立地调谐以实现对于均衡所需要的损耗谱;适当的基本功能包括可以互相相对移位的阶梯状的谱。
增益平坦的光放大器
图23显示一个替换的信道平衡实施例。在此实施例中,BSG 23-1(图23A)被直接引入到放大器内,所述放大器用来按希望形成增益谱的形状。增益谱(在图23上显示为未扰动的)可被平坦化,或被修改为任何其他轮廓,或许预期放大后依赖于波长的损耗。图23c显示与图23的增益谱相匹配的损耗系数谱。图23D显示组合的增益系数谱,它组合介质的增益和加到其上的损耗。将会认识到,此实施例提供比典型的放大器的后均衡大得多的效率,这是从认识到使得增益系数平坦化(在放大器内每个单位长度的增益)比使得放大后的增益平坦化浪费了少得多的功率而得出的。
按照本发明的教导的增益平坦化可应用到任何光放大器,包括拉曼放大器、掺铒光纤放大器(EDFA)和半导体光放大器(SOA);以及应用到多波长源,例如可调谐的激光器。
将会认识到,增益平坦不仅改进效率,而且也可大大地扩展放大器的带宽,特别是在固有的增益谱峰值很强的情形下。这对于半导体光放大器(SOA)是特别正确的,它的带宽是如此的窄,以致于只对非常少的(常常是一个)信道提供增益。
λ路由器
λ路由器--也称为波长路由器或光的交叉连接,是放置在网络接合点处的器件,它把来自特定的光纤输入端的波长路由到另一个特定的光纤输出端。λ路由器通常是N×N器件(即具有N个输入光纤和N个输出光纤),每个输入光纤典型地输送单个波长信道。
在本发明的λ路由实施例中,λ路由可以通过把来自基于BSG器件的多路分解的输入耦合到如图24a和24b所示的波导阵列(即每个波导一个信道)而完成。将会认识到,图24a-24b在有一个输入/输出光纤时表示λ路由器,以及在有多个输入和输出光纤时表示纵横接线器。第二波导阵列存在于第一组下面,每对顶部波导和底部波导由具有以信道波长为中心的平顶谱的BSG进行分离(即同向方向或反向方向耦合)。纵横运行(即在一个波导上的信道光将耦合到另一个波导,以及反之亦然;或将保持在同一个波导上)是通过本地调谐BSG对准或不对准信道波长而达到的。将会认识到,加上/卸下功能是此实施例的内建的方面。
在图24b上,栅格拓扑路由器接受在左面多路复用的输入,在下部波导中的一个信道上具有一个以上的入射波长。在每个交叉点处,通带BSG把在特定的信道中的波长耦合到上部波导中的波导,在图上垂直地运行。结果是λi,j(进入第i波导并具有用于第j信道的波长)与来自其他输入的相同信道的辐射相组合。
图24A具有与图12所示的相同的拓扑,它是用于达到相同结果的更有效的排列。
色散斜率补偿器
光网络总是与称为色散的特性斗争,特别是在牵涉到长的传输距离和高的比特速率的场合下。色散是由于有效折射率的波长依赖性引起的,它又对于给定类型和长度的光纤产生依赖于波长的群时延谱。光脉冲的谱的宽度必须是有限的(即非零的);所以,当光脉冲沿光纤行进时色散就扩散出脉冲,因为它的各个波长分量将以稍微不同的速度行进。
色散补偿可以通过“啁啾”布拉格光栅来实现:沿它的长度z调制光栅的栅距,如图25所示。图25A显示在其中啁啾的光栅与环行器相关的实施例。辐射被引导到光栅、进行处理并返回到环行器。图25B显示传输光纤设计。图25C显示其中耦合两个光纤的光栅也执行啁啾的反向方向的BSG。图25D显示同向方向设计。这些设计产生依赖于波长的相位谱,它可以被修改以提供想要的群时延谱:τg=-dφ/dω。对于给定的自由空间波长λ0的延时然后是从到其中本地栅距具有λ0作为它的布拉格波长:τg(λ0)=2neff z(λ0)的地方的来回距离得出的,其中z(λ0)是在Λ(z)=λ0/2neff时的空间坐标。
本发明的一个色散实施例是从确定理想的(模拟)输入啁啾函数开始的,正如从群时延谱τg(λ0)得出的(在光栅上加的延时当然应当是与在输入端处的相反)。理想的模拟轮廓然后被馈送到产生模拟想要的相位特性的双态轮廓的量化滤波器。量化滤波器可以进一步对于最小相位噪声最优化。
替换的色散实施例更直接地来源于想要的群时延谱。
将会认识到,各种各样的这些类型的实施例是可能的。一个实施例包括3端口环行器(光在端口i输入,在端口i+1离去,端口3“环绕”到端口1),它引导光输入到端口1,经由端口2到波导。按照本发明教导的反射性BSG在波导中实施想要的补偿群时延谱,由此把色散补偿的光引导回到环行器的端口2,此后它出现在输出端口3。
在图26a和26b上显示替换实施例,它避免需要(和花费)环行器采用同向定向和/或反向定向BSG耦合器,该耦合器把来自输入波导的光耦合到随后的波导,以便加上想要的群时延谱。根据诸如补偿带宽、群时延谱的时间范围和补偿是全频带还是信道化之类的因素,器件内传播长度可以超过最大想要的器件尺寸。在这种情形下,可以对于连续的波导耦合实施色散补偿,具有的耦合波导被安排成卷绕的级联。
