CN1613785A - 一种含油污水光降解处理方法 - Google Patents
一种含油污水光降解处理方法 Download PDFInfo
- Publication number
- CN1613785A CN1613785A CN 200410096697 CN200410096697A CN1613785A CN 1613785 A CN1613785 A CN 1613785A CN 200410096697 CN200410096697 CN 200410096697 CN 200410096697 A CN200410096697 A CN 200410096697A CN 1613785 A CN1613785 A CN 1613785A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- magnetic nano
- composite photo
- tio
- waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002351 wastewater Substances 0.000 title claims description 10
- 238000003672 processing method Methods 0.000 title claims description 7
- 239000011941 photocatalyst Substances 0.000 claims abstract description 59
- 239000002131 composite material Substances 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 13
- 238000003980 solgel method Methods 0.000 claims abstract description 8
- 230000000593 degrading effect Effects 0.000 claims abstract description 7
- 238000011084 recovery Methods 0.000 claims abstract description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 41
- 239000010865 sewage Substances 0.000 claims description 18
- 239000002699 waste material Substances 0.000 claims description 18
- 238000013033 photocatalytic degradation reaction Methods 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 239000011247 coating layer Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 claims description 3
- 230000001699 photocatalysis Effects 0.000 abstract description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 239000011248 coating agent Substances 0.000 abstract 2
- 238000000576 coating method Methods 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 238000011109 contamination Methods 0.000 abstract 1
- 239000007771 core particle Substances 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical group O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 abstract 1
- 239000004519 grease Substances 0.000 abstract 1
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 9
- 238000013456 study Methods 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000007146 photocatalysis Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000001782 photodegradation Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- -1 titanium dioxide metal-oxide Chemical class 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了属于水处理技术范围的一种含油污水光降解处理方法。该方法包括悬浮态磁性纳米TiO2复合光催化剂的制备、光催化剂降解处理和光催化剂回收利用。采用溶胶一凝胶法在纳米Fe3O4核心粒子外面先包覆一层SiO2,再以同样方法包覆TiO2外层,制备出平均粒径约为21纳米的磁性纳米TiO2复合光催化剂,将其悬浮于含油污水中,然后让污水通过回旋式透明管道,接受外加紫外光源照射,利用悬浮于含油污水的磁性纳米TiO2复合光催化剂的光催化降解作用降解油污。在排放口设置2-4道磁性材料网,回收利用光催化剂。具有非常好的光催化活性,很容易用回收,这将促进悬浮态TiO2光催化体系在污水降解中的工业化应用。
Description
技术领域
本发明属于水处理技术范围,特别涉及一种含油污水光降解处理方法。
背景技术
在环境保护中,工业污水和废水处理是各国政府和企业每天都必须面临的问题。由于污水、废水中的有机物很难去处,因此开发出能将有害有机物浓度高效快速、低成本地降低至安全排放标准以下是科技工作者非常关注的问题。20世纪后期,科技工作者发现二氧化钛(TiO2)光催化剂具有降解各种有机化合物等特性,引发了将TiO2光催化剂应用于环境净化和污水处理研发的浪潮。二氧化钛金属氧化物半导体在紫外光的照射下,能产生电子-空穴对,并能产生强氧化性自由基团使有机物降解。因此,TiO2可作为有机物降解的光催化剂材料用于工业污水、废水和含油污水处理。纳米TiO2由于具有独特的小尺寸效应、表面效应、较高的耐酸碱化学稳定性和高的光催化活性,是污水光降解催化剂的首选材料。因而纳米TiO2光催化降解废水是目前国际上最受关注的工业污水处理新工艺。
用于光催化降解的纳米TiO2可有悬浮状与固定状两种形式。悬浮状TiO2粉体具有比表面积大、能和待处理溶液充分混合、接受光照的效果好等优势,光催化效率高,而且反应器简单。但悬浮于溶液中的TiO2粉体难于回收,使得催化降解成本很高,因而很难应用于污水处理等领域,这制约了悬浮状TiO2光催化降解体系的实际应用。目前光催化降解应用研究中主要采用固定状光催化剂,并采用固定床反应器,以降低运行成本,现在国外已应用于工业污水处理。但固定状光催化的光催化降解效率远低于悬浮态光催化系统。为了提高光催化效率,近年科技工作者进行了一系列探索性研究,如采用将TiO2负载于空心玻璃或陶瓷微珠、泡沫塑料、树脂和木屑等载体上制成漂浮型光催化剂,可提高催化剂的有效利用率,但空心玻璃或陶瓷微珠粒度小,难以拦截回收,会造成催化剂的流失及水面固体的二次污染;而泡沫塑料、树脂和木屑等载体的光稳定性较差,限制了该技术的商业化应用。尽管如此,研究开发可回收的悬浮态光催化剂体系以显著提高光催化降解效率具有重要意义和实用价值,也是国内外研究发展的趋势。
最近本研究组进行了将磁性物质与TiO2相结合,组装成磁性材料承载的光催化剂,然后利用磁性回收催化剂的研究。现已成功制备出多层包覆的磁性纳米TiO2复合光催化剂粒子,平均粒经约为21nm,具有非常好的光催化活性,很容易用回收。因此,可用做悬浮态光催化剂,这将促进悬浮态TiO2光催化体系在污水降解中的工业化应用。
在陆地和海上油田的采油过程中,含油污水的处理是一项重要的污水处理工序。研究结果表明,TiO2光催化剂能有效降解含油污水的油。若采用悬浮态纳米光催化剂进行光催化降解将能高效地将油降解为无害物质。因此,将磁性纳米TiO2复合光催化剂应用于含油污水处理有显著的实用价值和市场前景。并将带动该光催化剂的工业制备和其它工业污水光降解处理产业的发展,对我国环境保护和环保产业发展有重要意义。利用该方法既能以较低的成本光降解处理含油污水。经文献检索,国内外未见有的相关报道。
发明内容
本发明提出了一种含油污水光降解处理方法。其特征在于:所述含油污水的处理方法包括悬浮态磁性纳米TiO2复合光催化剂的制备、光催化剂降解处理和光催化剂回收。
1)磁性纳米TiO2复合光催化剂的制备:采用纳米Fe3O4粒子为核心,先采用溶胶-凝胶法包覆一层SiO2,然后再采用溶胶-凝胶法包覆TiO2外层,制备出磁性纳米TiO2复合光催化剂:磁性纳米Fe3O4粒子为核心尺寸:5~20nm;SiO2中间层约1~2nm;TiO2光催化剂包覆层:5-20纳米。并将磁性纳米TiO2复合光催化剂进行适度表面酸处理,使其在含油污水中容易悬浮。
2)含油污水的光催化剂降解处理工艺:将进行过表面处理的磁性纳米TiO2复合光催化剂用超声振动方式使其悬浮于含油污水中,加入量约为:0.02~0.2%(V/V)。然后让污水通过回旋式透明管道,接受外加紫外光源照射,照射时间约为:20~80分钟(增加光源强度,可缩短照射时间)。利用悬浮于含油污水的磁性纳米TiO2复合光催化剂的光催化降解作用降解油污。
3)光催化剂回收利用:当污水经过足够时间的光催化降解处理达到排放要求后排放,在排放口设置2-4道磁性材料网,在外加磁场作用下,可简便回收磁性纳米TiO2复合光催化剂。
所述磁性材料网为有序排列的磁棒和/或磁性金属网。
本发明的有益效果是采用溶胶-凝胶法制备出多层包覆的磁性纳米TiO2复合光催化剂粒子,平均粒经约为21nm,具有非常好的光催化活性,很容易用回收。因此,可用做悬浮态光催化剂,这将促进悬浮态TiO2光催化体系在污水降解中的工业化应用。
具体实施方式:
本发明提出了一种含油污水光降解处理方法。该方法包括悬浮态磁性纳米TiO2复合光催化剂的制备、光催化剂降解处理和光催化剂回收利用。
1)磁性纳米TiO2复合光催化剂的制备:采用纳米Fe3O4粒子为核心,先采用溶胶-凝胶法包覆一层SiO2,然后再采用溶胶-凝胶法包覆TiO2外层,制备出磁性纳米TiO2复合光催化剂:磁性纳米Fe3O4粒子为核心尺寸:5~20nm;SiO2中间层约1~2nm;TiO2光催化剂包覆层:5-20纳米。并将磁性纳米TiO2复合光催化剂进行适度表面酸处理,使其在含油污水中容易悬浮。经X射线衍射和透射电子显微镜分析,煅烧后的TiO2为锐钛矿型结构,经检验,磁性纳米TiO2复合光催化剂粒子的平均粒径约为21纳米。
2)含油污水的光催化剂降解处理工艺:利用磁性纳米TiO2复合光催化剂外层为TiO2、在紫外光的照射下能产生电子-空穴对并能产生强氧化性自由基团使各种有机物(如油等)降解的特点,将磁性纳米TiO2复合光催化剂悬浮于含油污水中,在外加光源照射作用下光催化降解油类有机化合物将进行过表面处理的磁性纳米TiO2复合光催化剂用超声振动方式使其悬浮于含油污水中,加入量约为:0.02~0.2%(V/V)。然后让污水通过回旋式透明管道,接受外加紫外光源照射,照射时间约为:20~80分钟(增加光源强度,可缩短照射时间)。利用悬浮于含油污水的磁性纳米TiO2复合光催化剂的光催化降解作用降解油污。利用对比研究方法,分析了磁性纳米TiO2复合光催化剂的光催化降解活性,发现所制备的磁性纳米TiO2复合光催化剂具有很好的光催化活性,性能与De Guass P25纳米TiO2光催化剂相近。且具有很好的悬浮性能。
3)光催化剂回收利用:当污水经过足够时间的光催化降解处理达到排放要求后排放,在排放口设置2-4道磁性材料网,在外加磁场作用下,可简便回收磁性纳米TiO2复合光催化剂。
上述磁性材料网为有序排列的磁棒和/或磁性金属网。
Claims (2)
1.一种含油污水光降解处理方法,其特征在于:所述含油污水的处理方法包括悬浮态磁性纳米TiO2复合光催化剂的制备、光催化剂降解处理和光催化剂回收:
1)磁性纳米TiO2复合光催化剂的制备:采用纳米Fe3O4粒子为核心,先采用溶胶-凝胶法包覆一层SiO2,然后再采用溶胶-凝胶法包覆TiO2外层,制备出磁性纳米TiO2复合光催化剂:磁性纳米Fe3O4粒子为核心尺寸:5~20nm;SiO2中间层约1~2nm;TiO2光催化剂包覆层:5-20纳米,并将磁性纳米TiO2复合光催化剂进行适度表面酸处理,使其在含油污水中容易悬浮;
2)含油污水的光催化剂降解处理工艺:将进行过表面处理的磁性纳米TiO2复合光催化剂用超声振动方式使其悬浮于含油污水中,加入量约为:0.02~0.2%(V/V),然后让污水通过回旋式透明管道,接受外加紫外光源照射,照射时间约为:20~80分钟,利用悬浮于含油污水的磁性纳米TiO2复合光催化剂的光催化降解作用降解油污;
3)光催化剂回收利用:当污水经过足够时间的光催化降解处理达到排放要求后排放,在排放口设置2-4道磁性材料网,在外加磁场作用下,可简便回收磁性纳米TiO2复合光催化剂。
2.根据权利要求1所述含油污水光降解处理方法,其特征在于:所述磁性材料网为有序排列的磁棒和/或磁性金属网。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410096697 CN1251972C (zh) | 2004-12-07 | 2004-12-07 | 一种含油污水光降解处理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410096697 CN1251972C (zh) | 2004-12-07 | 2004-12-07 | 一种含油污水光降解处理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1613785A true CN1613785A (zh) | 2005-05-11 |
CN1251972C CN1251972C (zh) | 2006-04-19 |
Family
ID=34766529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200410096697 Expired - Fee Related CN1251972C (zh) | 2004-12-07 | 2004-12-07 | 一种含油污水光降解处理方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1251972C (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100449656C (zh) * | 2006-12-14 | 2009-01-07 | 复旦大学 | 一种三重核壳结构的磁性纳米粒子及其制备方法 |
CN102068995A (zh) * | 2011-01-11 | 2011-05-25 | 河北师范大学 | 一种用于降解染料废水的纳米磁性核壳催化剂的制备方法 |
CN102351356A (zh) * | 2011-09-16 | 2012-02-15 | 清华大学 | 一种含稠油污水的净化方法及含稠油污水净化装置 |
CN102357363A (zh) * | 2011-07-23 | 2012-02-22 | 上海海事大学 | 磁载纳米Fe3O4/SiO2/TiO2可见光催化剂及其制备方法 |
CN102795736A (zh) * | 2011-05-25 | 2012-11-28 | 四川环能德美科技股份有限公司 | 一种阴离子交换树脂再生废液深度处理方法 |
CN103359868A (zh) * | 2013-04-12 | 2013-10-23 | 西北大学 | 一种污水处理光催化反应器 |
CN106927634A (zh) * | 2017-04-10 | 2017-07-07 | 浙江省现代建筑设计研究院有限公司 | 医院废水处理系统 |
CN107162309A (zh) * | 2017-07-04 | 2017-09-15 | 浙江海洋大学 | 一种基于温敏性磁纳米材料的乳化石油废水处理装置 |
CN107265558A (zh) * | 2017-06-20 | 2017-10-20 | 天津大学 | 基于光催化及电解技术的含油污水净化装置 |
CN108101281A (zh) * | 2017-12-20 | 2018-06-01 | 上海康盛环保能源科技有限公司 | 一种催化陶瓷膜反应器 |
-
2004
- 2004-12-07 CN CN 200410096697 patent/CN1251972C/zh not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100449656C (zh) * | 2006-12-14 | 2009-01-07 | 复旦大学 | 一种三重核壳结构的磁性纳米粒子及其制备方法 |
CN102068995A (zh) * | 2011-01-11 | 2011-05-25 | 河北师范大学 | 一种用于降解染料废水的纳米磁性核壳催化剂的制备方法 |
CN102068995B (zh) * | 2011-01-11 | 2012-10-24 | 河北师范大学 | 一种用于降解染料废水的纳米磁性核壳催化剂的制备方法 |
CN102795736A (zh) * | 2011-05-25 | 2012-11-28 | 四川环能德美科技股份有限公司 | 一种阴离子交换树脂再生废液深度处理方法 |
CN102357363A (zh) * | 2011-07-23 | 2012-02-22 | 上海海事大学 | 磁载纳米Fe3O4/SiO2/TiO2可见光催化剂及其制备方法 |
CN102351356A (zh) * | 2011-09-16 | 2012-02-15 | 清华大学 | 一种含稠油污水的净化方法及含稠油污水净化装置 |
CN102351356B (zh) * | 2011-09-16 | 2013-08-07 | 清华大学 | 一种含稠油污水的净化方法及含稠油污水净化装置 |
CN103359868A (zh) * | 2013-04-12 | 2013-10-23 | 西北大学 | 一种污水处理光催化反应器 |
CN106927634A (zh) * | 2017-04-10 | 2017-07-07 | 浙江省现代建筑设计研究院有限公司 | 医院废水处理系统 |
CN107265558A (zh) * | 2017-06-20 | 2017-10-20 | 天津大学 | 基于光催化及电解技术的含油污水净化装置 |
CN107162309A (zh) * | 2017-07-04 | 2017-09-15 | 浙江海洋大学 | 一种基于温敏性磁纳米材料的乳化石油废水处理装置 |
CN108101281A (zh) * | 2017-12-20 | 2018-06-01 | 上海康盛环保能源科技有限公司 | 一种催化陶瓷膜反应器 |
Also Published As
Publication number | Publication date |
---|---|
CN1251972C (zh) | 2006-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ahmed et al. | Recent progress in semiconductor/graphene photocatalysts: synthesis, photocatalytic applications, and challenges | |
Cao et al. | Recent advances in kaolinite-based material for photocatalysts | |
Zhang et al. | Palygorskite and SnO2–TiO2 for the photodegradation of phenol | |
Mishra et al. | A review of the photocatalysis process used for wastewater treatment | |
CN103100398B (zh) | 一种制备高催化活性天然沸石负载一维TiO2纳米线的方法 | |
Moslehi et al. | Statistical computational optimization approach for photocatalytic-ozonation decontamination of metronidazole in aqueous media using CuFe2O4/SiO2/ZnO nanocomposite | |
Pandey et al. | Recent advancement in visible‐light‐responsive photocatalysts in heterogeneous photocatalytic water treatment technology | |
CN100346875C (zh) | 氧化铁敏化的片状氧化钛可见光催化剂及制备方法 | |
CN103464122B (zh) | 一种石墨烯/壳聚糖吸附树脂的制备方法 | |
Sharon et al. | Titania based nanocomposites as a photocatalyst: A review | |
CN1251972C (zh) | 一种含油污水光降解处理方法 | |
CN105060455A (zh) | 一种基于天然黄铁矿能协同去除水体中重金属-有机污染物的光催化法 | |
CN1112238C (zh) | 二氧化钛/铁纳米复合粉体催化剂及其制备工艺 | |
Samy et al. | Modeling and optimization of photocatalytic degradation of methylene blue using lanthanum vanadate | |
Ling et al. | Facile preparation of polyurethane sponge decorated with polydopamine/BiVO4 for dye photocatalytic degradation under visible light and oil–water separation | |
CN1172863C (zh) | 臭氧光催化-生物活性炭深度净化水的方法 | |
CN1261378C (zh) | 磁性纳米TiO2/SiO2/Fe3O4复合光催化剂净化废水方法及装置 | |
Qureshi et al. | Wastewater Treatment: Synthesis of Effective Photocatalysts Through Novel Approaches | |
CN110776079B (zh) | 一种利用有机砷类污染物原位促进酚类污染物高效光催化氧化的方法 | |
CN1165920C (zh) | 锰锌铁氧体复合的二氧化钛纳米磁性材料的制备方法 | |
CN2878361Y (zh) | 多维光催化污水处理装置 | |
CN1132694C (zh) | 纳米二氧化钛柱撑膨润土及其制备方法 | |
Nayak | Photo (Catalytic) Oxidation Processes for the Removal of Dye: Focusing on TiO2 Performance | |
Divya et al. | Nano-photocatalysts in the treatment of colored wastewater-a review | |
Xu et al. | Photocatalytic degradation of pharmaceutically active compounds with nano-TiO2: Recent advances and future trends |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060419 Termination date: 20151207 |
|
EXPY | Termination of patent right or utility model |