CN1644539A - 微结构光纤预制方法 - Google Patents

微结构光纤预制方法 Download PDF

Info

Publication number
CN1644539A
CN1644539A CN 200410093901 CN200410093901A CN1644539A CN 1644539 A CN1644539 A CN 1644539A CN 200410093901 CN200410093901 CN 200410093901 CN 200410093901 A CN200410093901 A CN 200410093901A CN 1644539 A CN1644539 A CN 1644539A
Authority
CN
China
Prior art keywords
glass
microstructure
aperture
optical fibers
microstructured optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410093901
Other languages
English (en)
Other versions
CN1278969C (zh
Inventor
王清月
倪晓昌
胡明列
刘博文
柴路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN 200410093901 priority Critical patent/CN1278969C/zh
Publication of CN1644539A publication Critical patent/CN1644539A/zh
Application granted granted Critical
Publication of CN1278969C publication Critical patent/CN1278969C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本发明公开了一种微结构光纤预制方法,属于微结构光纤制备技术。该方法以熔石英、有机玻璃、K9玻璃、各种掺杂玻璃或石英的棒体材料,采用脉宽为150fs,重复频率为1KHz,最大单脉冲能量为1mJ的飞秒激光微加工平台或者是机械钻头加工制备微结构光纤预制棒,其特征在于:在棒体材料的端面,加工制造孔径为0.005~1mm的有规则排列的轴向通孔群。本发明的优点:可以自由,方便的调整微结构光纤占空比;克服了传统堆管技术制备方案中空心管或实心棒的材质差异性;操作简单和重复性好;特别是采用飞秒激光微加工技术方案时,熔融拉丝缩小比例大大降低,减少了熔融拉丝过程中的微结构变形几率;拓宽了微结构光纤的种类,大大提高了微结构光纤的制备效率和精度。