将会认识到,基于BSG的色散补偿器的实施例提供了许多优点,例如以比现有方法(现有方法处理色散特性的泰勒展开式中的连续项,或使用相当少的输入参数得到理想的时延谱的“最佳适合”)更简单的方式模拟复杂的啁啾函数。使用按照本发明教导的BSG器件的实施例也可提供适合于多个同时信道的各个的色散补偿,提供对于在所有的信道上加上同一个校正的解决方案的改进。另外,与一些啁啾光栅的方法相反,使用按照本发明教导的BSG器件的实施例可被设计成能够产生一个平坦的信道内反射谱。
可调谐的色散补偿器
可调谐的色散补偿可以通过具有与上述的同向定向和反向定向BSG的级联和早先公开的Vernier调谐方法、还有连同上述的动态多波长均衡器的组合的类似性的安排而达到。参照图26a,BSG的级联包括群时延“基本函数”,它可以互相相对地独立调谐以实施想要的群时延谱。图26B所示的一个实施例采用两个可调谐的反向定向BSG耦合器,每个实施具有以下函数形式的二次色散函数D1和D2:
D1=a1(λ-λ1)2+C1和D2=a2(λ-λ2)2+C2,
其中中心波长λ1和λ2可以通过例如上面概括的那样的调谐机构而被独立地移位。如果BSG被级联并被设计为a2=-a1,则所得的色散是:
Dnet=D1+D2=[2a1(λ2-λ1)]λ+[(λ1 2-λ2 2)+(C1-C2)],
它可以根据Δλ=λ2-λ1被重新写为:
Dnet=[2a1(Δλ)]λ+[(2λ1+Δλ)(2λ1-Δλ)+(C1-C2)]
因此,色散斜率2a1(Δλ)可以通过适当地选择Δλ而按需要进行调节,并且通过适当地设置λ1而设置截距。这个方法通过采用下一个更高阶的色散基本函数可被应用到任意高阶的色散。
可变反馈的超级光栅激光器(可调谐的和/或多波长)
参照图27a-27c,显示了可变反馈的超级光栅激光器的实施例。在这些实施例中,可编程的BSG与光增益介质相组合,以产生具有单波长或多波长运行的可调谐的激光器。在图27A上,两个可编程BSG可以在一个或多个波长上产生谐振。在图27B上,在增益介质内的可编程BSG光栅可以控制输出谱和它的功率分布。在图27C上,可编程BSG可以改变波长和角度,以使得输出辐射的波长和角度可被控制。
将会认识到,采用光栅作为反馈元件的任何结构包括但不限于DBR、DFB、α激光器和环形振荡器结构,它可以通过用按照本发明教导的可编程BSG替换在传统设计中的一些或所有的相应衍射元件而被改进。
对于单波长激光器实施例,基于BSG的器件可以控制激光线的位置、它的线宽和/或它的强度。另外,它可以与监视以上参数(直接地或间接地例如通过温度、电流或电压)相组合以形成反馈系统、以控制一个或多个这些相同的参数。
BSG的设计(或“程序”)可以以相反的类似配置改变以产生多波长激光器,它提供了对于几个激光器波长中的每个的独立控制或单个波长的选择。产生激光的信道可被独立地调谐、加上和卸下,并且它们的相对输出功率可以按要求进行平衡。如上所述,可以加上监视器以形成反馈环路来控制这些参数中的任何一个。
光束组合器(分束器的逆反)
如图28所示作为实施例的光束组合器接受来自一个或多个源的输入,并使它们流到公共输出端。在图28A上,连续的BSG耦合器把在一个或多个波长上的功率加到沿水平波导从左面流到右面的功率上。在图28B,二维BSG接受三个输入,并引导辐射沿波导输出。应用包括组合来自多个激光器的功率(在本文中称为“功率组合器”),正如例如由拉曼放大器完成的,以取得足够的泵浦功率。在这种情形下,把这样的器件与半导体激光器阵列合并在一起是特别有吸引力的;BSG非常适用于这一用途。
各种各样的实施例都是可能的,包括一个或多个BSG耦合器与2D超级光栅的某些组合,以把多个光束(可能具有相同的波长)组合成一个光束。在2D超级光栅的情形下,这实际上相应于把输入分离成多个输出光束的颠倒。
多波长/宽带隔离器/环行器
光隔离器是阻挡一个或多个波长沿波导在一个或两个方向上通过的器件。它们被用来抑制后向反射、串扰和/或不想要的波长带(例如泵浦波长)。
环行器是N端口器件,它把在端口i输入的光路由到端口(i+1),到端口N的输入被“环绕”到端口1,并且常常用来结合具有从输入端口呈现的输出的光学器件(例如光延迟线、色散补偿器和λ路由器的某些实施例)。
图29a和29b-c分别显示基于BSG的隔离器实施例和4端口耦合波导环行器的示意图。隔离器和环行器都采用某种破坏时间反转的对称性的方法:即从一个方向到达器件的光与从相反方向到达的光被不同地处理。这典型地是利用磁光的和/或光学活性材料(诸如法拉第旋转器)并结合双折射和/或极化元件而达到的。
