CN1689152A - 适用于形成集成电路互连和器件的金属-金属氧化物蚀刻阻滞/电子迁移屏蔽的方法 - Google Patents

适用于形成集成电路互连和器件的金属-金属氧化物蚀刻阻滞/电子迁移屏蔽的方法 Download PDF

Info

Publication number
CN1689152A
CN1689152A CNA038225263A CN03822526A CN1689152A CN 1689152 A CN1689152 A CN 1689152A CN A038225263 A CNA038225263 A CN A038225263A CN 03822526 A CN03822526 A CN 03822526A CN 1689152 A CN1689152 A CN 1689152A
Authority
CN
China
Prior art keywords
ild
layer
interconnection
metal
ground floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038225263A
Other languages
English (en)
Other versions
CN100499067C (zh
Inventor
X·莫罗
J·勒
M·库恩
J·米安兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1689152A publication Critical patent/CN1689152A/zh
Application granted granted Critical
Publication of CN100499067C publication Critical patent/CN100499067C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/76808Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving intermediate temporary filling with material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76888By rendering at least a portion of the conductor non conductive, e.g. oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

披露了一种适用于形成具有金属-金属氧化物电子屏蔽和蚀刻阻滞的互连的方法和装置。在本发明的一实施例中,该方法包括在平整的互连层上沉积金属层,该互连层具有一层中间介质(ILD)且其上顶面与导电互连层的上顶面相平齐。在本发明的一实施例中,该方法包括金属层与ILD反应,以在ILD上顶面形成金属氧化层。同时,金属层不会被导电互连明显氧化,于是在导电互连上形成金属屏蔽,以改善电子迁移性能。金属屏蔽和金属氧化层一起构成了保护层。随后在保护层上形成第二层ILD,并且保护层可以在后续第二层ILD的蚀刻过程中起到蚀刻阻滞的作用。