Description

微结构光纤预制方法
                                技术领域
本发明涉及了一种微结构光纤预制方法,属于微结构光纤制备技术。
                                背景技术
微结构光纤(Microstructure fiber),又叫光子晶体光纤(Photonic Crystal fiber),或者多孔光纤(Holey fiber)。具有:无波长限制的单横模传输,色散可操作性,光子带隙和光纤弯曲性,以及强非线性效应:超连续平台光谱,频率变换等特点。传统光纤中微小的折射率差常常用气象沉积的技术得到,而光子晶体光纤所需的大折射率差值通常通过堆管技术来形成预制棒或是冲挤压成型来直接形成预制棒,然后熔融拉丝而成。
微结构光纤在物理、化学、生物学的超快研究中存在广泛的应用前景。有关涉及到本发明技术的文献和报道如下:
[1]、Jinendra K.Ranka et.al Optics Letters,2000,25(1):25
[2]、R.K.Kumar,A.K.George,et.al.,Opt Exp.,2002,10(25):1520~1525
[3]、X.Liu et.al.,IEEE J.Quantum Electron,1997,33(10):1706~1716
[4]、Kaoru Minoshima et.Al.,Opt.Lett.,1999,26(19):1516~1518
[5]、D.J.Jones et al.,Science,288:635
[6]、H.N.Paulsen et al.Opt.Lett.,2003,28:1123
[7]、D.J.HWANG et al.Appl.Phys.A,2004,79(3):605~612
                                发明内容
本发明的目的在于提供一种微结构光纤预制方法。该方法过程简单,制得的微结构光纤质量均匀。
本发明通过下述技术方案加以实现:以熔石英、有机玻璃、K9玻璃、各种掺杂玻璃或石英的棒体材料,采用脉宽为150fs,重复频率为1KHz,最大单脉冲能量为1mJ的飞秒激光微加工平台或者是机械钻头加工制备微结构光纤预制棒的方法。其特征在于:在棒体材料的端面,加工制造孔径为0.005~1mm的有规则排列的轴向通孔群。
上述有规则排列的通孔群是指所有满足微结构光纤纤芯分布要求的设计方案:以大小孔径间隔或随机排列成同心圆,椭圆形以及正六角形图案等,或纤芯孔径大于其他孔径排列图案。
本发明的优点:1、可以自由,方便的调整微结构光纤纤芯分布形状,孔径和孔间距的比例(占空比);2、克服了传统堆管技术制备方案中空心管或实心棒的材质差异性;3、能够对各种透明材料进行微结构光纤预制,而且具有操作简单和重复性好的特点;4、特别是采用飞秒激光微加工技术方案时,加工尺度已经在微米量级,熔融拉丝缩小比例大大降低,减少了熔融拉丝过程中的微结构变形几率;5、上述预制方法的发明,拓宽了微结构光纤的种类,特别是对光纤制备技术而言,大大提高了微结构光纤的制备效率和精度。
                                附图说明
图1、2、3为现有堆管技术制备微结构光纤过程图。
图4本发明中飞秒激光微加工平台。
图5本发明中飞秒激光微加工示意图,图中1为飞秒激光啁啾脉冲放大系统,2为辅助照明光源,3为在电脑上成像的监控系统,4为分束镜,5为聚焦物镜,6为加工材料,7为三维微位移平台。
图6本发明中采用飞秒激光微加工平台加工的纤芯不均匀的六角形孔群端面图。
图7本发明中采用飞秒激光微加工平台加工的纤芯均匀的六角形孔群端面图。
图8纤芯均匀孔群的He-Ne激光耦合效果图。
图9本发明中采用机械钻头加工的纤芯均匀的六角形孔群端面图。
                            具体实施方式
实施例1:
飞秒激光微加工平台(图4),主要包括能稳定输出飞秒激光脉冲的啁啾脉冲放大系统(CPA)(图5中的1),能监控微结构光纤端面的同轴成像监控系统(图5中的3)和微位移平台(图5中的7)组成。首先CPA输出的飞秒激光脉冲通过物镜(图5中的5)聚焦材料表面,将所要微结构光纤图案编程控制平台三维移动,即可加工出孔径较小的规则排列通孔群(单孔径几十甚至几个微米左右)。例如,直径为6mm,长1cm的有机玻璃棒,按六角形排列加工出36个孔径为8微米的孔群,如图6和图7所示。上述预制棒加热至熔融温度时,经拉伸即可得到微结构光纤。
实施例2:
机械加工由机械钻头和程控平台组成,将所要微光纤图案编程控制平台三维移动,即可加工出规则排列通孔群(单孔径0.30-1毫米),例如,直径为8mm,长1cm的有机玻璃棒,按六角形排列加工出36个孔径为0.5mm的孔群,如图9所示。上述预制棒加热至熔融温度时,经拉伸即可得到微结构光纤。

Claims (2)

1、一种微结构光纤预制方法,该方法以熔石英、有机玻璃、K9玻璃、各种掺杂玻璃或石英的棒体材料,采用脉宽为150fs,重复频率为1KHz,最大单脉冲能量为1mJ的飞秒激光微加工平台或者是机械钻头加工制备微结构光纤预制棒,其特征在于:在棒体材料的端面,加工制造孔径为0.005~1mm的有规则排列的轴向通孔群。
2、按权利要求1所述的微结构光纤预制方法,其特征在于:有规则排列的通孔群是指所有满足微结构光纤纤芯分布要求的设计方案,即以大小孔径间隔或随机排列成同心圆,椭圆形以及正六角形图案,或纤芯孔径大于其他孔径排列图案。
CN 200410093901 2004-12-13 2004-12-13 微结构光纤预制方法 Expired - Fee Related CN1278969C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410093901 CN1278969C (zh) 2004-12-13 2004-12-13 微结构光纤预制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410093901 CN1278969C (zh) 2004-12-13 2004-12-13 微结构光纤预制方法

Publications (2)

Publication Number Publication Date
CN1644539A true CN1644539A (zh) 2005-07-27
CN1278969C CN1278969C (zh) 2006-10-11

Family

ID=34869426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410093901 Expired - Fee Related CN1278969C (zh) 2004-12-13 2004-12-13 微结构光纤预制方法

Country Status (1)

