CN1666366A - 燃料电池和燃料电池组 - Google Patents

燃料电池和燃料电池组 Download PDF

Info

Publication number
CN1666366A
CN1666366A CN03815255XA CN03815255A CN1666366A CN 1666366 A CN1666366 A CN 1666366A CN 03815255X A CN03815255X A CN 03815255XA CN 03815255 A CN03815255 A CN 03815255A CN 1666366 A CN1666366 A CN 1666366A
Authority
CN
China
Prior art keywords
electrolyte membrane
electrode assembly
fuel cell
fuel
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03815255XA
Other languages
English (en)
Other versions
CN1312797C (zh
Inventor
角田正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002190004A external-priority patent/JP4394865B2/ja
Priority claimed from JP2003134190A external-priority patent/JP4394899B2/ja
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of CN1666366A publication Critical patent/CN1666366A/zh
Application granted granted Critical
Publication of CN1312797C publication Critical patent/CN1312797C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一种燃料电池(10),包括一对隔板(58)和设在隔板(58)之间的多个电解质电极组件(56)。该电解质电极组件(56)具有小圆盘形状。8个电解质电极组件(58)沿着内圆(P1)设置,且8个电解质电极组件(58)沿着与圆孔(44)同心的外圆(P2)设置。每个隔板(58)都包括堆叠在一起的多块板(60,62)。在板(60,62)之间形成燃料气体通道(67)和含氧气体通道(82),所述燃料气体通道用于将燃料气体供给到电解质电极组件(56)的阳极(54),所述含氧气体通道用于将含氧气体供给到电解质电极组件(56)的阴极(52)。

Description

燃料电池和燃料电池组
技术领域
本发明涉及一种燃料电池,其具有插设在隔板之间的圆盘状电解质电极组件。每个电解质电极组件都包括阳极、阴极、以及位于阳极和阴极之间的电解质。另外,本发明还涉及由多个这种燃料电池堆叠形成的燃料电池组。
背景技术
通常,固体氧化物燃料电池(SOFC)使用离子导电固体氧化物(例如稳定氧化锆)电解质。该电解质插设在阳极和阴极之间,从而形成电解质电极组件。该电解质电极组件插设在隔板(双极板)之间,且电解质电极组件和隔板构成了用于产生电力的燃料电池单元。将预定数量的燃料电池堆叠在一起形成了燃料电池组。
在该燃料电池中,含氧气体或空气被供给到阴极。含氧气体中的氧在阳极和电解质之间的界面处被离子化,且氧离子(O2-)通过电解质朝向阳极运动。例如含氢气体或CO的燃料气体被供给到阳极。氧离子与含氢气体中的氢发生反应产生H2O或与CO反应产生CO2。在反应中释放的电子通过外部电路流向阴极,从而产生直流电流。
通常,该固体氧化物燃料电池在800℃到1000℃范围内的高温下工作。该固体氧化物燃料电池利用高温废热进行内部重整以产生燃料气体,并通过使燃气轮机转动来产生电力。该固体氧化物燃料电池由于与其它类型的燃料电池相比较在产生电力方面的效率最高而受人瞩目,并且正在受到日益关注其除了与燃气轮机结合的用途之外在汽车中使用的可能性。
稳定氧化锆具有较低的电离导电性。因此,由稳定氧化锆形成的电解质薄膜必须很薄,从而氧离子平滑地运动通过该电解质薄膜以提高发电性能。然而,稳定氧化锆的电解质薄膜不能非常薄以保持足够的机械强度。因此,难以在固体氧化物燃料电池中使用稳定氧化锆薄膜来产生较大的电力。
为了解决这个问题,日本特开平专利公开No.5-266910(现有技术1)公开了一种固体氧化物燃料电池系统,其中在相邻隔板之间的一个表面(区域)上设置有多个电池。在现有技术1中,多个电池设在隔板之间以增大电池的总表面积从而产生较大的电流,同时防止对电解质板的损坏以提高该燃料电池系统的可靠性。
图25是示出了在现有技术1中公开的燃料电池系统的立体图。如图25所示,该燃料电池系统包括多个堆叠在一起的层以形成堆叠体。每个层都包括隔板1和放置在隔板1上的四个电池2。在最底层上的燃料气体板3具有供给口和排放口,用于供给和排放燃料气体。在最上层上的含氧气体板4具有供给口和排放口,用于供给和排放含氧气体。
燃料气体供给歧管5a、5b延伸通过隔板1用于向每个电池2供给燃料气体,且燃料气体排放歧管5c、5d延伸通过隔板1用于在反应之后从每个电池2排放燃料气体。另外,含氧气体供给歧管5a、5b延伸通过隔板1用于向每个电池2供给含氧气体,且含氧气体排放歧管5c、5d延伸通过隔板1用于在反应之后从每个电池2排放含氧气体。
燃料气体供给歧管5a、5b在燃料气体板3处连接到燃料气体供应管7a、7b。燃料气体排放歧管5c、5d在燃料气体板3处连接到燃料气体排放管7c、7d。含氧气体供给歧管6a、6b在含氧气体板4处连接到含氧气体供应管8a、8b。含氧气体排放歧管6c、6d在含氧气体板4处连接到含氧气体排放管8c、8d。
例如,在燃料电池系统的燃料气体板3中,供给到燃料气体供应管7a、7b的燃料气体沿着堆叠方向流入到隔板1的燃料气体供给歧管5a、5b中,且该燃料气体供给到每个电池2的阳极。在阳极发生反应后,通过燃料气体排放歧管5c、5d流回燃料气体板3的燃料气体流入到燃料气体排放管7c、7d中,并排放到燃料电池系统的外部。以相似的方式,在含氧气体板4中,含氧气体通过含氧气体板4供应到燃料电池系统或从燃料电池系统排出。
如上所述,供应到燃料气体板3的燃料气体和供应到含氧气体板4的含氧气体流过隔板1,并供给到每个隔板1上的四个电池2。因此,隔板1需要用于防止反应气体(燃料气体和含氧气体)泄漏的密封结构(每四个电池2需要一个密封结构)。燃料电池系统中的密封结构相当复杂。
燃料气体板3连接到燃料气体供应管7a、7b以及燃料气体排放管7c、7d。含氧气体板连接到含氧气体供应管8a、8b以及含氧气体排放管8c、8d。因此,该燃料电池系统总体上相当庞大。
另外,日本特开专利公报No.6-310164(现有技术2)公开了另一类型的固体氧化物燃料电池。在该固体氧化物燃料电池中,在每个金属隔板上设置多个干电池(unit cell),每个干电池表面积都较小,且在每个干电池的中心都形成燃料气体供给孔和含氧气体供给孔。现有技术2涉及提供一种具有改进的可靠性的燃料电池系统,其中隔板上的电池的总表面积很大,且基底不会断裂。
然而,在现有技术2中,干电池可能不会被准确地定位在预定位置处。设在每个干电池中心的燃料气体供给孔和含氧气体供给孔需要与隔板的燃料气体供给歧管和含氧气体供给歧管准确地对齐。该定位操作非常困难。因此,该燃料电池的组装工作非常费力,且该燃料电池的生产效率很低。
日本特开专利公报No.7-122287(现有技术3)公开了一种内部歧管系统板式固体氧化物燃料电池模块。气体分隔板设置在燃料电池组的上端和下端。由与该气体分隔板相同材料制成的板设在至少一个该气体分隔板的外侧。绝缘侧表面支撑件对于电池组的每个侧表面延伸,该绝缘侧表面支撑件用于支撑侧表面支撑件以支撑燃料电池组的侧表面。该绝缘侧表面支撑件的一端接合到该板上。
然而,现有技术3旨在防止电池和分隔板在水平方向上发生偏斜。因此,现有技术3并不能使多个电池准确地定位在隔板表面上。
发明内容
本发明的总体目的是提供一种具有紧凑且简单结构的燃料电池和燃料电池组,同时保持所需的发电性能。
另外,本发明的主要目的是提供一种燃料电池和燃料电池组,其中设置多个电解质电极组件,并且易于进行该电解质电极组件的定位操作,同时保持所需的发电性能。
根据本发明,电解质电解组件可以沿着与隔板的中心轴线同心的至少一个虚拟圆设置。因此,大量的电解质电极组件设在隔板之间。通过该紧凑结构,燃料电池具有很高的电力输出性能。即使一些电解质电极组件发生电源故障,该燃料电池组也能够通过其它电解质电极组件通电。因此,能够可靠地进行发电。
另外,每个隔板都可以包括堆叠在一起的多块板。用于将燃料气体供给到阳极的燃料气体供应通道,以及用于将含氧气体供给到阴极的含氧气体供应通道可以设在板之间。由于燃料气体通道和含氧气体通道形成在隔板的内部,因此与反应气体通道(燃料气体通道和含氧气体通道)沿堆叠方向延伸的结构相比,该密封结构较简单。通过该简单结构,可以可靠地保持所需密封性能。另外,燃料电池的总体尺寸紧凑,且可容易地提高聚能效率。
该电解质电极组件紧凑且较薄。在电解质表面上的温度分布均匀。特别是,当使用固体氧化物时,避免由于热应力导致的固体氧化物的损坏,且减少了电阻极化。因此,改善了电力输出性能。
根据本发明,电解质电极组件可以沿着与隔板的中心轴线同心的至少两个虚拟圆设置。因此,大量的电解质电极组件设在隔板之间。通过该紧凑结构,燃料电池具有较高的电力输出性能。该电解质电极组件紧凑且较薄。在电解质表面上的温度分布均匀。
根据本发明,内部电解质电极组件可以与外部电解质电极组件径向不对齐。因此,可以密集地设置所述电解质电极组件。通过燃料电池的紧凑结构,保持了所需的发电性能。反应后的燃料气体和含氧气体(废气)不会影响内部电解质电极组件。因此,不会产生紊流,且废气被平滑地引导到废气孔。
根据本发明,该内部电解质电极组件和外部电解质电极组件可以交替设置。因此,该电解质电极组件可密集地设置,从而使燃料电池紧凑。
根据本发明,燃料气体和含氧气体可以分别通过燃料气体通道和含氧气体通道供给到电解质电极组件的相对表面的中心区域。燃料气体和含氧气体可以从电解质电极组件的中心区域向外流动。因此,在各个电解质电极组件中的温度分布很小,从而避免了由于热应力导致的损坏,且化学反应在整个发电表面上均匀地进行。
供给到电解质电极组件的燃料气体的流速均匀,且提高了燃料气体的能量利用率。发电表面的整个表面区域得到了有效利用,且改善了发电性能。燃料气体和含氧气体供给到电解质电极组件的相对表面。燃料气体和含氧气体从电解质电极组件的相对表面上的中心区域径向向外流动。因此,在电解质电极组件和隔板之间无需用于燃料气体和含氧气体的密封结构,从而燃料电池具有简单的结构。
根据本发明,燃料气体通道和含氧气体通道可以设在隔板的其中两块板之间。因此,燃料电池组的布置简单,且燃料电池组沿堆叠方向的厚度较小。
根据本发明,用于排放反应后的燃料气体和含氧气体的排放通道可以设在隔板之间。用于供给和排放含氧气体和燃料气体的歧管可以由隔板形成而不需要任何专用部件。因此,该燃料电池组具有简单的结构。
根据本发明,用于排放废气的圆孔可以形成在隔板的中心区域。该电解质电极组件可以具有圆盘形状。该电解质电极组件可以沿着与圆孔同心的至少一个虚拟圆设置。因此,围绕圆孔的密封结构简单。废气简单地流向隔板中心区域的圆孔。因此,废气的流速均匀,从而废气从电解质电极组件平稳地排放。
根据本发明,电解质电极组件可以沿着与圆孔同心的至少两个虚拟圆围绕圆孔设置。这样,电解质电极组件被密集地设置,且燃料电池整体紧凑。该燃料电池具有较高的输出性能,且隔板的重量轻。
根据本发明,多个圆盘形状的电解质电极组件可以沿着与盘形隔板的中心轴线同心的至少一个虚拟圆设置。
每块端板都可以具有用于插入螺栓以紧固燃料电池组的孔,且所述孔和电解质电极组件可以交替设置。因此,燃料电池组的总体外径较小,从而该燃料电池组较紧凑。
根据本发明,至少一块板可以具有用于将电解质电极组件定位在隔板之间的凸起。因此,可以准确且容易地定位电解质电极组件。该电解质电极组件的位置不会由于热过程等而发生变化。可以高效地进行燃料电池的组装操作,并大大改善了各个燃料电池中的发电性能。
根据本发明,设置所述凸起以使电解质电极组件沿着与隔板的中心轴线同心的至少一个虚拟圆设置。因此,在隔板之间密集地设置多个电解质电极组件。这样,增大了燃料电池单位容积产生的电力。通过该紧凑的结构,燃料电池具有较高的电力输出性能。
即使一些电解质电极组件发生电源故障,该燃料电池组也能够通过其它电解质电极组件通电。因此,可以可靠地进行发电。
根据本发明,内部电解质电极组件可以与外部电解质电极组件径向不对齐。因此,可以密集地设置电解质电极组件。通过燃料电池的紧凑结构,可以保持所需的发电性能。
根据本发明,可以设置至少三个凸起,用于以一间隙将每个电解质电极组件定位在这三个凸起内侧。通过将电解质电极组件放置在所述凸起内侧可以简单地进行电解质电极组件的组装操作。另外,即使电解质电极组件发生热膨胀,电解质电极组件也不会损坏。
根据本发明,每个盘状隔板都可以具有凸起,用于在隔板之间定位电解质电极组件。该电解质电极组件可以沿着与隔板的中心轴线同心的至少一个虚拟圆设置。每一凸缘都可以具有用于插入螺栓以紧固燃料电池组的孔。所述孔和电解质电极组件可以交替设置。因此,燃料电池组的总体外径较小,从而该燃料电池组较紧凑。
根据本发明,可以设置至少三个凸起,用于以一间隙将每个电解质电极组件定位在凸起内侧。因此,可以非常简单地组装燃料电池,且可以有效地防止由于热过程等对电解质电极组件的损坏。
通过以下结合附图的描述,本发明的上述和其他的目的、特征和优点将变得更加清楚,图中以示例的方式示出了本发明的优选实施例。
附图说明
图1是示意显示由根据本发明的第一实施例的多个燃料电池堆叠形成的燃料电池组的立体图;
图2是显示一部分燃料电池组的剖视图;
图3是示意显示包括燃料电池组的燃气轮机的视图;
图4是燃料电池的分解立体图;
图5是显示一部分燃料电池和燃料电池的操作的立体图;
图6是显示燃料电池组的剖视图,省略了其中一部分;
图7是显示燃料电池的隔板的分解立体图;
图8是显示隔板的板的前视图;
图9是显示隔板的另一板的前视图;
图10是显示燃料电池的操作的视图;
图11是示意显示由根据本发明第二实施例的多个燃料电池堆叠形成的燃料电池组的视图;
图12是显示一部分燃料电池组的剖视图;
图13是示意显示包括多个燃料电池组的燃气轮机的视图;
图14是显示燃气轮机的前视图;
图15是燃料电池的分解立体图;
图16是显示一部分燃料电池和该燃料电池的操作的立体图;
图17是显示沿着图16的线XVII-XVII剖取的燃料电池组的剖视图,省略了其中一部分;
图18是显示燃料电池的隔板的分解立体图;
图19是显示一部分燃料电池的放大图;
图20是显示隔板的板的前视图;
图21是显示隔板的另一板的前视图;
图22是显示燃料电池的操作的视图;
图23是示意显示包括根据本发明第三实施例的相对较大的燃料电池组的燃气轮机的剖视图;
图24是显示该燃气轮机的前视图;以及
图25是显示常规燃料电池系统的分解立体图。
具体实施方式
图1是示意显示由根据本发明第一实施例的多个燃料电池10堆叠形成的燃料电池组12的立体图,而图2是显示一部分燃料电池组12的剖视图。
燃料电池10是用于固定和移动设备的固体氧化物燃料电池(SOFC)。例如,燃料电池10安装到车辆上。在示于图3的第一实施例的例子中,燃料电池组12用在燃气轮机14中。在图3中,燃料电池组12的形状与图1和图2中的不同,但结构基本相同。燃料电池组12设在燃气轮机14的壳体16中。燃烧器18设在燃料电池组12的中心。燃料电池组12将作为反应后的燃料气体和含氧气体混合物的废气朝向燃烧器18排放到腔室20中。腔室20沿箭头X指示的废气流动方向变窄。热交换器22沿着流动方向设在围绕腔室20前端的外部。另外,涡轮(动力涡轮)24设在腔室20的前端。压缩机26和发电机28同轴地连接到涡轮24。燃气轮机14总体上为轴对称结构。
涡轮24的排放通道30连接到热交换器22的第一通道32。压缩机26的供应通道34连接到热交换器22的第二通道36。空气通过连接到第二通道36的热空气进口通道38供给到燃料电池组12的外圆周表面。
如图1所示,通过沿着箭头A指示的堆叠方向堆叠多个燃料电池10而形成燃料电池组12。每个燃料电池10都为具有弯曲外部的盘状。端板(凸缘)40a、40b分别设置在沿着堆叠方向位于相对端的最外部的燃料电池10的外侧。燃料电池10和端板40a、40b通过多个(例如,8个)紧固螺栓42紧固在一起。在燃料电池组12的中心,形成圆孔44以排放来自燃料电池组12的废气。圆孔44具有在端板40b处的底部,并沿着箭头A指示的方向延伸(见图2)。
沿着与圆孔44同心的虚拟圆形成多个(例如,四个)燃料气体供应通道46。每个燃料气体供应通道46都具有在端板40a处的底部,并沿着箭头A指示的方向从端板40b延伸。端板40a、40b分别具有输出端子48a、48b。
如图4和图5所示,燃料电池10包括电解质电极组件56。每个电解质电极组件56都包括阴极52和阳极54,以及插设在阴极52和阳极54之间的电解质(电解质板)50。电解质50由诸如稳定氧化锆的离子导电固体氧化物形成。电解质电极组件56具有较小的圆盘形状。
多个(例如,16个)电解质电极组件56插设在一对隔板58之间以形成燃料电池10。电解质电极组件56沿着内圆P1和外圆P2设置,内圆P1和外圆P2与形成在隔板58中心的圆孔44同心。内圆P1经过8个内部电解质电极组件56的中心,且外圆P2经过8个外部电解质电极组件56的中心(见图4)。
每个隔板58都包括多个(例如,两个)堆叠在一起的板60、62。每块板60、62都例如由不锈合金形成。弯曲部分60a、62a分别形成在板60、62上。
如图6到图8所示,板60具有围绕圆孔44形成的内部隆起64。内部隆起64朝向板62凸出。另外,板60具有围绕燃料气体供应通道46的凸起65。凸起65远离板62凸出。另外,板60具有与内部隆起64同心形成的外部隆起66。连接到燃料气体供应通道46的燃料气体通道67形成在内部隆起64和外部隆起66之间。
外部隆起66包括第一壁68和第二壁70,所述第一壁和第二壁均径向向外延伸预定距离。第一壁68和第二壁70交替形成。如图8所示,每一第一壁68都延伸到内圆P1,该内圆P1是经过8个内部电解质电极组件56中心的虚拟线。第一壁68连接到第二壁70。每一第二壁70都延伸到外圆P2,该外圆P2是经过8个外部电解质电极组件56中心的虚拟线。
在第一壁68的每个端部和第二壁70的每个端部处,都形成有三个含氧气体进口78。含氧气体进口78形成为穿过板60的表面。第一凸台80形成在板60上。第一凸台80朝向沿着第一圆P1和第二圆P2设置的电解质电极组件56凸出并与它们接触。
燃料气体通道67形成在板60和板62之间的内部隆起64和外部隆起66的内部。另外,含氧气体通道82形成在外部隆起66的外侧。含氧气体通道82连接到在板60上的含氧气体进口78。
如图6、图7和图9所示,板62在各个燃料气体供应通道46周围具有凸起84。凸起84远离板60凸出。另外,板62具有朝向沿着内圆P1和外圆P2设置的电解质电极组件56凸出并与它们接触的第二凸台86。第二凸台86具有与第一凸台80相比较小的尺寸(高度和直径)。燃料气体进口88形成为穿过板62分别到达第一壁68和第二壁70的端部内侧。
隔板58具有用于密封燃料气体供应通道46的绝缘体密封件90(见图6)。例如,通过将陶瓷板放置在板60或板62上来形成绝缘体密封件90,或通过热喷射在板60或板62上形成绝缘体密封件90。弯曲外部60a、62a彼此背离地凸出。通过将绝缘体密封件92插在弯曲外部60a和弯曲外部62a之间,绝缘体密封件92可设在弯曲外部60a或弯曲外部62a上。或者,通过热喷射可以在弯曲外部60a和弯曲外部62a上形成由陶瓷等制成的绝缘体密封件92。
如图5和图6所示,电解质电极组件56插设在一个隔板58的板60和另一个隔板58的板62之间。具体地,在电解质电极组件56外部的板60和板62具有朝向电解质电极组件56凸出的第一凸台80和第二凸台86,用于夹住该电解质电极组件56。
如图10所示,通过燃料气体进口88连接到燃料气体通道67的燃料气体流动通道94形成在电解质电极组件56和隔板58的板62之间。另外,通过含氧气体进口78连接到含氧气体通道82的含氧气体流动通道96形成在电解质电极组件56和在相对侧上的另一个隔板58的板60之间。燃料气体流动通道94开口的尺寸取决于第二凸台86的高度。含氧气体流动通道96开口的尺寸取决于第一凸台80的高度。燃料气体的流速小于含氧气体的流速。因此,第二凸台86的尺寸小于第一凸台80的尺寸。
如图6所示,形成在隔板58的板60、62之间的燃料气体通道67连接到燃料气体供应通道46。含氧气体通道82和燃料气体通道67形成在隔板内部的相同区域上。含氧气体通道82通过在隔板58的板60、62的弯曲外部60a、62a之间的空间通向外部。
沿着堆叠方向堆叠的每个隔板58都具有第一凸台80和第二凸台86,以夹住电解质电极组件56。第一凸台80和第二凸台86用作集流器。板60的外部隆起66与板62接触,以沿着箭头A指示的方向串联连接燃料电池10。
如图1和图2所示,燃料电池10沿着箭头A指示的方向堆叠。端板40a、40b设在处于相对端的最外部燃料电池10的外侧。端板40a、40b在对应于板60,62的弯曲外部60a、60b的向内弯曲部分的位置处具有孔100a、100b。绝缘体部件102a、102b安装在孔100a、100b中。紧固螺栓42插入到绝缘体部件102a、102b中。紧固螺栓42的端部拧入螺母104中从而以合适的力将燃料电池10紧固在一起。
下面将介绍燃料电池组12的操作。
在组装燃料电池10的过程中,板60和板62连接到一起以形成隔板58。具体地,如图6所示,例如通过焊接使一体地从板60延伸的外部隆起66与板62连接,且通过热喷射使环状绝缘体密封件90围绕燃料气体供应通道46设置在板60或板62上。另外,例如通过热喷射使具有弯曲部分的绝缘体密封件92设置在板60的弯曲外部60a或者板62的弯曲外部62a上。
这样形成的隔板58在板60和板62之间的相同区域内具有燃料气体通道67和含氧气体通道82。燃料气体通道67与燃料气体供应通道46连接,并且弯曲外部60a和弯曲外部62b之间的含氧气体通道82通向外部。
然后,把电解质电极组件56置于一对隔板58之间。如图4和5所示,16个电解质电极组件56插设于一块隔板58的板60和另一块隔板58的板62之间。8个电解质电极组件56沿着内圆P1布置,且8个电解质电极组件56沿着外圆P2布置。板60的第一凸台80和板62的第二凸台86朝向电解质电极组件56凸出并且与它们接触。
如图10所示,含氧气体流动通道96形成在电解质电极组件56的阴极52和板60之间。含氧气体流动通道96通过含氧气体进口78与含氧气体通道82连接。燃料气体流动通道94形成在电解质电极组件56的阳极54和板62之间。燃料气体流动通道94通过燃料气体进口88与燃料气体通道67连接。废气通道106形成在隔板58之间,以将废气(反应之后的燃料气体和含氧气体的混合气体)导向圆孔44。
如上所述组装的多个燃料电池10沿着箭头A所示的方向堆叠,以形成燃料电池组12(见图1和2)。
诸如含氢气体的燃料气体被供应给端板40b的燃料气体供应通道46,并且在压力下从燃料电池10的外面供应诸如空气的含氧气体。供应给燃料电池供应通道46的燃料气体沿着箭头A所示的堆叠方向流动,并且供应给形成在燃料电池10的每一隔板58内的燃料气体通道67(见图6)。
如图8所示,燃料气体沿着外部隆起66的第一壁68和第二壁70流动,并且流入燃料气体流动通道94中(见图5)。燃料气体进口88形成在第一壁68和第二壁70的端部,即,形成在与电解质电极组件56的阳极54的中央区域相对应的位置处。供应给燃料气体流动通道94的燃料气体从阳极54的中央区域向外流动(见图10)。
从外面将含氧气体供应给每一燃料电池10。含氧气体被供应给形成在板60和板62之间的每一隔板58内的含氧气体通道82。被供应给含氧气体通道82的含氧气体从含氧气体进口78流入含氧气体流动通道96中,并且从电解质电极组件56的阴极52的中央区域向外流动(见图5和10)。
因此,在每一电解质电极组件56内,燃料气体被供应给阳极54的中央区域,并且从阳极54的中央区域向外流动。相似地,含氧气体被供应给阴极52的中央区域,并且从阴极52的中央区域向外流动。借助电化学反应,氧离子从阴极52通过电解质50到达阳极54从而产生电力。
电解质电极组件56夹在第一凸台80和第二凸台86之间。因此,第一凸台80和第二凸台86用作集流器。燃料电池10沿着箭头A指示的堆叠方向串联电连接。电力可以从输出端子48a、48b输出。即使某些电解质电极组件56发生电源故障,燃料电池组12也能通过其它电解质电极组件56通电。因此,能够可靠地产生电力。
在燃料气体和含氧气体反应之后,废气从电解质电极组件56的中心区域通过在隔板58之间的废气通道106向外运动,并朝向隔板58的中心流动。废气流入形到成在隔板58中心的圆孔44中,并从圆孔44排放到外部。
在第一实施例中,在一对隔板58之间设置多个(例如,16个)具有相对较小直径的圆形电解质电极组件56。因此,该电解质电极组件56可以很薄,并减小了电阻极化。另外,温度分布很小,从而防止了由于热应力导致的损坏。因此,有效改善了燃料电池10的发电性能。
另外,8个内部电解质电极组件56沿着内圆P1设置,且8个外部电解质电极组件56沿着外圆P2设置。内圆P1和外圆P2与设在隔板58中心的圆孔44同心。8个外部电解质电极组件56定位为不与8个内部电解质电极组件56径向对齐。换句话说,内部电解质电极组件56和外部电解质电极组件56分别沿着内圆P1和外圆P2交替设置。
电解质电极组件56可以密集地设置在隔板58之间。因此,燃料电池10总体上可以做得很紧凑,同时保持所需的发电性能。另外,由于废气不会影响沿着内圆P1设置的内部电解质电极组件56,因此不会发生废气紊流,且废气被引导到在隔板58中心的圆孔44。由于来自电解质电极组件56的废气在没有任何紊流的情况下排放到圆孔44中,因此废气的流速可保持恒定。因此,燃料电池10中的压力损失很小,从而改善了发电性能。
每个隔板58都具有两块板60、62,且燃料气体通道67和含氧气体通道82形成在板60、62之间。因此,与反应气体通道沿着堆叠方向延伸的结构相比,大大简化了燃料电池10的密封结构。因此,理想地实现了可靠的密封性能。另外,减小了燃料电池10的总体尺寸,并容易地实现了聚能效率的改善。
另外,在第一实施例中,燃料气体从燃料气体通道67流入到燃料气体进口88中,且含氧气体从含氧气体通道82流入到含氧气体进口78中。燃料气体进口88和含氧气体进口78设在电解质电极组件56的相对表面上的中心区域(见图10)。燃料气体和含氧气体从电解质电极组件56的中心区域向外流动。因此,在各个电解质电极组件56中的温度分布很小,从而防止了由于热应力导致的损坏。在整个发电表面上的电化学反应是均匀的。
在该结构中,供给到每个电解质电极组件56的燃料气体的流速是均匀的。改善了电解质电极组件56中的燃料气体的使用率,且有效使用了电解质电极组件56的整个表面。因此,大大改善了发电性能。
燃料气体和含氧气体供给到在电解质电极组件56相对表面上的中心区域。燃料气体和含氧气体从在电解质电极组件56相对表面上的中心区域径向向外流动。因此,在电解质电极组件56和隔板58之间不需要用于燃料气体和含氧气体的密封结构,从而燃料电池10具有简单的结构。
燃料气体通道67和含氧气体通道82形成在隔板58内部的相同区域上。因此,简化了在设计燃料电池组12结构中的布置,并减小了燃料电池组12沿堆叠方向的厚度。
另外,用于排放废气的废气通道106形成在与形成燃料气体通道67和含氧气体通道82的区域不同的区域中。废气通道106形成在隔板58之间(见图10)。因此,隔板58形成了用于供给燃料气体和含氧气体的歧管,以及用于排放燃料气体和含氧气体的歧管。因此,无需专门部件就能够构造燃料电池组12。
另外,在第一实施例中,隔板58的板60、62具有弯曲外部60a、62a。板60、62在沿着外圆P2布置的电解质电极组件56之间的位置处朝向圆孔44向内弯曲。形成板60、62的向内弯曲部分用于提供紧固螺栓42(见图1)。因此,有效减小了燃料电池组12总体的外部尺寸,从而燃料电池组12较小。
弯曲外部60a、62a作为用于接收温度较低的空气的进口。因此,紧固螺栓42不会被过分加热,且延长了紧固螺栓42的使用寿命。
以下将简要介绍图3中示出的用在燃气轮机14中的燃料电池组12的工作情况。
如图3所示,在燃气轮机14开始工作时,燃烧器18被激活以使涡轮24转动,并激活压缩机26和发电机28。压缩机26用于将外部空气引入到供应通道34中。空气被加压且加热到预定温度(例如,200℃),并被供给到热交换器22的第二通道36。作为反应后的燃料气体和含氧气体的混合气体的热废气供给到热交换器22的第一通道32,用于加热供给到热交换器22的第二通道36的空气。被加热的空气流过热空气供应通道38,并从外部供给到燃料电池组12的燃料电池10。因此,由燃料电池10进行发电,且将由燃料气体和含氧气体反应生成的废气排放到壳体16中的腔室20中。
此时,从燃料电池(固体氧化物燃料电池)10排放的废气的温度很高,在800℃到1000℃的范围内。废气使涡轮24旋转以通过发电机28产生电力。废气供给到热交换器22以加热外部空气。因此,不必使用燃烧器18使涡轮24转动。
在800℃至1000℃的范围内的热废气可以用来在内部使供应给燃料电池组12的燃料重整。因此,可以使用各种燃料进行内部重整,例如,天然气、丁烷和汽油。
图11是示意显示由根据本发明第二实施例的多个燃料电池110堆叠形成的燃料电池组112的视图。图12是显示一部分燃料电池组112的剖视图。与由根据本发明第一实施例的燃料电池10堆叠形成的燃料电池组12的构成部件相同的构成部件用相同的附图标记表示,并省略对其的描述。
在图13中,在燃气轮机114中放置多个燃料电池组112。如图14所示,例如,在壳体116中以45°的间隔围绕燃烧器18设置8个燃料电池组112。每个燃料电池组112都由连接到壳体116的盖118覆盖。在各个盖118内形成加压空气进口通道120。在燃料气体和含氧气体反应后产生的废气从每个燃料电池组112的中部排放。
如图11所示,通过沿着由箭头A指示的堆叠方向堆叠多个燃料电池110形成燃料电池组112。每个燃料电池110都为具有弯曲外部的盘状。端板147a、147b沿着堆叠方向分别设在位于相对端的最外面的燃料电池110的外侧。绝缘板148a、148b设在端板147a、147b的外侧上。另外,凸缘140a、140b设在绝缘板148a、148b的外侧上。燃料电池110,端板147a、147b,绝缘板148a、148b,和凸缘140a、140b通过多个(例如,8个)紧固螺栓42紧固在一起。在燃料电池组112的中心,形成圆形燃料气体供给孔146以将燃料气体供给到燃料电池组112。燃料气体供给孔146在凸缘140a处具有底部,并沿着箭头A指示的堆叠方向延伸(见图12)。
围绕燃料气体供给孔146形成多个(例如,4个)废气通道144。每个废气通道144都在凸缘140b处具有底部,并沿着箭头A指示的方向延伸。凸缘140a通过绝缘板148a与端板147a绝缘,且凸缘140b通过绝缘板148b与端板147b绝缘。端板147a、147b分别具有输出端子48a、48b。
如图15和图16所示,多个(例如,16个)电解质电极组件56设在一对隔板158之间以形成燃料电池110。每个隔板158都包括多个(例如,两个)堆叠在一起的板160、162。每块板160、162都例如由不锈合金形成。在板160、162上分别形成弯曲外部160a、160b。
如图17、图18和图20所示,在板160中心周围设置肋条163a以形成燃料气体供给孔146和四个废气通道144。板160在相应的废气通道144周围具有四个内部隆起164a。内部隆起164a朝向板162凸出。板160在燃料气体供给孔146周围具有凸起165a。凸起165a远离板162凸出。
外部隆起166a径向形成在板160上。燃料气体通道67形成在内部隆起164a和外部隆起166a的内部。燃料气体通道67连接到燃料气体供给孔146。
外部隆起166a包括多个第一壁168a和第二壁170a,这些壁的每个都径向向外延伸预定的距离。第一壁168a和第二壁170a交替地形成。如图20所示,每个第一壁168a都延伸到内圆P1,该内圆P1是经过8个内部电解质电极组件56中心的虚拟线。每个第二壁170a都延伸到外圆P2,该外圆P2是经过8个外部电解质电极组件56中心的虚拟线。8个内部电解质电极组件56沿着内圆P1设置,且8个外部电解质电极组件56沿着外圆P2设置。
在第一壁168a的每个端部和第二壁170a的每个端部处,都形成三个含氧气体进口78。含氧气体进口78形成为穿过板160。第一凸台80形成在板160上。第一凸台80朝向沿着内圆P1和外圆P2设置的电解质电极组件56凸出并与之接触。
如图17、图19和图20所示,在弯曲外部160a内部的板160上形成第一弯曲凸起172a。第一弯曲凸起172a具有与弯曲外部160a相同的形状,并远离板162凸出。外凸起174a和内凸起176a以预定间隔设在第一弯曲凸起172a的相对侧上以相互面对,或形成之字形。
如图17、图18和图21所示,面对肋条163a的肋条163b围绕板162的中心设置。板162具有朝向板160凸出的四个内部隆起164b、以及远离板160凸出的凸起165b。
朝向板160的外部隆起166a凸出的外部隆起166b形成在板162上。内部隆起164a接触内部隆起164b,且外部隆起166a接触外部隆起166b以在板160和板162之间形成燃料气体通道67。燃料气体通道67连接到燃料气体供给孔146。外部隆起166b具有多个第一壁168b和第二壁170b,这些壁的每个都径向向外延伸预定的距离。第一壁168b和第二壁170b交替形成。
用于沿着内圆P1定位8个电解质电极组件56和沿着外圆P2定位8个电解质电极组件56的凸起181设置在板162上。对于每个电解质电极组件56都形成至少三个凸起181。在所示实施例中,形成三个凸起181以定位一个电解质电极组件56。当电解质电极组件56定位在凸起181内部时,在凸起181和电解质电极组件56之间存在一定间隙。凸起181的高度大于第二凸台86的高度(见图17)。
如图17、图19和图21所示,第二弯曲凸起172b形成在弯曲外部162a内部的板162上。第二弯曲凸起172b具有与弯曲外部162a相同的形状,并远离板160凸出。外凸起174b和内凸起176b以预定的间隔设在第二弯曲凸起172b的相对侧上以互相面对,或形成之字形。
燃料气体通道67由板160和板162之间的内部隆起164a、164b和外部隆起166a、166b环绕。含氧气体通道82形成在板160和板162之间的外部隆起166a、166b的外侧(见图22)。含氧气体通道82连接到形成在板160上的含氧气体进口78。
如图17所示,隔板158具有绝缘体密封件90以密封燃料气体供给孔146。通过将陶瓷板放置到或者将陶瓷热喷射到板160的凸起165a或板162的凸起165b上而形成绝缘体密封件90。板160的第一弯曲凸起172a和板162的第二弯曲凸起172b相互背离地凸出。通过将由陶瓷等制成的绝缘体密封件92夹在第一弯曲凸起172a和第二弯曲凸起172b之间或通过热喷射将绝缘体密封件92设置在第一弯曲凸起172a或第二弯曲凸起172b上。
燃料气体通道67形成在隔板158的板160、162之间,并连接到燃料气体供给孔146。含氧气体通道82和燃料气体通道67形成在隔板158内部的相同区域中。含氧气体通道82通过形成在隔板158的板160的第一弯曲凸起172a和板162的第二弯曲凸起172b之间的开口通向外部。
沿着堆叠方向堆叠的每个隔板158均具有第一凸台80和第二凸台86,用来夹住电解质电极组件56。第一凸台80和第二凸台86用作集流器。板160的内部隆起164a与板162的内部隆起164b接触,且板160的外部隆起166a与板162的外部隆起166b接触,以沿着箭头A指示的方向串联连接燃料电池110。
如图11和图12所示,燃料电池110沿着箭头A指示的方向堆叠。端板147a、147b堆叠在相对端最外侧的燃料电池110上。绝缘板148a、148b分别堆叠在端板147a、147b的外侧上,且凸缘140a、140b分别堆叠在绝缘板148a、148b的外侧上。凸缘140a、140b在与板160、162的弯曲外部160a、162a的向内弯曲部分相对应的位置处具有孔100a、100b。紧固螺栓42插入到孔100a、100b中。紧固螺栓42的端部拧入到螺母104中从而以适当的力将燃料电池110紧固在一起。
下面将简要介绍燃料电池组112的操作。
如图17所示,板160的内部隆起164a和外部隆起166a通过焊接连接到板162的内部隆起164b和外部隆起166b上,且环形绝缘体密封件90例如通过热喷射设置在板160或板162上围绕燃料气体供给孔146。另外,具有弯曲部分的绝缘体密封件92通过例如热喷射设置在板160的第一弯曲凸起172a或板162的第二弯曲凸起172b上。
如此形成的隔板158在板160和板162之间的相同区域中具有燃料气体通道67和含氧气体通道82。燃料气体通道67连接到燃料气体供给孔146,且含氧气体通道82通过弯曲外部160a、162a之间的开口通向外部。
而后,电解质电极组件56插设在一对隔板158之间。如图15和图16所示,16个电解质电极组件56插设在一块隔板158的板160和另一隔板158的板162之间。8个电解质电极组件56沿着内圆P1设置,而8个电解质电极组件56沿着外圆P2设置。
设置三个凸起181用于定位每个电解质电极组件56。电解质电极组件56设在三个凸起181的内侧。板160的第一凸台80和板162的第二凸台88朝向凸起181中的电解质电极组件56凸出并与之接触。
如图22所示,含氧气体流动通道96形成在电解质电极组件56的阴极52和板160之间。含氧气体流动通道96通过含氧气体进口78连接到含氧气体通道82。燃料气体流动通道94形成在电解质电极组件56的阳极54和板162之间。燃料气体流动通道94通过燃料气体进口88连接到燃料气体通道67。另外,废气通道106形成在隔板158之间用于将废气(反应后燃料气体和含氧气体的混合气体)引导到废气通道144。
如上所述组装的多个燃料电池110沿着由箭头A指示的方向堆叠以形成燃料电池组112(见图11和图12)。
如图17和图22所示,在第二实施例中,为了定位每个电解质电极组件56,隔板158的板162一体地形成有三个凸起181。因此,可以简单地通过将电解质电极组件56放置在三个凸起181内侧而将电解质电极组件56准确地定位在所需位置。
如上所示,电解质电极组件56可以非常准确地定位在隔板158之间。因此,大大提高了燃料电池110的组装效率。另外,电解质电极组件56定位准确性的提高使得燃料气体和含氧气体可以被准确地供给到电解质电极组件的中心。因此,如愿地改善了燃料电池110的发电性能。
另外,电解质电极组件56以一定间隙放置在三个凸起181的内侧。因此,即使电解质电极组件56受热膨胀,电解质电极组件56也不会由于与凸起181接触所产生的应力而损坏或移动。
另外,凸起181与板161例如通过压力成型而一体形成。因此,无需专门用于定位电解质电极组件56的部件。隔板158中的部件数量并不会增加。因此,隔板158具有简单轻巧的结构。燃料电池110能够容易地组装,且燃料电池110具有可靠的发电性能。
凸起181形成在高度较低的燃料气体通道一侧,即,形成在第二凸台86一侧上,凸起181的高度较低。
如图13和图14所示,在燃气轮机114的壳体116中,8个燃料电池组112以45°的间隔设在燃烧器18的周围。因此,当燃气轮机114的总长较短时,产生了较大的电动势。
图23是示意显示包括根据本发明第三实施例的较大燃料电池组112a的燃气轮机190的剖视图,而图24是显示燃气轮机190的前视图。
在燃气轮机190中,四个燃料电池组112a以90°的间隔沿着第一圆设置在壳体192中,且四个燃料电池组112a以90°的间隔沿着第二圆设置在壳体192中。第一圆与第二圆沿着箭头X指示的壳体192的轴向隔开预定的距离。沿着第一圆设置的四个燃料电池组112a的方位与沿着第二圆设置的第二燃料电池组112a偏移45°。因此,燃料电池组112a并不相互接触。每个燃料电池组112a都由盖194覆盖,而热空气供应通道196形成在盖194内。
在燃气轮机190中,四个燃料电池组112a以90°的间隔沿着第一圆设置,而其他四个燃料电池112a以90°的间隔沿着第二圆设置。沿着第一圆设置的燃料电池组112a的方位与沿着第二圆设置的燃料电池组112a偏移45°。因此,具有较大尺寸的多个(8个)燃料电池112a可以放置在燃气轮机190中,以提高发电效率。燃气轮机190的外圆周尺寸不大,因此燃气轮机190结构紧凑。
在第一至第三实施例中,燃料电池组12、112、112a用在燃气轮机14、114和190中。然而,燃料电池组12、112、112a也可以用在其它设备中。例如,燃料电池组12、112、112a能够被安装在车辆中。
                        工业应用性
在本发明中,多个电解质电极组件插设在一对隔板之间。每个隔板都包括多块板,这些板堆叠在一起以形成燃料气体通道和含氧气体通道。因此,该电解质电极组件可以做得紧凑且较薄。在电极表面中的温度分布较小。
特别是,当在燃料电池系统中使用固体氧化物时,可以防止固体氧化物的损坏,同时减小了电阻极化以改善电力输出性能。燃料气体通道和含氧气体通道形成在隔板的内部。因此,简化了密封结构,且能可靠地保持所需的密封性能。该燃料电池总体上结构紧凑,且能够容易地提高该燃料电池的聚能效率。
另外,在本发明中,在隔板表面上形成凸起以定位电解质电极组件。因此,可以准确地将电解质电极组件定位在隔板之间。电解质电极组件不会由于热等而发生移动。由于可以简单且可靠地进行电解质电极组件的定位,因此可以大大提高燃料电池的组装效率。
尽管已经结合优选实施例具体示出并描述了本发明,但本领域技术人员应该理解,在不脱离由所附权利要求限定的本发明的精神和范围的情况下,可以对本发明进行变换和修改。

Claims (20)

1、一种燃料电池,包括一对隔板(58)和插设在所述隔板(58)之间的电解质电极组件(56),每个所述电解质电极组件(56)均包括阳极(54)、阴极(52)、以及插设在所述阳极(54)和所述阴极(52)之间的电解质(50),其中
每个所述隔板(58)都包括堆叠在一起的至少两块板(60、62);
在所述板(60,62)之间形成燃料气体通道(67)和含氧气体通道(82),所述燃料气体通道用于将燃料气体供给到所述阳极(54),所述含氧气体通道用于将含氧气体供给到所述阴极(52);并且
所述电解质电极组件(56)沿着与所述隔板(58)的中心轴线同心的至少一个虚拟圆设置。
2、如权利要求1所述的燃料电池,其特征在于,所述电解质电极组件(56)沿着与所述隔板(58)的中心轴线同心的至少两个虚拟圆设置。
3、如权利要求2所述的燃料电池,其特征在于,所述虚拟圆包括内圆(P1)和外圆(P2),且沿着所述内圆(P1)设置的电解质电极组件(56)与沿着所述外圆(P2)设置的电解质电极组件(56)径向不对齐。
4、如权利要求2所述的燃料电池,其特征在于,所述虚拟圆包括内圆(P1)和外圆(P2),且所述电解质电极组件(56)沿着所述内圆(P1)和所述外圆(P2)交替设置。
5、如权利要求1所述的燃料电池,其特征在于,所述燃料气体和所述含氧气体分别通过所述燃料气体通道(67)和所述含氧气体通道(82)供给到所述电解质电极组件(56)相对表面上的中心区域。
6、如权利要求1所述的燃料电池,其特征在于,所述燃料气体通道(67)和所述含氧气体通道(82)设在两块所述板(60,62)之间。
7、如权利要求6所述的燃料电池,其特征在于,所述排放通道(106)设在所述隔板(58)之间,用于排放反应后的所述燃料气体和所述含氧气体。
8、如权利要求1所述的燃料电池,其特征在于,一圆孔(44)延伸通过所述隔板(58)的中心;
所述电解质电极组件(56)具有圆盘形状;以及
所述电解质电极组件(56)沿着与所述圆孔(44)同心的至少一个虚拟圆设置在所述圆孔(44)的周围。
9、如权利要求8所述的燃料电池,其特征在于,所述电解质电极组件(56)沿着与所述圆孔(44)同心的至少两个虚拟圆设置在所述圆孔(44)的周围。
10、如权利要求1所述的燃料电池,其特征在于,所述电解质是固体氧化物。
11、一种燃料电池组,其通过堆叠多个燃料电池(10)形成,并沿着所述燃料电池(10)的堆叠方向在相对端设置端板(40a,40b),每个所述燃料电池(10)都包括一对盘状隔板(58)和多个圆盘状电解质电极组件(56),每个所述电解质电极组件(56)都包括阳极(54)、阴极(52)、和电解质(50),其中
所述电解质电极组件(56)沿着与所述隔板(58)的中心轴线同心的至少一个虚拟圆设置;并且
每个所述端板(40a,40b)都具有孔(100a,100b),用于插入螺栓(42)以紧固所述燃料电池组,且所述孔(100a,100b)和所述电解质电极组件(56)交替设置。
12、如权利要求11所述的燃料电池,其特征在于,所述电解质电极组件(56)沿着与所述隔板(58)的中心轴线同心的至少两个虚拟圆设置。
13、一种燃料电池,包括一对隔板(158)和插设在所述隔板(158)之间的电解质电极组件(56),每个所述电解质电极组件(56)都包括阳极(54)、阴极(52)、以及插设在所述阳极(54)和所述阴极(52)之间的电解质(50),其中
每个所述隔板(158)都包括堆叠在一起的多块板(160,162);
在所述板(160,162)之间形成燃料气体通道(67)和含氧气体通道(82),所述燃料气体通道用于将燃料气体供给到所述阳极(54),所述含氧气体通道用于将含氧气体供给到所述阴极(52);并且
至少其中一个所述板(160,162)具有凸起(181),用于将所述电解质电极组件(56)定位在所述隔板(158)之间。
14、如权利要求13所述的燃料电池,其特征在于,所述凸起(181)被这样设置,以使得所述电解质电极组件(56)沿着至少一个虚拟圆设置,所述虚拟圆与所述隔板(158)的中心轴线同心。
15、如权利要求14所述的燃料电池,其特征在于,所述虚拟圆包括内圆(P1)和外圆(P2),且沿着所述内圆(P1)设置的电解质电极组件(56)与沿着所述外圆(P2)设置的电解质电极组件(56)径向不对齐。
16、如权利要求13所述的燃料电池,其特征在于,设置至少三个凸起(181),用于将每个所述电解质电极组件(56)以一定间隙定位在所述至少三个凸起(181)的内侧。
17、如权利要求13所述的燃料电池,其特征在于,所述电解质是固体氧化物(50)。
18、一种燃料电池组,其通过堆叠多个燃料电池(110)形成,并沿着所述燃料电池(110)的堆叠方向在相对端设置凸缘(140a,140b),每个所述燃料电池(110)都包括盘状隔板(158)和插设在所述隔板(158)之间的多个圆盘状电解质电极组件(56),每个所述电解质电极组件(56)都包括阳极(54)、阴极(52)、和电解质(50),其中
每个所述隔板(158)都具有凸起(181),用于将所述电解质电极组件(56)定位在所述隔板(158)之间;
所述电解质电极组件(56)沿着与所述隔板(158)的中心轴线同心的至少一个圆设置;并且
每个所述凸缘(140a,140b)都具有孔(100a,100b),用于插入螺栓(41)以紧固所述燃料电池组,且所述孔(100a,100b)和所述电解质电极组件(56)交替设置。
19、如权利要求18所述的燃料电池组,其特征在于,所述凸起(181)被这样设置,以使得所述电解质电极组件(56)沿着至少一个虚拟圆设置,所述虚拟圆与所述隔板(58)的中心轴线同心。
20、如权利要求18所述的燃料电池,其特征在于,设置至少三个凸起(181),用于将每个所述电解质电极组件(56)以一定间隙定位在所述至少三个凸起(181)的内侧。
CNB03815255XA 2002-06-28 2003-06-26 燃料电池和燃料电池组 Expired - Fee Related CN1312797C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP190004/2002 2002-06-28
JP2002190004A JP4394865B2 (ja) 2002-06-28 2002-06-28 燃料電池
JP2002249520 2002-08-28
JP249520/2002 2002-08-28
JP2003134190A JP4394899B2 (ja) 2002-08-28 2003-05-13 燃料電池
JP134190/2003 2003-05-13

Publications (2)

Publication Number Publication Date
CN1666366A true CN1666366A (zh) 2005-09-07
CN1312797C CN1312797C (zh) 2007-04-25

Family

ID=30003598

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB03815255XA Expired - Fee Related CN1312797C (zh) 2002-06-28 2003-06-26 燃料电池和燃料电池组

Country Status (7)

Country Link
US (1) US7125619B2 (zh)
EP (1) EP1540756A2 (zh)
KR (1) KR100675613B1 (zh)
CN (1) CN1312797C (zh)
AU (1) AU2003243009B2 (zh)
CA (1) CA2490448A1 (zh)
WO (1) WO2004004038A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101351917B (zh) * 2005-12-28 2010-07-14 本田技研工业株式会社 燃料电池和燃料电池组
CN107968212A (zh) * 2016-10-20 2018-04-27 通用汽车环球科技运作有限责任公司 用于燃料电池的双极板及其制造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4324409B2 (ja) * 2002-08-28 2009-09-02 本田技研工業株式会社 燃料電池
ES2264541T3 (es) * 2002-11-18 2007-01-01 Gencell Corporation Placa bipolar con anodo de dos pasos.
JP4854237B2 (ja) 2004-10-22 2012-01-18 日産自動車株式会社 固体電解質型燃料電池及びスタック構造体
WO2006067971A2 (en) * 2004-12-21 2006-06-29 Nissan Motor Co., Ltd. Startup method for fuel cell stack structure, temperature control method for fuel cell stack structure, and fuel cell stack structure
EP1855338A4 (en) * 2005-01-19 2010-01-06 Mitsubishi Materials Corp FLAT LAMINATE FUEL CELL AND FUEL CELL STACK
JP4555169B2 (ja) * 2005-06-24 2010-09-29 本田技研工業株式会社 燃料電池及び燃料電池スタック
JP4611196B2 (ja) * 2005-12-28 2011-01-12 本田技研工業株式会社 燃料電池及び燃料電池スタック
US7659022B2 (en) * 2006-08-14 2010-02-09 Modine Manufacturing Company Integrated solid oxide fuel cell and fuel processor
JP2008293808A (ja) * 2007-05-24 2008-12-04 Toyota Motor Corp セパレータおよび燃料電池
US8920997B2 (en) * 2007-07-26 2014-12-30 Bloom Energy Corporation Hybrid fuel heat exchanger—pre-reformer in SOFC systems
JP5613391B2 (ja) * 2009-09-08 2014-10-22 本田技研工業株式会社 燃料電池
JP5613392B2 (ja) * 2009-09-08 2014-10-22 本田技研工業株式会社 燃料電池スタック
FR2957362B1 (fr) * 2010-03-12 2012-04-20 Commissariat Energie Atomique Procede d'electrochimie a rendement ameliore et reacteur electrochimique tel qu'un electrolyseur a haute temperature (eht) associe
WO2012143489A1 (en) * 2011-04-21 2012-10-26 Eads Deutschland Gmbh Drive unit, method for providing power, and use of a drive unit
US10724432B2 (en) * 2017-11-07 2020-07-28 General Electric Company Integrated fuel cell and engine combustor assembly
US20230095015A1 (en) * 2021-09-24 2023-03-30 Bell Textron Inc. Shaped aircraft fuel cells, systems and methods for enhanced crashworthiness
DK181478B1 (en) * 2022-07-01 2024-02-26 Green Hydrogen Systems As Method of assembly of a water electrolysis stack, bipolar plates adapted for use in an electrolyser stack and use of bipolar plates.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1508147A (fr) * 1966-10-03 1968-01-05 Gaz De France Batterie de piles à combustible fonctionnant à haute température
US3784415A (en) * 1971-01-28 1974-01-08 Us Army Method of making a high voltage deposited fuel cell component
US5049458A (en) * 1988-08-31 1991-09-17 Nkk Corporation Fuel cell
JPH0275167A (ja) * 1988-09-08 1990-03-14 Mitsui Eng & Shipbuild Co Ltd 固体電解質型燃料電池
JP3244308B2 (ja) 1991-09-03 2002-01-07 三洋電機株式会社 固体電解質型燃料電池システム
JPH06310164A (ja) 1993-04-26 1994-11-04 Fuji Electric Co Ltd 固体電解質型燃料電池
JPH07122287A (ja) 1993-10-25 1995-05-12 Sanyo Electric Co Ltd 内部マニホールド方式平板型固体電解質燃料電池モジュール
CN2298604Y (zh) * 1997-01-31 1998-11-25 清华大学 列管式质子交换膜燃料电池
AUPO724997A0 (en) * 1997-06-10 1997-07-03 Ceramic Fuel Cells Limited A fuel cell assembly
US6432567B1 (en) * 1999-03-17 2002-08-13 Sulzer Hexis Ag Fuel cell battery with afterburning at the periphery of a cell stack
AU2003256251A1 (en) * 2002-04-24 2003-11-10 The Regents Of The University Of California Planar electrochemical device assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101351917B (zh) * 2005-12-28 2010-07-14 本田技研工业株式会社 燃料电池和燃料电池组
CN107968212A (zh) * 2016-10-20 2018-04-27 通用汽车环球科技运作有限责任公司 用于燃料电池的双极板及其制造方法
CN107968212B (zh) * 2016-10-20 2021-06-11 通用汽车环球科技运作有限责任公司 用于燃料电池的双极板及其制造方法

Also Published As

Publication number Publication date
WO2004004038A2 (en) 2004-01-08
CN1312797C (zh) 2007-04-25
US7125619B2 (en) 2006-10-24
CA2490448A1 (en) 2004-01-08
AU2003243009A1 (en) 2004-01-19
EP1540756A2 (en) 2005-06-15
KR20050013166A (ko) 2005-02-02
US20040028986A1 (en) 2004-02-12
WO2004004038A3 (en) 2005-04-21
AU2003243009B2 (en) 2006-10-12
KR100675613B1 (ko) 2007-01-30

Similar Documents

Publication Publication Date Title
CN1666366A (zh) 燃料电池和燃料电池组
CN1679193A (zh) 燃料电池
CN1240472C (zh) 化学反应装置以及动力供给系统
CN1280934C (zh) 平面型高分子电解质型燃料电池用隔板以及燃料电池
CN1210828C (zh) 高分子电解质型燃料电池
CN1898826A (zh) 燃料电池以及燃料电池组
CN1604379A (zh) 直接液体给料的燃料电池组
CN1770532A (zh) 高分子电解质型燃料电池
CN1245982A (zh) 高分子电解质型燃料电池
KR101407937B1 (ko) 균일한 유동분배 구조를 갖는 금속재 실링 고체산화물 연료전지 스택
CN1536703A (zh) 高分子电解质型燃料电池
CN1881668A (zh) 直接供液燃料电池组
CN1914755A (zh) 燃料电池和燃料电池组
US6274262B1 (en) Fuel cell bi-cooler flow plate
CN1885604A (zh) 燃料电池以及用于燃料电池的隔板
CN1898825A (zh) 燃料电池和燃料电池组
CN1609754A (zh) 直接甲醇燃料电池和具有该电池的便携计算机
CN1778006A (zh) 燃料电池
CN1855591A (zh) 燃料电池单元及电子机器
CN1969420A (zh) 燃料电池
CN1835270A (zh) 具有重整功能的电池堆及具有该电池堆的燃料电池系统
WO2009001734A1 (ja) 燃料電池ケース
KR100645190B1 (ko) 직접 내부 개질형 분리판을 구비하는 용융탄산염 연료전지
CN1283017C (zh) 燃料电池
US7572538B2 (en) Fuel cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070425