Description

适用于形成集成电路互连和器件的金属-金属氧化物 蚀刻阻滞/电子迁移屏蔽的方法
技术领域
本发明的一个实施例涉及半导体技术领域,尤其涉及形成在集成电路中的互连技术。
背景技术
通常,在集成电路中的金属互连的形成需要在互连后续处理之前在ILD/金属互连层上沉积一个分离的阻滞层。例如,图1说明了根据常规技术所形成的金属互连。参考图1,在蚀刻阻滞层104上沉积中间介质(ILD)102,典型的是氮化硅。根据众所周知的双层金属镶嵌技术将通孔106和沟道107图形化在ILD 102中。在通孔106和沟道107的底部和侧面上形成屏蔽层108。采用诸如铜之类的导电材料来填充通孔106和沟道107,并对ILD 102的上面进行平整,由此形成铜互连110。在平整的ILD 102、平整的屏蔽层108以及平整的互连110上沉积蚀刻阻滞层112。此后,可以形成第二ILD 114、第二屏蔽层118和第二互连116,第二屏蔽层118和第二互连116连接着第一互连110,以提供在互连110和116之间的电性能连接。对其它ILD/互连层重复盖处理过程。
然而,该典型方法也存在着问题。例如,必须在后续的ILD层形成和图形化之前进行蚀刻阻滞层112的沉积。然而,蚀刻阻滞层的沉积既耗时又昂贵,因为必须采用专用设备来沉积传统的氮化或者氧化材料。此外,蚀刻阻滞层112是典型的介质材料,一般都很厚,通常在30至50纳米之间,这就明显增加了电路的介质数值。该介质数值与电路的RC响应紧密相关。因此,蚀刻阻滞层112明显增加了电路的整个RC延迟。
另外,蚀刻阻滞层112一般都是氮化硅,它不能抑止金属(例如,铜)的界面扩散,在沿着蚀刻阻滞层112和互连材料110之间界面连接上120的有效金属的界面扩散。该界面扩散一直被认为是早期电子迁移故障的主要原因。
一直在进行试验和罩住金属互连顶部的一些努力,但是,这些探讨都需要一个非常严格的处理工艺,在该工艺中,将罩覆的材料仅仅只沉积在金属互连上,而不会沉积在ILD上。此外,还需要分离的蚀刻阻滞沉积,来满足不占地方的通孔设计规则。
附图的简要说明
籍助于实例来说明本发明,并且不受附图的限制,在附图中,类似的标号表示相似的元件,在附图中:
图1说明了根据现有技术形成互连的典型方法;和,
图2A-2Q说明了根据本发明实施例形成互连的方法。
具体实施方法
下文讨论了一种适用于形成与金属-金属氧化物电子迁移屏蔽和蚀刻阻滞相连接的方法和装置。在下列讨论中阐述许多具体细节。然而,业内熟练技术人士应该意识到,实现本发明实施例并不一定是这些具体细节。虽然在附图所讨论和显示的某些示例性实施例中,应该理解的是这些实施例仅仅只是用于说明,而并不是限制该发明,因此本发明并不限制于所显示和讨论的特殊结构和设置,因为业内熟练技术人士都可以进行改进。在其它实例中,众所周知的半导体制造工艺、技术、材料、设备等等没有作详细细节的阐述,以避免于本发明实施例的混淆。
以下,讨论一种适用于形成互连层的方法,该方法不需要分离的蚀刻阻滞沉积或者覆罩金属的选择沉积。在本发明的一例实施例中,沉积一层金属层,该金属层部分与中间层介质(“ILD”)接触,部分与导电互连接触。与ILD接触的金属层部分与ILD反应,以在ILD上形成金属氧化物。然而,与导电互连接触的金属层部分起到覆盖导电互连的金属罩子的作用,以改善电子迁移的性能。金属氧化物和金属罩子一起用作为上层ILD后续图形化的蚀刻阻滞层。
该方法从集成电路结构201开始,正如图2A所示,该结构包括环绕着导体204的基片202,其中导体204可以连接着在集成电路中的有源电路和集成器件。术语“基片”包含半导体晶圆(例如,单晶硅)以及具有一个或者多个绝缘、半绝缘、导体或半导体层和材料。于是,例如,该术语包含了绝缘体上的硅,兰宝石上的硅以及其它现金的结构。导体204可以是诸如铜、银、金或铝之类的材料,复合在诸如氮化钛或者氮化钽之类的扩散屏蔽206上,以防止导体204材料扩散至基片202中。
在集成电路结构201顶上,如图2B所示,沉积一层非导电蚀刻阻滞层208,其典型厚度为30至150纳米,并包括诸如氮化硅、氮氧化硅或者掺氮的碳化硅。蚀刻阻滞层208包含能够对后续的蚀刻起到有效蚀刻阻滞作用的材料,但是也可以作用纯化层。蚀刻阻滞层208之上形成绝缘层210,有时也称之为中间介质,或者简称之ILD。因此,这里将绝缘层210称之为ILD。在本发明的一个实施例中,ILD 210包括具有电绝缘性能的材料,但是也可以包含某些形式的氧。包含氧的示例性ILD包括氧化合物,例如,二氧化硅(SiO2),掺氟的氧化硅(SiOF),或者掺碳的氧化物(CDO)。在本发明的一个实施例中,在ILD 210中氧的存在意义重大,正如以下参考图2I所作的更加详细的讨论。