Country Link
CN (1) CN1278969C (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336393A (zh) * 2011-10-10 2012-02-01 上海大学 飞秒激光在有机玻璃表面制备疏水性微结构的方法
CN102730959A (zh) * 2012-06-06 2012-10-17 烽火通信科技股份有限公司 Ftth用微结构光纤预制棒的制造方法
CN104165882A (zh) * 2014-08-29 2014-11-26 四川九高科技有限公司 气体输入装置及包括该气体输入装置的拉曼光谱仪
CN110451787A (zh) * 2019-08-14 2019-11-15 广汉市瑞信科技有限公司 光通信光纤毛细管加工工艺
CN111302616A (zh) * 2020-03-27 2020-06-19 宁波大学 一种硫系玻璃光纤的激光直写制备方法
CN114560628A (zh) * 2022-03-21 2022-05-31 创昇光电科技(苏州)有限公司 局域三维微结构光纤的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336393A (zh) * 2011-10-10 2012-02-01 上海大学 飞秒激光在有机玻璃表面制备疏水性微结构的方法
CN102730959A (zh) * 2012-06-06 2012-10-17 烽火通信科技股份有限公司 Ftth用微结构光纤预制棒的制造方法
CN102730959B (zh) * 2012-06-06 2014-12-31 烽火通信科技股份有限公司 Ftth用微结构光纤预制棒的制造方法
CN104165882A (zh) * 2014-08-29 2014-11-26 四川九高科技有限公司 气体输入装置及包括该气体输入装置的拉曼光谱仪
CN104165882B (zh) * 2014-08-29 2018-04-27 四川九高科技有限公司 包括气体输入装置的拉曼光谱仪
CN110451787A (zh) * 2019-08-14 2019-11-15 广汉市瑞信科技有限公司 光通信光纤毛细管加工工艺
CN111302616A (zh) * 2020-03-27 2020-06-19 宁波大学 一种硫系玻璃光纤的激光直写制备方法
CN114560628A (zh) * 2022-03-21 2022-05-31 创昇光电科技(苏州)有限公司 局域三维微结构光纤的制备方法

Also Published As

Publication number Publication date
CN1278969C (zh) 2006-10-11

Similar Documents

Publication Publication Date Title
Gattass et al. Femtosecond laser micromachining in transparent materials
CN103247935B (zh) 光学各向异性可饱和吸收器件、制备方法及基于该器件的脉冲激光器
Nolte et al. Ultrafast laser processing: new options for three-dimensional photonic structures
KR20050081236A (ko) 다공 광섬유 및 그 제조방법
CN1278969C (zh) 微结构光纤预制方法
WO2002026648A1 (en) Multi-component all glass photonic band-gap fiber
CN101504471A (zh) 具有长周期光栅的光子晶体光纤的制备方法
Wang et al. Non-diffraction-length Bessel-beam femtosecond laser drilling of high-aspect-ratio microholes in PMMA
CN111061007B (zh) 一种量子点掺杂的大模场面积光子晶体光纤设计方法
JP2008078629A (ja) ファイバ・レーザおよびファイバ増幅器用の希土類がドープされ有効区域が大きい光ファイバ
US20060120677A1 (en) Optical waveguide, method of its production, and its use
CN1170177C (zh) 双芯光子晶体光纤
CN115182046B (zh) 一种制备倍半氧化物单晶光纤包层的方法
CN106646729B (zh) 基于纤芯材料析晶的长周期光纤光栅及其制作方法
Wadsworth et al. State-of-the-art photonic crystal fiber
CN106908894B (zh) 一种色散平坦全固微结构光纤
CN1461082A (zh) 泵浦光源的光纤侧边耦合方法
CN104505700A (zh) 中红外超连续谱的产生方法
CN108459370B (zh) 一种以石英玻璃为基质光子带隙中具有狄拉克点的光子晶体光纤
Streltsov Femtosecond-laser writing of tracks with depressed refractive index in crystals
Zhou et al. Gaussian-like mode field generated in a seven-core photonic crystal fiber for low loss splicing by air hole collapse technique
Delmonte et al. Holey fibre delivered radiation for laser curing and trimming of direct write components
Sohag et al. Tellurite-filled hexa-circular-shaped PCF with highly nonlinearity, birefringent and near-zero dispersion profile for optical communications.
CN115849700A (zh) 一种全固态大模场硫系玻璃光子晶体光纤的制备方法
Wang et al. Mid-infrared Seven-core Chalcogenide Fiber with Ultra-Large Mode Field Area and High Beam Quality

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee