CN1640044A - 光学互连的多处理器 - Google Patents

光学互连的多处理器 Download PDF

Info

Publication number
CN1640044A
CN1640044A CNA028123700A CN02812370A CN1640044A CN 1640044 A CN1640044 A CN 1640044A CN A028123700 A CNA028123700 A CN A028123700A CN 02812370 A CN02812370 A CN 02812370A CN 1640044 A CN1640044 A CN 1640044A
Authority
CN
China
Prior art keywords
processor
wavelength
instruction
system based
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA028123700A
Other languages
English (en)
Inventor
W·小梅茨
K·贾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1640044A publication Critical patent/CN1640044A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • H04J14/0232Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON] for downstream transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0238Wavelength allocation for communications one-to-many, e.g. multicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0226Fixed carrier allocation, e.g. according to service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0284WDM mesh architectures

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Multi Processors (AREA)

Abstract

一种多处理器系统可以包括多个彼此光学耦合的处理器。一个光收发器可以使用一个预先分配的波长发送消息到其他处理器。来自在该系统中其它处理器中的一个处理器的每一条消息可以由一个给定处理器接收。来自任何给定处理器的消息可以包括一个标识所述发送和接收处理器的代码。当一个给定处理器正在从另一个处理器接收一个信号时,它可以向在该系统中的其它处理器提供该处理器正被占用而且不会接受任何传输的指示。

Description

光学互连的多处理器
背景技术
本发明通常涉及多处理器系统。
多处理器系统包括多个互连的处理器。一个处理作业可以被分成多个由在一个系统中的单独处理器处理的任务,显著地提高系统性能。此外,用作服务器的多处理器系统可以具有改善的可靠性、可用性、和服务。当前,四处理器系统是已知的,而且存在有向八和十六处理器系统发展的趋势。
随着越来越多的处理器,以较高速度运行,逐步连接在一起,电互连瓶颈和功率考虑可能最终限制能达到的性能。多处理器服务器增加了系统存储器和输入/输出带宽的要求。它们还增加了在印刷电路板上的组装密度和热负载。
因为处理器速度以一个稳定速率增加而同时系统输入/输出速度远远地滞后,所以今后的处理器中,有可能总线速度对处理器速度的比率将比1小得多。这个滞后的一个原因是电互连强加了一个性能开销,其转换为降低操作频率。此外,在铜链接中,带宽并未很好地随着链接数的增加而扩展。此外,在铜上的电互连还面对在很高数据速率处的电磁干扰缓和而言的一个困难的挑战。这些数据速率还可能由于增加了的辐射危险而提高了安全关注。
多处理器系统可以在一个印刷电路板上连接在一起。做为选择,多个处理器可以一起集成到同一个管芯中。传统上,多个处理器由一条前端总线连接,该总线接着耦合到系统存储器和输入/输出连接。因为处理器仅仅能够通过前端总线相互通信,所以通信可能是相对缓慢的。
因此,存在一个对在多处理器系统中互连处理器的更好方法的需要。
附图简要说明
图1是依据本发明一个实施例的一个多处理器系统的示意描述;
图2是依据本发明的一个实施例、用于一个处理器的一个收发器的示意描述;
图3A是一个流程图,用于由依据本发明一个实施例的光收发器使用的软件;
图3B是一个流程图,用于由依据本发明一个实施例的光收发器使用的软件;
图4是依据本发明一个实施例的一个波分复用器的示意描述;
图5是依据本发明的一个实施例,在图1中显示的实施例中使用的一个反射镜的放大视图;以及
图6是一个大致沿着在图4中的线6-6的放大的横断面视图。
详细说明
参见图1,多处理器系统10可以包括多个处理器12。在图1中说明的实施例中,四个处理器12a、12b、12c、和12d,如箭头所指示的那样,彼此光学互连。然而,在其他实施例中,系统10可以包括三个或更多的处理器。每一个处理器12都具有一个分配的波长,用于和其它处理器12通信。因此,处理器12a可以使用波长一,处理器12b可以具有波长三,处理器12c可以使用波长二,以及处理器12d可以使用波长四。
每一个处理器12都能够使用一个波分复用器13向每一个其他处理器12发送一个波分波分复用(WDM)信号,以及使用一个解复器13接收数据。每一个处理器12以它自己被分配的波长发送数据。类似地,每一个处理器12都以在系统10中的其它处理器12使用的所有传输波长接收数据。因此,每一个处理器12可以包括一个诸如激光器之类的光源,其以分配的波长进行传输。在一个实施例中,可以使用垂直空腔表面发射激光器(Vertical Cavity Surface Emitting Laser-VCSEL)。其他合适的激光器包括边缘发射激光器。
虽然每一个多路复用器13可以以其它处理器12的所有传输波长接收光,但是在一个数据接收锁定模式中,每一个多路复用器13随时可以被锁定到一个输入波长上。换句话说,在一个实施例中,每一个接收器,都与它的解复器13相链接,并不同时接收多个不同的波长(每一个波长与来自另一个处理器12的传输相关联),而相反,确定一个进入的波长以锁定到该波长,并且独占地接收在该波长上的数据一段时间。在本发明的一个实施例中,每一个处理器12一次仅仅和系统10中的一个其他处理器12进行光通信。
参见图2,光接口16和电单元14可以充当在系统10中的每一个处理器12和其它处理器12之间的多路复用器13。因此,光缆34可以将一个处理器12的多路复用器13(与图2中的数据输入和输出信号相耦合)耦合到在系统10中的所有其它处理器12。
光接口16可以包括一个反射波长耦合器32,反射波长耦合器32直接与包含在光缆34内的多个光纤相耦合。反射波长耦合器32传输光信号到光缆34并且从光缆34接收信号。输入信号被传输到光接收器26,而且输出信号从光发送器24接收。光发送器24和接收器26一起形成了光收发器模块22。光发送器24可以是一个垂直空腔表面发射激光器(VCSEL)或者是一个边缘发射激光器,作为两个示例。
在一个实施例中,发送器24和接收器26可以集成在一起。在这样的情况下,光接收器26可以包含一个诸如反向偏置PN结二极管、PIN二极管、PNP晶体管、或者金属一半导体金属(MSM)检测器的光检测器。接收器24和发送器26的单片集成可以使用III-V族材料完成。
光接口16的光收发器模块22和电单元14进行通信。电单元14使用一个激光驱动器18给光发送器24供电。电单元14还在一个电接口20中接收光信号,并且把它们转换成为一个合适的电信号格式。可以在接口20处接收来自处理器12(在图2中没有显示)的数据输入和输出信号。
多路复用器13可以与每一个处理器12相关联。电接口20可以向光接收器26提供一个波长调谐控制信号27。信号27把光接收器26调谐到一个分配给在系统10中的一个特定处理器12的特定传输波长。因此,输出波长信号28可以由发送器24提供给耦合器32并且最后到达电缆34。相反地,来自电缆34的进入光信号30可以由耦合器32提供给光接收器26。
依据本发明的一个实施例,光接收器26可以是一个基于处理器的系统(或者与之相关联),该系统包括一个存储如图3所示的软件36的存储器35。软件36控制和一个给定处理器12的通信。
在多处理器系统10中,从每一个处理器12传输到每个其他处理器12的数据在诸如单模光纤或者多模光纤之类的同一个物理介质上共存,数据在多个波长上被编码。因此,可能在两个或更多同时想要和另一个处理器12通信的处理器12之间产生竞争,其中两个或者许多处理器想要访问或者写入到同一个存储单元中。为了解决竞争,一种事务协议可以基于通过代码匹配的波长选择。每一个处理器12启动以已知波长带有唯一代码的传输。与每一个处理器12相关联的光接收器26在一个给定时隙内、在一个已知调谐范围和序列上扫过与每一个其他处理器12相关联的已知波长。因此,接收器26可以扫过与在系统10中的每一个其他处理器12相关联的已知波长序列。
每当光接收器26标识一个代码和波长的匹配时,就建立了一个传输-接收对。光接收器26然后被锁定到该波长直到用于该接收/传输对的事务完成了为止。通过从接口20提供波长调谐控制信号27到光接收器26来实现波长锁定。因此,在锁定之后,光接收器26被调谐到与选定传输处理器12相关联的选定波长。因此,在两个处理器12之间建立了一个独占通信对,其中的一个处理器被调谐到另一个的传输波长。
每一个处理器12导致它的光接口16以其被分配的波长传输数据。每个处理器12还导致光接口16以与在系统10中的每一个其他处理器12相关联的预先分配的波长检测输入光束。光接收器26扫描特定波长并且还检查与那些波长相关联的代码。
尤其是,当一个特定处理器12想要和另一个处理器12进行通信时,该处理器导致其发送器使用其被分配的波长、和标识发送处理器12和预定目标或者接收处理器12的代码一起发送一个信号,并且该处理器被多路复用到单模或者多模光纤上。此外,每个处理器12导致光接口16使用波长锁定来接收数据。
顺次完成光接收器26调谐。当代码以所关心的波长与接收处理器12相匹配时,为该接收器26锁定该波长。接收器26为所有其他处理器12指示一个处理器“忙”的标志,直到它为所有其他处理器12设置一个处理器“空闲”标志为止。依据本发明的一个实施例,所有其他处理器12可以避免传输到忙的处理器12,直到它们检测到该处理器空闲标志为止。
因此,参见图3A,在一个实施例中,如在菱形38中确定的那样,接收软件36最初确定是否已经在该扫描波长的其中一个处接收了一个信号。在一个实施例中,由接收器26接收的进入信号可以在波长解码之前进行互阻抗放大。互阻抗放大器可以被单片集成到检测器上或者可以是一个单独的管芯。在另一个实施例中,发送与接收端口可以被单片集成到单个光电集成电路上。如在菱形40中指示的那样,确定进入信号的波长并解码想要的接收者代码。如由伴随的代码确定的那样,如果该信号要前往该接收处理器12,则如块42指示的那样,使用波长调谐控制信号27把它的光接收器26设置为解码的波长。
当如菱形44确定的那样接收了波长信号时,如块46所示设置处理器忙标志或者状态位。依据本发明的一个实施例,如块48所示,该状态位然后可以被组播到系统10中的所有其他处理器12。当完成通信时,可以设置处理器空闲位。
每一个处理器12读取处理器忙位。这可以以各种方式实现。作为一个示例,可以使用一个电发送信号选择。每个处理器12可以通过在一个处理器状态寄存器中设置一位来指示它的传输状态。这个寄存器可以被访问,以便由在系统10中的所有其它处理器读取。另一个选择是启动一次光组播。在一个实施例中,每个处理器12可以以预定时间间隔指示它的传输状态。在每一个情况中,处理器12可以不仅指示它是被锁定的,而且它还可以指示它被锁定到哪个处理器或者从哪个处理器接收数据。
参见图3B,传送软件100可以例如结合光发送器24被存储。在一个实施例中,光发送器24可以是一个基于处理器的系统。做为选择,光收发器模块22可以是一个包括存储软件35和100的存储器的、基于处理器的系统。
如块102所示,软件100通过从处理器12接收电数据以便向另一个处理器传输开始。如块104所示,该数据被转换成为一个光信号而且被波分复用。此外,如块106所示,开发了一个指示传输处理器12以及接收处理器12的代码。如块108所示,然后传输该数据和代码。
如图4所示,在一个实施例中,耦合器32可以包含光纤阵列88和120。光纤阵列88可以与接收器26相耦合,而光纤阵列120可以与发送器24相耦合。耦合器32可以包括一个使用椭圆反射体82的反射体系统。每一个从阵列88或者120中接收的特定波长光束都由椭圆反射体82进行反射。在椭圆反射体82的焦点S1到S8处接收的光束被反射到相应或者共轭焦点S9到S16(或者反之亦然)。光束的数目、以及光学反射体82的精确定向可经受相当多的变化。本发明不局限于椭圆反射体82的一个特定定向或者特定数量波长的使用。
依据传统的几何形状,任何从电反射体82的一个焦点发出的光束被反射到椭圆反射体82的一个共轭焦点,而不管该光束的定向和方向。因此,可以在通过一组焦点S1到S8发送光束的耦合器32和朝向共轭焦点S9到S16的光之间创建一对一的映射和连接(或者反之亦然)。
色散元件112,诸如反射相位光栅、薄膜电介质光栅、棱镜、或者微机电结构(MEMS)帮助创建多个焦点S1到S16。色散元件112可以在光学上位于反射体82和光纤阵列88之间。
在阵列88或者120中一条光纤上的每一个不同波长的光束可以由反射体82从第一多个多焦点S1-S8反射到第二多个共轭焦点S9-S16(或者反之亦然)。然而,在到达第二组共轭焦点之前,该光束由色散元件112反射到一个对应于在阵列88或者120中的一条光纤末端的公共焦点。
光缆34(包括阵列88)可以由作为两个示例的色散位移光纤(DSF)或者色散补偿光纤(DCF)组成。DSF和DCF都能够以低衰减支持高数据速率。为了防止由于从在一条接收通道上的一条光纤到光发送器24的背反射而产生的被发送数据的交叉耦合,可以使用角状抛光光纤(APC)。在本发明的一个实施例中,八度的抛光角度可能是合适的。
光学模块85可以包括一个基本上透明的材料块。椭圆反射体82可以放置在块85上的一个或者多个预定位置处。例如,块85可以由硼硅酸盐组成。依据本发明的一个实施例,色散元件112可以构图在光学模块85的边缘上,或者一个MEMS可以被用作元件112。
每个接收器检测和辨别由在系统10中的所有其它多路复用器13使用的波长。这可以通过波长去多路复用完成。每个多路复用器13可以具有一个被调谐到一个特定波长的检测器。适当的检测器包括反向偏置的PN结二极管、PIN二极管、PNP发送器或者金属-半导体-金属(MSM)检测器。此外,可以使用诸如谐振腔检测器(RCD)的波长调谐检测器。
模块85的厚度、色散元件112的光栅参数和椭圆反射体82的椭圆率可以由波长和波长间距确定。射线示踪和已知的光栅方程公式可以用来定位这些元件。通过使用用于在阵列88或者120中的光纤的支撑90、光学模块85、和阵列88和120上的基准符号,有助于把光学模块85调准到阵列88和120。
光学模块85可以为阵列88或者120中的光纤将椭圆反射体82保持在一个固定系统86中。如图6所示,固定系统86可以包括一顶板90,顶板90被通过一对固定设备92夹到支撑96上,该固定设备92可以是作为例子的夹具。每个固定设备92啮合顶板90并且把它向下拉,这导致在阵列88或者120中的光纤在一个V形凹槽94中被夹在顶板90和支撑96之间。
V形凹槽94可以被蚀刻到支撑96的表面中。作为示例,支撑96可以由硅或者热塑材料组成。在阵列88或者120中的每条光纤的x和y校准通过把每条光纤88放置在一个V形凹槽94上来进行控制。V形凹槽94可以相对于色散元件112和共轭焦点S1-S16居中对准。V形凹槽94的高度和要耦合的阵列88或者120中的光纤的直径一致。
光学模块85提供用于组成每个阵列88或者120的光纤的精确位置。另外,反射体82可以由光学模块85保持以便反射体82的长轴和光输入一致而且短轴垂直于焦点的中点。在某些实施例中,光学模块85可以包括一对配套的两半。光学模块85还可以提供一个停止或者终点,用于准确地定位光纤的末端。
椭圆反射体82可以是一个放置在光学模块85一侧的圆锥截面或者反射椭圆面。在一个实施例中,反射体82可以利用粘合剂固定到光学模块85上。椭圆反射体82可以通过菱形旋转母板的复制或者通过喷射模塑来批量生成。作为示例,铝、银、或者金涂层可以施加到反射体82上以创建一个高反射表面。虽然在图4中说明了椭圆反射体82的固定定位,但是为了反射体82和色散元件112和光纤阵列88和120的精确对准,可以调整反射体82。
耦合器32可以包括多个用作元件112的微机电结构(MEMS)。形成元件112的每一个结构都以至少一个(如果没有更多的话)轴为枢轴转动。在一个实施例中,每个MEMS元件112可以在顶部或在底部向外倾斜,或者如图5所示,可以保持相对不倾斜以改变由反射体82反射的光束的反射角。
参见图5,每个MEMS元件112,诸如反射镜112a-h,都包括枢轴114,枢轴114作为反射镜112a-h的支架,以便绕枢旋转或者控制触头118a和11gb。在反射镜112a-h的背侧提供匹配的触头116。因此,通过在触头118a或者118b上放置适当的电荷,触头116a或者116b可以吸引或者排斥以调整反射镜112a-h的定向角。提供给触头118a和118b的信号可以从产生具有适当时序的信号的集成电路119中提供,用于为在阵列88或者120中的特定光纤实现输出信号的选定组合。
在阵列88或者120中的每一个光纤可以安装在V形凹槽94上,而且通过夹具92保持在顶板90a和支撑96之间。因此,如图6所示,多个凹槽94保持夹在顶板90和支撑96之间的多条输出光纤88、120。以这种方式,任何给定光纤88或者120的焦点可以是一个特定反射镜112a-h的目标,其中反射镜112a-h的位置由集成电路119控制。
在阵列120中的光纤的每一个自由端(在图4中显示为8个)都定义了一个椭圆反射体82的焦点,也被固定到光学模块85上。反射体82把来自阵列120中每个和各个光纤的光反射到一个MEMS元件112,该MEMS元件包括数量等于光纤数目的多个反射镜112a-h。换句话说,在阵列120中的每个光纤都具有一个分配给它的相应反射镜112a到112h。因此,在一个实施例中,每个光纤控制每个从一个给定光纤到一个给定输出光纤88a到88h的输出信号的路线。输出光纤88还包括一个包含夹具92、V形凹槽94和顶板90的固定系统,它们一起固定多条光纤88,并使光纤的自由端紧邻光学模块85。
以这种方式,在每条光纤120上每个通道的最终布置可以由元件112控制,以便明确地引导或者路由每个输入通道到一个特定的输出光纤88。
因此,在本发明的一个实施例中,使用了四个处理器12,每一个处理器都可以接受三条输入光纤88a到88c,同时使用三条输出光纤88d、88e、88f,每条光纤都和在系统10中的一个不同的处理器12进行通信。在本发明的一个实施例中可以提供一对状态光纤88g和88h。状态光纤88g可以提供要向其它处理器12广播的输出信息,所述信息指示一个给定处理器12当前是否因为正从另一个处理器12接收一个通信而处于忙状态中。依据本发明的一个实施例,光纤88h可以被用来获得来自系统中其他处理器12的状态信息。
虽然反射镜112a到112h被显示为以一维排列,在某些实施例中还可以使用MEMS的二维阵列。通过把耦合器32和其他部件集成,相对紧凑和可能的低损耗排列是可能的。
虽然已经相对于有限的实施例对本发明进行了描述,本领域技术人员将理解根据其所作出的许多修改和变化。附加的权利要求书覆盖落在本发明真正精神和范围之内的所有这样的修改和变化正是目的所在。

Claims (30)

1.一种系统,包括:
最少三个处理器;以及
与每一个处理器相耦合的光收发器,每一个收发器包括用于启用和其它两个处理器进行光通信的波分复用器。
2.如权利要求1所述的系统,其特征在于:每一个收发器包括一个光发送器,该光发送器包括一个激光器。
3.如权利要求1所述的系统,其特征在于:每一个收发器包括可调谐到特定输入波长的光接收器。
4.如权利要求1所述的系统,其特征在于:每一个处理器被分配一个波长,以便和其它处理器进行通信。
5.如权利要求1所述的系统,其特征在于:所述收发器包括反射波长耦合器。
6.如权利要求5所述的系统,其特征在于:所述反射波长耦合器包括椭圆反射体。
7.如权利要求6所述的系统,其特征在于:所述耦合器包括色散元件,用于使由所述反射镜反射的光色散。
8.如权利要求7所述的系统,其特征在于:所述色散元件包括微机电结构。
9.如权利要求1所述的系统,其特征在于:每个收发器将光束和如下代码一起传送,所述代码标识进行发送和接收的处理器。
10.如权利要求1所述的系统,其特征在于:当一个处理器正从另一个处理器接收波分复用信号时,所述一个处理器向所有其他处理器广播:所述一个处理器是忙着的。
11.一种方法,包括:
建立一个包括至少三个处理器的系统;以及
使用波分复用来启用所述处理器之间的光通信。
12.如权利要求11所述的方法,包括将唯一波长分配给所述处理器中的每一个处理器。
13.如权利要求11所述的方法,包括扫描所述其他处理器中的任一处理器的波长。
14.如权利要求13所述的方法,包括传输具有预定波长的光束,以及传输标识传输处理器和想要的接收处理器的代码。
15.如权利要求14所述的方法,其特征在于:接收处理器标识输入光束的波长和伴随所述光束的代码,并且锁定到传输处理器的波长上。
16.如权利要求15所述的方法,包括当第二处理器正从第三处理器接收光束时,通知第一处理器。
17.如权利要求16所述的方法,包括向在所述系统中的所有其他处理器广播第二处理器正在接收光束的事实。
18.如权利要求17所述的方法,指示何时所述第二处理器不再和所述第三处理器进行通信。
19.如权利要求19所述的方法,包括使用由第三处理器传输的代码来确定给定的处理器是否是从第三处理器传输的光束的想要接收者。
20.如权利要求11所述的方法,包括光互连所述处理器中的每一个处理器。
21.一种包括如下介质的物品,所述介质存储这样的指令,所述指令使得基于处理器的第一系统能够进行如下的操作:
标识来自基于处理器的第二系统的、前往所述基于处理器的第一系统的光通信;
调谐到所述波长;以及
通知基于处理器的第三系统所述基于处理器的第一系统被调谐到所述波长。
22.如权利要求21所述的物品,进一步存储这样的指令,所述指令使得基于处理器的第一系统能够扫描基于处理器的其他系统的多个波长,以便标识一个前往所述基于处理器的第一系统的信号。
23.如权利要求21所述的物品,进一步存储这样的指令,所述指令使得基于处理器的第一系统能够接收如下代码,所述代码指示给定光通信是否要被发送到所述基于处理器的第一系统。
24.如权利要求23所述的物品,进一步存储这样的指令,所述指令使得所述基于处理器的第一系统能够调谐到所述不同于其他波长的波长。
25.如权利要求24所述的物品,进一步存储这样的指令,所述指令使得所述基于处理器的第一系统能够广播如下信号,所述信号指示所述基于处理器的第一系统被独占地调谐到所述波长。
26.如权利要求25所述的物品,进一步存储这样的指令,所述指令使得所述基于处理器的第一系统能够通知基于处理器的第三系统:所述基于处理器的第一系统不再参与和所述基于处理器的第二系统进行通信的时间。
27.如权利要求21所述的物品,进一步存储这样的指令,所述指令使得基于处理器的第一系统能够标识基于处理器的第二系统,以便与其通信并且确定所述基于处理器的第二系统当前是否正被忙于和基于处理器的另一个系统通信。
28.如权利要求21所述的物品,进一步存储这样的指令,所述指令使得所述基于处理器的第一系统能够使用光通信和波分复用和至少两个基于处理器的其他系统进行通信。
29.如权利要求28所述的物品,进一步存储这样的指令,所述指令使得所述基于处理器的第一系统能够使用分配的波长和基于处理器的其他系统进行通信。
30.如权利要求29所述的物品,进一步存储这样的指令,所述指令使得所述基于处理器的第一系统能够传输如下代码,所述代码标识所述基于处理器的第一系统和想要的基于处理器的接收系统。
CNA028123700A 2001-04-20 2002-04-04 光学互连的多处理器 Pending CN1640044A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/839,023 2001-04-20
US09/839,023 US20020154354A1 (en) 2001-04-20 2001-04-20 Optically interconnecting multiple processors

Publications (1)

Publication Number Publication Date
CN1640044A true CN1640044A (zh) 2005-07-13

Family

ID=25278667

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA028123700A Pending CN1640044A (zh) 2001-04-20 2002-04-04 光学互连的多处理器

Country Status (6)

Country Link
US (1) US20020154354A1 (zh)
EP (1) EP1386434A2 (zh)
CN (1) CN1640044A (zh)
AU (1) AU2002303253A1 (zh)
TW (1) TWI234363B (zh)
WO (1) WO2002087126A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272642A (zh) * 2009-01-07 2011-12-07 惠普开发有限公司 光子波导

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744856B1 (fr) * 1996-02-12 1998-04-17 Labavia Transmission de vehicule equipee d'un ralentisseur electrique
FR2744679B1 (fr) * 1996-02-12 1998-04-17 Labavia Transmission de vehicule equipee d'un ralentisseur electrique
US7177546B1 (en) * 2001-12-12 2007-02-13 Qwest Communications International Inc. Time division multiplexed optical wireless point-to-multipoint links
US7177547B1 (en) * 2002-08-02 2007-02-13 Finisar Corporation System and method for controlling polarity of a data signal
US20060041715A1 (en) * 2004-05-28 2006-02-23 Chrysos George Z Multiprocessor chip having bidirectional ring interconnect
JP2006053662A (ja) 2004-08-10 2006-02-23 Matsushita Electric Ind Co Ltd 多重プロセッサ
WO2011109442A2 (en) * 2010-03-02 2011-09-09 Oliver Steven D Led packaging with integrated optics and methods of manufacturing the same
US8666248B2 (en) * 2010-11-01 2014-03-04 Lockheed Martin Corporation Method for data frame reduction in a photonic-based distributed network switch
CN103299290B (zh) * 2011-01-20 2015-11-25 惠普发展公司,有限责任合伙企业 复合处理器
US9252904B2 (en) * 2011-06-01 2016-02-02 Coriant Operations, Inc. Method and apparatus for distributing network timing in a mesh optical network

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1154987A (en) * 1981-11-27 1983-10-11 Narinder S. Kapany Fiber optics commmunications modules
FR2579044B1 (fr) * 1985-03-13 1988-02-26 Commissariat Energie Atomique Dispositif de multiplexage de plusieurs signaux lumineux en optique integree
JP2782958B2 (ja) * 1990-12-28 1998-08-06 日本電気株式会社 光ローカルエリアネットワークシステムの媒体アクセス方式
ATE218257T1 (de) * 1992-11-16 2002-06-15 Canon Kk Übertragungsverfahren und -system mit tokenübergabezugriffsprotokoll
US5764392A (en) * 1993-10-19 1998-06-09 International Business Machines Corporation Access control system for a multi-channel transmission ring
GB2285320B (en) * 1993-12-27 1998-01-14 Rohm Co Ltd Transceiver module for optical communication
US5857041A (en) * 1995-01-17 1999-01-05 Remote Source Lighting International Optical coupler and method utilizing optimal illumination reflector
DE19510559C1 (de) * 1995-03-23 1996-07-25 Bosch Gmbh Robert Optische Sende- und Empfangsanordnung
US5781537A (en) * 1995-07-07 1998-07-14 International Business Machines Corporation Setting up, taking down and maintaining connections in a communications network
US6075913A (en) * 1995-07-28 2000-06-13 International Business Machines Corporation Optical coupler
JPH10105528A (ja) * 1996-09-30 1998-04-24 Nec Corp マルチプロセッサシステム
AU5079998A (en) * 1996-10-15 1998-05-22 Regents Of The University Of California, The High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects
JP3360547B2 (ja) * 1996-10-24 2002-12-24 富士ゼロックス株式会社 光バスおよび信号処理装置
JP3068018B2 (ja) * 1996-12-04 2000-07-24 日本電気株式会社 光波長分割多重リングシステム
US5963349A (en) * 1997-01-27 1999-10-05 Lucent Technologies Inc. Inexpensive single-fiber bidirectional data link
US6275630B1 (en) * 1998-11-17 2001-08-14 Bayspec, Inc. Compact double-pass wavelength multiplexer-demultiplexer
US6385371B1 (en) * 2000-04-03 2002-05-07 Cogent Light Technologies, Inc. Optical system including coupling for transmitting light between a single fiber light guide and multiple single fiber light guides
US6693909B1 (en) * 2000-05-05 2004-02-17 Fujitsu Network Communications, Inc. Method and system for transporting traffic in a packet-switched network
US6687428B2 (en) * 2000-09-21 2004-02-03 Tera Op (Usa) Inc. Optical switch
US6967754B2 (en) * 2001-12-14 2005-11-22 Bratt Nicholas E Hybrid optical transceivers for free space optical communication

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272642A (zh) * 2009-01-07 2011-12-07 惠普开发有限公司 光子波导
CN102272642B (zh) * 2009-01-07 2015-07-08 惠普开发有限公司 光子波导
US9274297B2 (en) 2009-01-07 2016-03-01 Hewlett Packard Enterprise Development Lp Photonic waveguide

Also Published As

Publication number Publication date
TWI234363B (en) 2005-06-11
EP1386434A2 (en) 2004-02-04
WO2002087126A3 (en) 2003-11-13
WO2002087126A2 (en) 2002-10-31
AU2002303253A1 (en) 2002-11-05
US20020154354A1 (en) 2002-10-24

Similar Documents

Publication Publication Date Title
CN107065083B (zh) 一种多通道光收发一体模块
US10466432B2 (en) High speed optical transceiver module
US6661940B2 (en) Apparatus and method for rebroadcasting signals in an optical backplane bus system
US6939058B2 (en) Optical module for high-speed bidirectional transceiver
EP1751894B1 (en) Multiple channel optical transceiver modules
US20020102046A1 (en) Opto-electronic distributed crossbar switch
US4872739A (en) Optical busbar
Moisel et al. Optical backplanes with integrated polymer waveguides
EP1028338A2 (en) System and method for interfacing optical fibers with optical communication devices via an optical fiber faceplate
CN1640044A (zh) 光学互连的多处理器
DK159341B (da) Optisk koblingselement
US6402394B1 (en) Optical transmitting/receiving module
US6789957B1 (en) High-density optoelectronic transceiver assembly for optical communication data links
TW538605B (en) Optical serial link
US6591042B2 (en) Fiber based wavelength de-multiplexing system
US5091985A (en) Optical signal connection device for units to be inserted in a rack
US6312167B1 (en) Light transmission module
JP3348757B2 (ja) ボード間光インタコネクション装置
JPH1138270A (ja) 光導波路ユニット
JP2007052281A (ja) 光通信モジュール及び光通信ネットワーク
JP2001147351A (ja) 光バス回路基板
CN219737829U (zh) 一种光发射器件和光模块
JP2830761B2 (ja) 並列光信号伝送装置および位置合わせ方法
JP2897742B2 (ja) 光送受信モジュール
EP0237236A2 (en) Optical conductors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20050713