ILD 210可以采用任何适用于沉积介质材料薄膜的熟知方法来沉积,包括物理和化学气相沉积技术。ILD 210的厚度可以根据集成电路的设计而变化(如1000至15000埃)。
如图2C-2D所示,该方法接下来可以采用根据常规双层金属镶嵌技术对ILD进行图形化,以蚀刻ILD 210形成多个孔,通常称之为通孔。这类技术可以包括典型的光刻技术,如图2C所示,包括在ILD 210上沉积光刻层212,随后,掩模、曝光和显影光刻层212,以便于在光刻层212中形成图形214。随后,如图2D所示,可以根据光刻层212中的图形214对ILD 210进行蚀刻,以首先在ILD 210中形成至少一个孔216,也称之为通孔。在蚀刻阻滞层208上先形成阻滞蚀刻。一例示例性蚀刻方法可以包括反应离子蚀刻(RIE),或者其它众所周知的方法。光刻层212随后可以从ILD 210层顶上去除并清除通孔217。
正如图2E所示,也可以进行常规双层金属镶嵌技术的第二种图形化处理,以形成沟道220。根据一项技术,第二种图形化处理可以包括沉积牺牲材料218,以便于完全填充通孔216。该牺牲材料可以采用旋涂方法沉积的聚合物上旋涂(SOP)或者玻璃上旋涂。该层也可以作为防反射层。在牺牲材料218上也可以沉积其它光刻层219,随后该光刻层219可以进行掩模、曝光和显影,以便于形成定义沟道形成区域的另一图形。正如图2E所示,随后,进行定时蚀刻,直至沟道220形成根据沟道220的设计宽幅比的一定深度。随后,可以去除光刻层219,和牺牲材料218,并可以进一步蚀刻蚀刻阻滞层208,以将通孔216与下层导体204的一部分相连接。随后,再进行清除处理工艺,以去除任何残余物。
在ILD的上面以及在通孔216和沟道220的侧面和下面沉积屏蔽层222。在本发明的一例实施例中,在屏蔽层222上面和ILD 210顶上沉积籽晶层。随后,进行电镀处理,以在籽晶层外面生长一层导电材料,以准备填充通孔216和沟道220。采用导电材料224来填充通孔216和沟道220,正如图2F所示。在一例实施例中,导电材料224和籽晶层都是铜。籽晶层和导电材料224相结合。但是,在另一例实施例中,可以没有籽晶层,并且导电材料224可以直接沉积在屏蔽层222上。屏蔽层22是防止导电材料224扩散到ILD 210中所必需的,特别是,如果ILD 210本身不是防止扩散的材料,以及特别是,如果导电材料224非常容易扩散。用作为屏蔽层222的示例性材料包括锆、钛、钽、钨、氮化钛、氮化钽、氮化钨、碳化钛、碳化钽、碳化钨、铪、或者能够防止导电材料224扩散到ILD 210中的其它氮化物、碳化物、化合物或者材料。导电材料224的示例性材料包括铜、金、银和铝。导电材料224应该沉积到能够完全填充通孔216和沟道220的厚度。
接着,正如图2G所示,可以进行平整处理流程(例如,化学继续抛光,或者简称之CMP)以平整在ILD 210顶上的导电材料224和屏蔽层224,因此形成在ILD 210中的导电连接224,接着完成互连层200的形成。
平整流程暴露ILD 210、互连224和屏蔽层222的上部分。在常规处理工艺中,如果随后在第一互连层200上形成第二互连层,就需要进行常规蚀刻阻滞层的沉积,如同原先在第一互连层200形成中所进行的沉积。然而,正如图2H所示,为了去除对常规蚀刻阻滞层沉积(例如,氮化硅层)的需要,在ILD210、互连224和屏蔽层222的暴露上部沉积金属材料226。金属材料226的沉积是廉价的和节省时间的,因为用于沉积屏蔽/籽晶层222的同一机械设备可以用于沉积金属材料224。另外,在后续的金属化工艺中和创建其它互连层的同时,可以使用同一机械设备。此外,由于常规的蚀刻阻滞层是介质材料且一般都很厚(例如,30至150纳米),因此常规蚀刻阻滞层一般都会明显增加集成电路的整个RC延迟。然而,由于根据本发明所讨论的实施例消除了常规蚀刻阻滞层的需要,从而由于本发明采用较薄的金属氧化物可明显地降低整个RC延迟。因此,所讨论的方法也提供一种具有降低RC延迟、明显改善电路性能的集成电路。