图29A例如显示了隔离器,其中从左面进入的辐射通过了极化器,然后通过把极化旋转45度的法拉第旋转器,然后通过第二极化器。从左面进入的辐射被极化,被旋转器旋转,并且然后被第二极化器阻挡。
图29B显示环行器的例子,其中从端口1的右面进入的辐射被旋转器旋转(例如45度),从端口3反射回来,再次被旋转,然后通过分束器到端口2。
图29C显示旋转器的例子,它可与上述的或其他的设备一起使用。从上部波导的左面进入的辐射被BSG耦合器在存在法拉第材料的情形下耦合到下部波导,所以其极化也旋转。
按照本发明教导的超级光栅可以与磁光的材料和/或极化元件相组合以产生隔离器和环行器,其提供在预先选择的信道或在宽的波长带上的波长选择性的运行。
BSG光子带隙材料
在过去几十年中光学理论的一个重要的进步是光子带隙(PBG)的概念。材料折射率的二维或三维周期性调制可以创建其中不管哪个方向光都不能传播的光波长范围,这个认识在应用中证明是效果好的。应用包括微点激光器、急剧的波导弯角、高Q光滤波器和波长选择性光耦合器。
不过PBG实质上是布拉格光栅的二维或三维扩展。作为布拉格光栅到波长空间的扩展的BSG概念可以与PBG组合以创建一个完全新的光材料组。
BSG-PBG材料的高度有利的特性可以非常不同于由传统的PBG所需要的高的折射率对比度。体现为折射率特性的周期性网格的传统PBG在不同的方向呈现不同的周期性。所以,每个方向的特征在于不同的有效布拉格光栅,每个光栅又与特定的带隙有关-由于光栅的结果一定范围的波长被禁止在该方向上传播。这个波长隙的宽度直接正比于有效光栅的强度,它又相应于PBG的折射率对比度。然而,为了禁止特定的波长在所有方向上的传播,由此形成规定PBG的“完全的”带隙,所有的各个波长隙必须在所讨论的波长上重叠,因此,正如本领域技术人员知道的,加上了对于PBG最小折射率对比度。
图37在图37A上显示表示不同折射率的区域的点的六边形排列。图37B显示在波数空间中相应的六边形。本领域技术人员将会认识到,呈现PBG效应的普通材料具有规则的几何排列,它产生波数空间中的轮廓。在图37B上,例如在图37A上的六边形的点阵被反映在k空间上的六边形中。为了抑制(由点圆表示的某个波长的)辐射在所有方向上的传播,所以,在k空间上的六边形的厚度必须是使得表示相关波长的圆可被雕刻在带隙六边形内。这个要求对于不需要的带隙抑制加上了要求。例如,在图37B上的六边器的外角的区域是不需要的,因为点线是在内角上。同样地,在边的中心的区域也是不需要的,因为点线是在该区域的外部边缘上。
不像传统的PBG,BSG不限于周期性网格以及它的隐含的周期性的方向变化。而是,二维或三维BSG可被设计成能呈现在任何方向上的几乎任意的有效周期性带。这直接相应于对于它的衍射谱的一维BSG控制。这个设计自由避免了对于光栅的折射率对比度的依赖以加厚各个带隙直至它们重叠。而是,折射率改变的图案可以几何地设置,以增强在第一位置造成重叠的带隙的折射率图案。由可用折射率对比度提供的任何额外强度然后可用来使得更多的波长受到PBG效应。图38在图38A上显示像素的非周期性排列,它以更加经济地使用资源的方式提供在特定的波长范围中在任何方向上传输的抑制。像素图案的角度依赖性被设置为使得点线(与图37所示的相同的点线)被更小的均匀的余量限制。如果想要的话,图38的余量可以增加,以覆盖更大的波长范围。
因此,对于给定的折射率调制技术(例如离子注入),BSG-PBG材料可以排除比传统的PBG材料更大的波长范围。
另外,按照本发明的新材料可以在同一个区域中排除在第一波长范围内的辐射,并操纵在一个或多个其他波长范围中的辐射-例如排除泵浦辐射,而偏转、聚焦等在生成的波长带中的辐射。
由BSG-PBG合成提供的、必要的折射率对比度的惊人减少确实克服了在PBG制造中主要的实际挑战。然而,这个减少是以此为代价的:较低对比度的光栅也隐含光栅通过其影响光的较长的所需相互作用长度。然而,这对于PBG也是正确的,虽然该影响可以是对于某些应用的重要考虑,但它可以被缓和、克服或甚至证明对于许多其他应用是有益的。
BSG不仅仅可以简单地改进PBG实施方案的实用性。例如,BSG使得材料能够呈现几个光子带隙,其直接来源于模拟几个叠加的光栅的容量,这激起我们首先的开发。这样的材料在许多应用中是有用的,主要是利用几个光波长的那些应用,例如具有分开的泵浦和信号波长的系统以及波长转换器。更一般地,BSG允许完全控制光带结构,包括带隙的宽度和位置、以及光的状态密度和色散关系。
图39显示使用按照本发明的PBG材料的高效率的太阳能电池或其他光电检测器的截面图。基片39-10是呈现光电效应的传统材料,例如硅。层39-20是通常允许传播相关波长的光的材料。按照本发明,BSG-PBG图案被刻在材料39-20上,以便抑制由箭头39-17表示的横向的传播。否则横向传播的辐射然后被BSG-PBG图案散射并优选地造成具有垂直分量的散射(例如按照箭头39-15)。更大部分的入射辐射因此被光电材料39-10吸收。
图40显示以通常的图案排列的PBG材料40-1的阵列。图案的两个点40-2被去除,建立了一对微点激光器(为了清晰起见,传统的泵浦辐射被省略)。与想要的一样多的微点激光器可以与任何想要的几何布局被排列。
图41显示BSG-PBG材料41-5的顶视图,它排除在相关的波长范围中的辐射。BSG图案不延伸到波导41-10,所以它允许在该波长范围中的辐射通过。具有小于称为参考值的传统极限的曲率半径R的曲线已在波导中形成。本领域技术人员将会认识到,当通过具有小于参考值的曲率半径的曲线时,传统的材料具有过量的散射。BSG-PBG材料允许形成具有减小损耗的波导。
图42显示以BSG-PBG材料42-5形成的一对波导42-10和42-12。作为任选的特性,在两个波导之间的区域42-25配有BSG-PBG材料42-25,它在由波导42-10和42-12传输的波长上具有较长的衰减长度。因此,实现在波导之间的耦合。不同的材料是不必要的,可以使用相同的材料,在波导之间有适当的间隔(或在波导之间可以省去BSG-PBG材料)。
作为附加的任选项,PBG的总的供应可以省去,并且PBG可以放置在波导42-10和42-12之间。在两个波导之间的材料可被制作来允许波导之间的耦合,例如通过构建PBG图案,以便不允许平行于波导的传播,而允许在波导之间的传播(即耦合)。
上述是方向性PBG材料的例子,所述材料是指具有一个抑制在波长带内在选择方向上的传播的像素图案的材料。
图43说明利用非线性效应的单元的顶视图。矩形43-05表示呈现非线性效应并且也以PBG图案印刻的材料的区域,所述PGB图案抑制在波长λ1、λ2和λ3处的传播。在所显示的例子中,λ1和λ2是泵浦波长,分别沿波导43-10和43-15传播,以及λ3是相关的非线性相互作用的输出波长,沿输出波导43-20传播。波导43-20的初始部分是这个器件中的任选波导,它可用来例如提供在λ3的其上加上非线性相互作用的结果的输入辐射。
在λ1和λ2的辐射在重叠的区域中进行组合以产生在λ3的辐射,正如现有技术所知的。在波导外部的PBG图案限制了辐射。在波导43-20的部分43-12内,像素图案43-26把输出辐射聚焦到如所示的一个点。波导43-20的部分43-25反射在输出波长的辐射,以便它按需要被引导(在图中是向上)并且不被浪费。如果想要的话,或如果由有限的资源需要的话,由43-07表示的在左面的PBG图案可被设置为限制λ1的辐射,以及由43-06表示的在右面的PBG图案可被设置为限制λ2的辐射,辐射λ3只被区域43-12中的图案限制。因此,PBG图案的(受限的)能力可被保留只用于需要的地方。
应当理解,以上的描述仅仅是说明本发明。本领域技术人员可以在不背离本发明的条件下设计各种替换例和修正。因此,本发明打算包括属于所附权利要求的范围内的所有这样的替换例、修正和变化。
Claims (12)
1.一种光学器件,包括在光栅材料的至少一个传播层中的至少两个波导,所述这些波导中的第一波导适用于输送来自第一输入端口的输入辐射到第一输出端口,以及所述这些波导中的第二波导输送来自第二输入端口的输入辐射到第二输出端口,以及还包括一个在光栅材料的调制层中的一维或二维双态超级光栅,用于把从所述第一和第二输入端口中的一个端口沿一个相应的波导传播的输入辐射耦合到所述第一和第二波导中的另一个波导。
2.按照权利要求1的器件,其中所述一维或二维超级光栅把在所述第一波导中沿第一方向行进的输入辐射耦合到所述第二波导,从而以基本上平行于所述第一方向的第二方向行进。
3.按照权利要求1的器件,其中所述一维或二维超级光栅把在所述第一波导中沿第一方向行进的输入辐射耦合到所述第二波导,从而以基本上与所述第一方向相反的第二方向行进。
4.按照权利要求1的器件,其中所述第一和第二波导是对称的,以及所述一维或二维超级光栅包括:具有高的和低的折射率数值的第一图案的、处在所述第一和第二波导之间的中心部分;以及具有与所述第一图案相反意义的、高的和低的折射率数值的第二图案的第一和第二外围部分,由此所述一维或二维超级光栅抑制在所述第一和第二波导中的后向反射。
5.按照权利要求1的器件,其中所述二维超级光栅包括一个响应于一组控制信号的可控制装置的阵列,用于以至少两个模式改变在所述阵列中在相应的像素中的模态折射率数值,所述两个模式包括第一模式,其中所述器件把在所述第一波导中沿第一方向行进的输入辐射耦合到所述第二波导,从而以基本上平行于所述第一方向的第二方向行进,以及包括第二模式,其中所述器件把在所述第一波导中沿第一方向行进的输入辐射耦合到所述第二波导,从而以基本上与所述第一方向相反的第二方向行进。
6.按照权利要求5的器件,其中所述阵列适用于响应于所述控制信号的相应数值,以所述第一和第二模式在所述第一和第二波导之间切换N个不同的波长中的任何波长的辐射,由此所述器件可被控制来把来自任何的所述输入端口的、在N个波长中的任一个波长的辐射传送到任何的所述输出端口,由此形成依赖于波长的超级光栅2x2耦合器。
7.按照权利要求1的器件,其中所述一维或二维超级光栅包括一个响应于一组控制信号的可控制装置的阵列,用于以至少两个模式改变在所述阵列中在相应的像素中的折射率数值,所述两个模式包括第一模式,其中所述器件把在所述第一波导中的输入辐射耦合到所述第二波导,以及还包括第二模式,其中所述器件把在所述第二波导中的输入辐射耦合到所述第一波导。
8.按照权利要求7的器件,其中所述阵列适用于响应于所述控制信号的相应数值,以所述第一和第二模式在所述第一和第二波导之间切换N个不同的波长中的任何波长的辐射,由此所述器件可被控制来把来自任何的所述输入端口的、在N个波长中的任一个波长的辐射传送到任何的所述输出端口,由此形成依赖于波长的超级光栅2x2耦合器。
9.一种用于处理具有一组波长的光辐射的器件,包括一组具有至少一个输入端口和至少一个输出端口的波导,其中在该组波导的输入波导上行进的输入的辐射束传送通过多个依赖于波长的超级光栅耦合器,每个依赖于波长的超级光栅耦合器都可操作来耦合被选择的波长带使其进入输入波导或从输入波导外出,这样,在输入波导中剩余的光束具有被附加的波长范围或从中减去选择的波长带的波长范围。
10.按照权利要求9的器件,其中所述依赖于波长的超级光栅耦合器把来自附加的输入端口的辐射附加到所述输入光束。
11.按照权利要求9的器件,其中所述依赖于波长的超级光栅耦合器从所述输入光束中减去在选择的波长带中的辐射。
12.按照权利要求9的器件,其中至少两个超级光栅耦合器被串联连接,其第一超级光栅耦合器控制第一波长范围,以及第二超级光栅耦合器控制第二波长范围。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39230602P | 2002-06-27 | 2002-06-27 | |
US60/392,306 | 2002-06-27 | ||
US39320902P | 2002-07-01 | 2002-07-01 | |
US60/393,209 | 2002-07-01 | ||
PCT/US2003/020237 WO2004003598A2 (en) | 2002-06-27 | 2003-06-27 | Method and apparatus for detecting multiple optical wave lengths |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1692295A CN1692295A (zh) | 2005-11-02 |
CN1692295B true CN1692295B (zh) | 2011-05-04 |
Family
ID=30003237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN038199912A Expired - Fee Related CN1692295B (zh) | 2002-06-27 | 2003-06-27 | 用于检测多个光波长的方法和设备 |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1546779A4 (zh) |
KR (1) | KR20050013165A (zh) |
CN (1) | CN1692295B (zh) |
AU (1) | AU2003253727A1 (zh) |
CA (1) | CA2490768A1 (zh) |
MX (1) | MXPA05000188A (zh) |
WO (1) | WO2004003598A2 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1412791A4 (en) | 2001-07-03 | 2005-08-10 | Univ Brown Res Found | METHOD AND DEVICE FOR PROCESSING OPTICAL SIGNALS WITH SUPER GRIDS |
US7496257B2 (en) | 2001-07-03 | 2009-02-24 | Brown University Research Foundation | Method and apparatus for detecting multiple optical wavelengths |
WO2004059354A1 (ja) | 2002-12-26 | 2004-07-15 | Nippon Telegraph And Telephone Corporation | 波動伝達媒体および導波回路 |
JP5831206B2 (ja) | 2011-12-21 | 2015-12-09 | 富士通株式会社 | 光スイッチ素子、光復調器、光復調方法 |
CN106796899B (zh) * | 2014-05-29 | 2019-11-05 | 布朗大学 | 用于确定衬底中的应力的光学系统和方法 |
US10185303B2 (en) * | 2015-02-21 | 2019-01-22 | Kla-Tencor Corporation | Optimizing computational efficiency by multiple truncation of spatial harmonics |
KR102456898B1 (ko) * | 2016-03-17 | 2022-10-19 | 삼성에스디에스 주식회사 | 데이터 신호의 표준 패턴 생성 방법 및 그 장치 |
WO2020076387A2 (en) * | 2018-07-25 | 2020-04-16 | Corning Incorporated | Communications systems comprising waveguide arrays for realizing localized quantum walks |
CN110857977B (zh) * | 2018-08-23 | 2024-09-17 | 武汉万集光电技术有限公司 | 光学天线、相控阵激光雷达及光学天线的二维扫描方法 |
JP2020148875A (ja) * | 2019-03-13 | 2020-09-17 | 株式会社フジクラ | レンズ部材、導光部材、及びレーザ装置 |
WO2021071664A1 (en) * | 2019-10-08 | 2021-04-15 | Corning Incorporated | Optical systems comprising binary photonics lattices |
CN113671770B (zh) * | 2020-05-15 | 2024-04-09 | 华为技术有限公司 | 一种光选择开关、节点装置 |
CN114499673B (zh) * | 2020-11-12 | 2024-07-26 | 莫列斯有限公司 | 光放大器模块及其增益控制方法 |
CN113067238B (zh) * | 2021-03-19 | 2022-02-22 | 中国计量大学 | 一种产生单光子的谐振腔及单光子源系统 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6393172B1 (en) * | 1994-09-09 | 2002-05-21 | Gemfire Corporation | Method of manipulating optical wave energy using patterned electro-optic structures |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5832156A (en) * | 1996-10-31 | 1998-11-03 | Lucent Technologies Inc. | Article comprising an optical waveguide tap |
US6289032B1 (en) * | 1998-04-16 | 2001-09-11 | Governing Council Of The University Of Toronto | Self-collimating multiwavelength lasers |
US6181852B1 (en) * | 1998-09-23 | 2001-01-30 | Lucent Technologies Inc. | Optical grating device with variable coating |
WO2001011401A1 (en) * | 1999-08-05 | 2001-02-15 | Daniel Levner | Synthesis of supergratings by fourier methods |
US6424763B1 (en) * | 1999-10-28 | 2002-07-23 | Massachusetts Institute Of Technology | Tunable add/drop filter using side-coupled resonant tunneling |
US6393173B1 (en) * | 2000-03-28 | 2002-05-21 | Lucent Technologies Inc. | 2×2 integrated optical cross-connect |
-
2003
- 2003-06-27 CA CA002490768A patent/CA2490768A1/en not_active Abandoned
- 2003-06-27 AU AU2003253727A patent/AU2003253727A1/en not_active Abandoned
- 2003-06-27 WO PCT/US2003/020237 patent/WO2004003598A2/en not_active Application Discontinuation
- 2003-06-27 CN CN038199912A patent/CN1692295B/zh not_active Expired - Fee Related
- 2003-06-27 MX MXPA05000188A patent/MXPA05000188A/es not_active Application Discontinuation
- 2003-06-27 EP EP03762098A patent/EP1546779A4/en not_active Withdrawn
- 2003-06-27 KR KR10-2004-7021358A patent/KR20050013165A/ko not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6393172B1 (en) * | 1994-09-09 | 2002-05-21 | Gemfire Corporation | Method of manipulating optical wave energy using patterned electro-optic structures |
Non-Patent Citations (5)
Title |
---|
AVRUTSKY I A ET AL.Binary superimposed grantings for tunable DBR lasers.OPTICSL FIBER COMMUNICATION CONFERENCE.1998,383 - 386. |
AVRUTSKY I A ET AL.Binary superimposed grantings for tunable DBR lasers.OPTICSL FIBER COMMUNICATION CONFERENCE.1998,383- 386. * |
BISMUTH J ET AL.Superimposed grantings WDM on Ge-Doped silica on silconplanar waveguide.CLEO 96. LASERS AND ELECTRO-OPTICS.1996,513 - 514. |
BISMUTH J ET AL.Superimposed grantings WDM on Ge-Doped silica on silconplanar waveguide.CLEO 96. LASERS AND ELECTRO-OPTICS.1996,513- 514. * |
CHIK H A ET AL.1x8 Supergrating Tap-off WDM Device.LASERS AND ELECTRO-OPTICS.1996,231. * |
Also Published As
Publication number | Publication date |
---|---|
CA2490768A1 (en) | 2004-01-08 |
WO2004003598A3 (en) | 2005-04-28 |
AU2003253727A1 (en) | 2004-01-19 |
EP1546779A4 (en) | 2009-09-02 |
KR20050013165A (ko) | 2005-02-02 |
EP1546779A2 (en) | 2005-06-29 |
MXPA05000188A (es) | 2005-09-08 |
WO2004003598A2 (en) | 2004-01-08 |
CN1692295A (zh) | 2005-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7496257B2 (en) | Method and apparatus for detecting multiple optical wavelengths | |
US7356224B2 (en) | Method and apparatus for detecting multiple optical wave lengths | |
CN1692295B (zh) | 用于检测多个光波长的方法和设备 | |
US7693370B2 (en) | Method and apparatus for processing optical signals with supergratings | |
US7203401B2 (en) | Multiple wavelength optical source | |
JP3222163B2 (ja) | 光導波路の並列配置された複数の出力端面を備える回折格子 | |
US7352931B1 (en) | Method and phase mask for manufacturing a multi-channel optical grating | |
WO2015038927A2 (en) | Waveguide superlattices for high density photonics integrations | |
US20220373739A1 (en) | Cascaded integrated photonic wavelength demultiplexer | |
USRE42206E1 (en) | Multiple wavelength optical source | |
CN1424829A (zh) | 级联式体全息光栅密集波分复用器件制作方法及其系统 | |
JP2004219986A (ja) | ホログラフィック波動伝達媒体および導波回路ならびにそれらの製造方法 | |
JPH10509249A (ja) | 複数の誘導波長用光学フィルタ | |
US6885791B2 (en) | Integrated-optic device and a method for attenuating light or equalizing light using integrated-optic device | |
Yen et al. | Silicon photonics multi-channel Bragg reflectors based on narrowband cladding-modulated gratings | |
Nassar et al. | Diffraction grating polarization beam splitter using nano optical slits | |
AU767482B2 (en) | Method of writing grating structures | |
Hoang | Applications of Photonic Crystals in Communications Engineering and Optical Imaging | |
KR20220085478A (ko) | 폴리머 광ic 기반 레이저 집적형 이차원 빔스캐너 및 그의 제조 방법 | |
Wang et al. | Design and optimization of a novel InP-based monolithically integrated optical channel monitor | |
Ogusu | Reflection and Transmission Spectra of Multimode Interference Devices With Bragg Gratings | |
Shamray et al. | A novel integrated optical device for wavelength control in optical telecommunication systems | |
AU2002329194A1 (en) | Method and apparatus for processing optical signals with supergratings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110504 |