金属材料226的沉积可以采用物理气相沉积方法(例如,热蒸发,溅射等等)、化学气相沉积方法(例如,常规的等离子体增强方法,等等),或者其它所熟知的沉积金属薄膜的方法来实现。金属材料226沉积到最终层所需要的厚度,正如以下将进一步讨论的那样,起到能够有效蚀刻阻滞后续ILD蚀刻的作用。然而,金属材料226不应该沉积到会明显影响整个电路的介质数值(K数值)的厚度。该K数值直接与电路的时间常数(RC数值)有关,反之,如果金属材料226沉积得过厚,就会降低电路的性能。因此,在本发明的一例实施例中,金属材料226沉积到大约10埃的厚度,其最佳的结果是在大约10埃至100埃之间。
在本发明的一例实施例中,金属材料226可以包括随着金属材料226的沉积能够自动与ILD 210所暴露到上面部分反应的材料,以形成覆盖ILD 210所暴露的上面部分的金属氧化层228,正如图2I所示。如果ILD 210是一层氧化物材料,或者,换句话说,如果ILD 210其中包含足够的含氧量,当在ILD 210上沉积金属材料时,金属材料226就会与ILD 210中的氧自动反应,从而使得金属材料226氧化,并形成相互接触的金属氧化层228。随着金属材料226和ILD 210的反应,就会消耗部分ILD 210,从而使得金属氧化层228会稍微突出到ILD 210中。能够与金属材料接触反应的典型ILD 210材料所包括的氧化合物有,例如,二氧化硅(SiO2)、掺氟的氧化硅(SiOF),以及掺碳的氧化物(CDO)。能够与ILD 210材料接触反应的典型金属材料包括钴、铝、钽、钛和铬。因此,所形成的金属氧化层228可以包括氧化钽、氧化钛、氧化铝、氧化铬和氧化钴。
另外,金属材料226可以包括不会被互连224或屏蔽层22所暴露的上面部分明显氧化的材料,从而在互连224和屏蔽层22所暴露的上面部分形成大部分不会反应的金属层230或者金属罩子230,也如图2I所示。金属罩子230是与金属材料226相同的材料。因此,金属罩子230和金属氧化层228可以同时形成,并且两者都形成在ILD 210、互连224和屏蔽层222上,而不再需要进行选择性沉积。应该注意的是,在金属层230和铜互连224之间的界面上,或者在金属罩子230上,也可能部分氧化,因为暴露于环境中,然而这种氧化是很小的并且会与在铜互连224和随后形成的互连之间的电信号通讯不兼容。但是,应该小心的是,要确保在界面231上尽可能不会产生氧化,因为在金属罩子230已经制成之后这种氧化就不太容易去除。
金属罩子230构成为可提供在第一互连和在其表面上后续形成的互连之间的电连接。金属罩子230可以禁止互连224材料沿着金属罩子/互连界面的扩散,因为与常规蚀刻阻滞/互连界面的情况相比较,金属罩子可以具有更强的粘结强度。换句话说,金属罩子230使得电子沿着界面的迁移的激活能量可以增加,于是就可明显地防止在界面上的电子迁移,减小由于迁移材料所引起的空穴形成,从而提高电路的整体性能。
另外,金属罩子230通过设计有利于不着落在直接互连上面的覆盖ILD部分。这样,金属罩子230就起到了扩散屏蔽的作用,它罩住了互连224材料的上部,避免从外界沿着在金属罩子230和金属互连224之间的界面边缘231扩散进周围的ILD 210,以及还避免了从上面扩散进后续形成的覆盖ILD。另外,正如以下结合图2M所进一步详细的讨论,金属罩子230和金属氧化层228起作蚀刻阻滞层的作用,以防止后续蚀刻、灰化和清洗处理工艺对ILD材料210、金属互连224或者屏蔽层222的损伤。
此外,由于金属罩子230构成为可提供在第一互连和在其上面形成的后续互连之间的电连接,所以金属材料226不应该是具有太大电阻的材料。如果电阻太大,金属罩子230就难以在第一互连224和后续形成的与金属罩子230相接触的互连之间提供良好的导电性。另外,金属罩子(metal cap)230的金属材料226应该不会太倾向于扩散到互连224的材料中。如果太倾向于扩散到互连224的材料中,则依次遍及互连224的金属材料226就在互连224的电阻中产生所不希望的增加。所增加的电阻就会增加互连224的RC数值,最后会引起电路的性能降低。
因此,金属罩子230有助于明显改善集成电路中的电子迁移的问题,从而改善整个电路的可靠性。此外,由于金属罩子230是与氧化层228同时形成的,所以该方法尤其有利,因为其它互连层的后续形成不需要与金属罩子230沉积相分离的蚀刻阻滞层沉积。
在已经沉积了金属材料226,并且ILD 210已经与金属材料226反应之后,在ILD 210上的金属材料226的部分232就不会与ILD 210完全反应。这一部分232是多余的和不需要的,因为允许保留的话,则将是整个电路的缺陷。因此,正如图2J所示,可以进行反向蚀刻的处理,以去除在金属氧化层228上的多余部分232。在这类反向蚀刻的处理中,蚀刻液应该是能够蚀刻金属材料226的化学试剂,但该试剂不会明显蚀刻金属氧化层228、ILD 210、互连224或者屏蔽层222。对于Ta可以采用基于标准氟的等离子体蚀刻,而对于Al和Ti可以采用基于A标准铬的等离子体蚀刻。此外,蚀刻不应该进行太长,否则金属罩子230变成为过度蚀刻。因此,反向蚀刻处理应该是定时的,只要能够蚀刻掉在金属氧化层228上的多余部分232即可。正如图2J所示,金属罩子230与金属氧化层228是基本平齐的,但是也不一定需要是平齐的。
最终的金属氧化层228和金属罩子230一起定义了保护层234,它能够起到蚀刻阻滞后续ILD图形化和蚀刻的作用。因此,正如图2K-2M所示,该方法可以接下来再在保护层234上沉积第二层ILD 236,随后在第二层ILD 236中进行图形化和蚀刻通孔242,并在通孔的蚀刻过程中保护层234起作蚀刻阻滞的作用。
在本发明的一例实施例中,正如图2K所示,第二层ILD 236可以采用任何适用于沉积介质材料或薄膜的已知方法来沉积,包括物理和化学气相沉积技术。第二层ILD 236的厚度可以根据集成电路的设计来改变,但是在一例实施例中,它的沉积厚度大约为6000埃。第二层ILD 236可以包括与第一层ILD 210相同的氧化材料,例如,,二氧化硅(SiO2),掺氟的氧化硅(SiOF)或者掺碳的氧化物(CDO),也可以是与第一层ILD 210不同的材料。然而,如果后续的ILD要形成在第二层ILD 236的顶上,则第二层ILD 236采用与第一层ILD210相同的材料是有利的。
通孔242的图形化可以包括光刻处理工艺,正如图2L所示,包括在第二层ILD 236上沉积光刻层238,以及随后掩模、曝光和显影光刻层238,以在光刻层中形成图形240。接着,正如图2M所示,可以根据在光刻层238中的图形240来蚀刻第二层ILD 236。蚀刻的典型方法可以包括反应离子蚀刻(RIE)或者其它众所周知的方法。在蚀刻的过程中,如果没有保护层234,则下层的ILD 210、互连224和屏蔽层222就会受到蚀刻液244的侵袭和损伤。随后可以进行灰化和清洗处理,以去除光刻层238以及从通孔242内部清除残余物。在灰化和清洗的处理过程中,保护层234也保护了下层ILD 210、互连和屏蔽层222。
根据本发明的一例实施例,可以采用不着落的设计来形成通孔242,或者,换句话说,所形成的通孔可以一部分覆盖着金属氧化层228而另一部分则覆盖着金属罩子230,例如图2M所显示的实施例。因此,在第二层ILD 236蚀刻过程中所使用的蚀刻液244应该包括能够蚀刻第二层ILD 236的材料但不会明显蚀刻金属氧化层228或者金属罩子230的化学试剂。
随后,继续该方法,正如图2N所示,采用常规双层金属镶嵌技术进行第二次图形化,以形成沟道248。根据一种技术,在从第二层ILD 236顶上去除光刻层238之后,第二次图形化处理可以包括沉积牺牲材料245、在牺牲材料245上沉积另一层光刻层246,随后进行掩模、曝光和显影光刻层246,以形成定义沟道形成区域的图形。此后,进行定时蚀刻,正如图2N所示,直至形成符合沟道248的设计宽幅比率的深度。随后再经过灰化和清洗处理工艺来去除光刻层246和任何残余的牺牲层材料245。
进一步继续该方法,正如图2O-2P所示,在第二层ILD 236中形成第二层互连254,以形成第二层互连层256。正如图2O所示,可以在第二层ILD 236的顶上和在所蚀刻的通孔242和沟道248的侧壁上沉积屏蔽层250,以防止后续所形成的互连侧向扩散至第二层ILD 236。在屏蔽层250上可以沉积籽晶层,以及可以进行电镀处理。诸如铜之类的导电材料252可以沉积至能够充分地填充通孔242和沟道248的厚度。随后,正如图2P所示,可以进行平整处理工艺,例如,CMP,以平整在第二层ILD 236上的导电材料252和屏蔽层250,以形成第二层互连254。因此,采用金属-金属氧化蚀刻阻滞层/电子迁移屏蔽层在第一层互连层200上形成了第二层互连层256,并因此可避免分离的、常规蚀刻阻滞层的沉积。第二层ILD 236可采用金属罩子236来保护互连的电子迁移。此后,正如图2Q所示,可以重复该方法,形成后续的互连层258,以及其它等等。
已经讨论了本发明的几个实施例。然而,业内熟练技术人士应该意识到,本发明并不限制于所讨论的实施例,而是可以在下列所附权利要求的精神和范围内的改进和变更来实现的。

Claims (28)

1.一种方法,其特征在于,该方法包括:
采用在一层互连层上沉积金属层的方法在一层互连层上形成一层金属氧化层,该互连层包括在第一层中间介质(ILD)中形成的互连,以及所述金属层与第一层ILD反应,以形成金属氧化层。
2.如权利要求1所述的方法,其特征在于,所述第一层ILD是一种包含有在金属材料沉积时能够与金属层自动反应以形成金属氧化层的足够氧的材料。
3.如权利要求1所述的方法,其特征在于,所述方法进一步包括:
在金属氧化层上沉积第二层ILD;和,
在第二层ILD中蚀刻通孔,所述金属氧化层起到蚀刻阻滞的作用。
4.如权利要求3所述的方法,其特征在于,所述蚀刻通孔包括采用能够蚀刻第二层ILD材料但是不会明显蚀刻金属氧化层的蚀刻液。
5.如权利要求1所述的方法,其特征在于,所述金属层所沉积的厚度在大约10埃至100埃之间。
6.如权利要求1所述的方法,其特征在于,所述第一互连包括铜。
7.如权利要求1所述的方法,其特征在于,所述金属层包括选自由钴、铝、钽、铬和钛所构成族的材料。
8.一种方法,其特征在于,该方法包括:
在基片上沉积第一层ILD;
在第一层ILD中形成第一通孔和第一沟道;
采用导电材料填充第一通孔和第一沟道;
将导电材料的上面平整至第一层ILD的上顶面,于是形成在第一层ILD中的第一互连,该互连具有暴露的上顶面部分,以及第一层ILD具有暴露的上顶面部分;和,
在第一层ILD的暴露上顶面部分和互连的暴露上顶面部分上沉积金属,该金属是可以与第一层ILD接触反应的材料,以便于在第一层ILD上形成金属氧化层,以及该金属是可以在第一层互连上形成电子迁移屏蔽的材料。
9.如权利要求8所述的方法,其特征在于,所述金属氧化层和电子迁移屏蔽一起定义了在第一层互连层上的保护层,并进一步包括:
在保护层上沉积第二层ILD;和
蚀刻和清洗在第二层ILD中的第二通孔和第二沟道,所述保护层在蚀刻和清洗处理过程中起作蚀刻阻滞的作用。
10.如权利要求9所述的方法,其特征在于,进一步包括:
在第二通孔和沟道中形成第二层互连,电子迁移屏蔽层可防止第一层互连扩散到第一层ILD和第二层ILD中的任何一层。
11.如权利要求10所述的方法,其特征在于,所述形成第二通孔包括采用能够蚀刻第二层ILD材料但是不会明显蚀刻保护层的蚀刻液。
12.如权利要求8所述的方法,其特征在于,所述金属不会与第一层ILD完全反应,因此可以在金属氧化物上产生多余的金属层,以及进一步包括对金属氧化层上顶面反向蚀刻多余的金属层。
13.如权利要求8所述的方法,其特征在于,所述金属所沉积的厚度在大约10埃至100埃之间。
14.如权利要求8所述的方法,其特征在于,所述第一互连包括铜。
15.如权利要求8所述的方法,其特征在于,所述金属包括选自由钴、铝、钽、铬和钛所构成族的材料。
16.如权利要求8所述的方法,其特征在于,所述第一层ILD包括选自由SiO2、SiOF和CDO所构成族的材料。
17.一种装置,其特征在于,该装置包括:
第一层ILD;
在第一层ILD中的互连,该互连的上顶面与第一层ILD上顶面平齐;和
在互连上顶面和第一层ILD上顶面的保护层,该保护层包括覆盖着第一层ILD的金属氧化部分和覆盖着互连的电子迁移屏蔽部分的保护层。
18.如权利要求17所述的装置,其特征在于,所述保护层在第二层ILD蚀刻和清洗过程中起到蚀刻阻滞的作用。
19.如权利要求17所述的装置,其特征在于,所述电子迁移屏蔽层包括金属,并且是用于改善互连的电子迁移。
20.如权利要求17所述的装置,其特征在于,所述第一层ILD部分包括氧化材料。
21.如权利要求17所述的装置,其特征在于,所述第一层ILD部分包括选自由SiO2、SiOF和CDO所构成族的材料。
22.如权利要求17所述的装置,其特征在于,所述覆盖互连的电子迁移屏蔽层包括选自由钴、铝、钽、铬和钛所构成族的材料。
23.如权利要求17所述的装置,其特征在于,所述保护层所沉积的厚度在大约10埃至100埃之间。
24.一种装置,其特征在于,该装置包括:
基片;
覆盖在基片上的互连层,该互连层包括上顶面与一层ILD的上顶面平齐的导电互连;和,
在互连层上的保护层,该保护层包括覆盖着第一ILD的金属氧化部分和覆盖着互连的电子迁移屏蔽层。
25.如权利要求24所述的装置,其特征在于,所述保护层起到蚀刻阻滞的作用。
26.如权利要求24所述的装置,其特征在于,所述电子迁移屏蔽层包括金属,并且是用于改善互连的电子迁移。
27.如权利要求24所述的装置,其特征在于,所述ILD部分包括氧化材料。
28.如权利要求24所述的装置,其特征在于,所述覆盖着互连的电子迁移屏蔽包括与氧化材料接触能够反应形成金属氧化物的材料。
CNB038225263A 2002-09-25 2003-09-12 适用于形成互连的方法和装置 Expired - Fee Related CN100499067C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/255,930 2002-09-25
US10/255,930 US7727892B2 (en) 2002-09-25 2002-09-25 Method and apparatus for forming metal-metal oxide etch stop/barrier for integrated circuit interconnects

Publications (2)

Publication Number Publication Date
CN1689152A true CN1689152A (zh) 2005-10-26
CN100499067C CN100499067C (zh) 2009-06-10

Family

ID=31993488

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038225263A Expired - Fee Related CN100499067C (zh) 2002-09-25 2003-09-12 适用于形成互连的方法和装置

Country Status (8)

Country Link
US (3) US7727892B2 (zh)
EP (1) EP1430526B1 (zh)
CN (1) CN100499067C (zh)
AT (1) ATE447239T1 (zh)
AU (1) AU2003272411A1 (zh)
DE (1) DE60329818D1 (zh)
TW (1) TWI239069B (zh)
WO (1) WO2004030088A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727892B2 (en) 2002-09-25 2010-06-01 Intel Corporation Method and apparatus for forming metal-metal oxide etch stop/barrier for integrated circuit interconnects
DE10344389A1 (de) * 2003-09-25 2005-05-19 Infineon Technologies Ag Verfahren zur Herstellung einer multifunktionellen Dielektrikumschicht auf einem Substrat
TWI227046B (en) * 2003-11-11 2005-01-21 United Microelectronics Corp Process of metal interconnects
US7169698B2 (en) * 2004-01-14 2007-01-30 International Business Machines Corporation Sacrificial inorganic polymer intermetal dielectric damascene wire and via liner
US20050184288A1 (en) * 2004-02-25 2005-08-25 Tien-I Bao Semiconductor device having a second level of metallization formed over a first level with minimal damage to the first level and method
US7732326B2 (en) * 2004-02-25 2010-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having a second level of metallization formed over a first level with minimal damage to the first level and method
US7090782B1 (en) * 2004-09-03 2006-08-15 Lam Research Corporation Etch with uniformity control
US7259463B2 (en) * 2004-12-03 2007-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Damascene interconnect structure with cap layer
US20060205204A1 (en) * 2005-03-14 2006-09-14 Michael Beck Method of making a semiconductor interconnect with a metal cap
WO2010065835A2 (en) * 2008-12-05 2010-06-10 E. I. Du Pont De Nemours And Company Backplane structures for solution processed electronic devices
WO2010065823A2 (en) * 2008-12-05 2010-06-10 E. I. Du Pont De Nemours And Company Backplane structures for solution processed electronic devices
US8211776B2 (en) * 2010-01-05 2012-07-03 International Business Machines Corporation Integrated circuit line with electromigration barriers
US8912658B2 (en) 2010-10-29 2014-12-16 International Business Machines Corporation Interconnect structure with enhanced reliability
JP5994274B2 (ja) * 2012-02-14 2016-09-21 ソニー株式会社 半導体装置、半導体装置の製造方法、及び、電子機器
US8969197B2 (en) * 2012-05-18 2015-03-03 International Business Machines Corporation Copper interconnect structure and its formation
US9123726B2 (en) 2013-01-18 2015-09-01 International Business Machines Corporation Selective local metal cap layer formation for improved electromigration behavior
US9076847B2 (en) 2013-01-18 2015-07-07 International Business Machines Corporation Selective local metal cap layer formation for improved electromigration behavior
KR102154112B1 (ko) * 2013-08-01 2020-09-09 삼성전자주식회사 금속 배선들을 포함하는 반도체 장치 및 그 제조 방법
US10673288B2 (en) 2013-10-31 2020-06-02 General Electric Company Method for forming a nitrogenation barrier and machine formed using a body having the nitrogenation barrier
CN104934411A (zh) * 2014-03-17 2015-09-23 旺宏电子股份有限公司 金属内连线结构及其制造方法
US9349691B2 (en) 2014-07-24 2016-05-24 International Business Machines Corporation Semiconductor device with reduced via resistance
US10032643B2 (en) 2014-12-22 2018-07-24 Intel Corporation Method and structure to contact tight pitch conductive layers with guided vias using alternating hardmasks and encapsulating etchstop liner scheme
US9818690B2 (en) * 2015-10-30 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned interconnection structure and method
US10211148B2 (en) 2015-12-14 2019-02-19 International Business Machines Corporation Structural enhancement of Cu nanowires
US9837350B2 (en) 2016-04-12 2017-12-05 International Business Machines Corporation Semiconductor interconnect structure with double conductors
US10685873B2 (en) 2016-06-29 2020-06-16 Taiwan Semiconductor Manufacturing Co., Ltd. Etch stop layer for semiconductor devices
US10651083B2 (en) 2018-03-05 2020-05-12 International Business Machines Corporation Graded interconnect cap
US11661646B2 (en) 2021-04-21 2023-05-30 General Electric Comapny Dual phase magnetic material component and method of its formation
US11926880B2 (en) 2021-04-21 2024-03-12 General Electric Company Fabrication method for a component having magnetic and non-magnetic dual phases

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261950A (en) * 1979-02-06 1981-04-14 American Sterilizer Company Sterilizing apparatus and integrated sterilizer control
US5679982A (en) * 1993-02-24 1997-10-21 Intel Corporation Barrier against metal diffusion
US5719447A (en) * 1993-06-03 1998-02-17 Intel Corporation Metal alloy interconnections for integrated circuits
US5744376A (en) 1996-04-08 1998-04-28 Chartered Semiconductor Manufacturing Pte, Ltd Method of manufacturing copper interconnect with top barrier layer
US6037257A (en) 1997-05-08 2000-03-14 Applied Materials, Inc. Sputter deposition and annealing of copper alloy metallization
US6093635A (en) * 1997-12-18 2000-07-25 Advanced Micro Devices, Inc. High integrity borderless vias with HSQ gap filled patterned conductive layers
US6249055B1 (en) * 1998-02-03 2001-06-19 Advanced Micro Devices, Inc. Self-encapsulated copper metallization
US6165880A (en) * 1998-06-15 2000-12-26 Taiwan Semiconductor Manufacturing Company Double spacer technology for making self-aligned contacts (SAC) on semiconductor integrated circuits
US6172421B1 (en) 1998-08-11 2001-01-09 Advanced Micro Devices, Inc. Semiconductor device having an intermetallic layer on metal interconnects
US6147000A (en) * 1998-08-11 2000-11-14 Advanced Micro Devices, Inc. Method for forming low dielectric passivation of copper interconnects
US6110648A (en) * 1998-09-17 2000-08-29 Taiwan Semiconductor Manufacturing Company Method of enclosing copper conductor in a dual damascene process
US6153523A (en) * 1998-12-09 2000-11-28 Advanced Micro Devices, Inc. Method of forming high density capping layers for copper interconnects with improved adhesion
US6277745B1 (en) * 1998-12-28 2001-08-21 Taiwan Semiconductor Manufacturing Company Passivation method of post copper dry etching
US6593653B2 (en) * 1999-09-30 2003-07-15 Novellus Systems, Inc. Low leakage current silicon carbonitride prepared using methane, ammonia and silane for copper diffusion barrier, etchstop and passivation applications
US6261950B1 (en) * 1999-10-18 2001-07-17 Infineon Technologies Ag Self-aligned metal caps for interlevel metal connections
US6117747A (en) * 1999-11-22 2000-09-12 Chartered Semiconductor Manufacturing Ltd. Integration of MOM capacitor into dual damascene process
US6319819B1 (en) * 2000-01-18 2001-11-20 Advanced Micro Devices, Inc. Process for passivating top interface of damascene-type Cu interconnect lines
US6800554B2 (en) * 2000-12-18 2004-10-05 Intel Corporation Copper alloys for interconnections having improved electromigration characteristics and methods of making same
US6521523B2 (en) * 2001-06-15 2003-02-18 Silicon Integrated Systems Corp. Method for forming selective protection layers on copper interconnects
US6974762B2 (en) 2002-08-01 2005-12-13 Intel Corporation Adhesion of carbon doped oxides by silanization
US7727892B2 (en) 2002-09-25 2010-06-01 Intel Corporation Method and apparatus for forming metal-metal oxide etch stop/barrier for integrated circuit interconnects

Also Published As

Publication number Publication date
CN100499067C (zh) 2009-06-10
US20040058547A1 (en) 2004-03-25
US8299617B2 (en) 2012-10-30
EP1430526A1 (en) 2004-06-23
TWI239069B (en) 2005-09-01
TW200416948A (en) 2004-09-01
WO2004030088A1 (en) 2004-04-08
EP1430526B1 (en) 2009-10-28
DE60329818D1 (de) 2009-12-10
AU2003272411A1 (en) 2004-04-19
US7727892B2 (en) 2010-06-01
US20040224515A1 (en) 2004-11-11
ATE447239T1 (de) 2009-11-15
US20100219529A1 (en) 2010-09-02
US7339271B2 (en) 2008-03-04

Similar Documents

Publication Publication Date Title
CN100499067C (zh) 适用于形成互连的方法和装置
EP0397462B1 (en) Contact structure for semiconductor integrated circuits
US6472317B1 (en) Dual damascene arrangement for metal interconnection with low k dielectric constant materials in dielectric layers
US6235628B1 (en) Method of forming dual damascene arrangement for metal interconnection with low k dielectric constant materials and oxide middle etch stop layer
US6291887B1 (en) Dual damascene arrangements for metal interconnection with low k dielectric constant materials and nitride middle etch stop layer
US20040232552A1 (en) Air gap dual damascene process and structure
US20120315751A1 (en) Semiconductor device and method of manufacturing semiconductor device
US6153514A (en) Self-aligned dual damascene arrangement for metal interconnection with low k dielectric constant materials and nitride middle etch stop layer
US6603206B2 (en) Slot via filled dual damascene interconnect structure without middle etch stop layer
CN1708846A (zh) 用于在具有帽盖层的半导体互连结构上沉积金属层的方法
US6372631B1 (en) Method of making a via filled dual damascene structure without middle stop layer
US6521524B1 (en) Via filled dual damascene structure with middle stop layer and method for making the same
US6207577B1 (en) Self-aligned dual damascene arrangement for metal interconnection with oxide dielectric layer and low k dielectric constant layer
KR100297966B1 (ko) 다층 배선구조를 형성하는 방법
US6207576B1 (en) Self-aligned dual damascene arrangement for metal interconnection with low k dielectric constant materials and oxide etch stop layer
US6638849B2 (en) Method for manufacturing semiconductor devices having copper interconnect and low-K dielectric layer
US6383919B1 (en) Method of making a dual damascene structure without middle stop layer
US6645864B1 (en) Physical vapor deposition of an amorphous silicon liner to eliminate resist poisoning
JP5178025B2 (ja) 半導体メモリ素子の製造方法
US6682999B1 (en) Semiconductor device having multilevel interconnections and method of manufacture thereof
KR20050114784A (ko) 반도체 소자의 구리배선 형성방법
US6577007B1 (en) Manufacturing process for borderless vias with respect to underlying metal
US6429116B1 (en) Method of fabricating a slot dual damascene structure without middle stop layer
US6417090B1 (en) Damascene arrangement for metal interconnection using low k dielectric constant materials for etch stop layer
US6380091B1 (en) Dual damascene arrangement for metal interconnection with oxide dielectric layer and low K dielectric constant layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090610

Termination date: 20160912