CN1610757A - 检测核酸中杂化作用的方法 - Google Patents
检测核酸中杂化作用的方法 Download PDFInfo
- Publication number
- CN1610757A CN1610757A CNA028265599A CN02826559A CN1610757A CN 1610757 A CN1610757 A CN 1610757A CN A028265599 A CNA028265599 A CN A028265599A CN 02826559 A CN02826559 A CN 02826559A CN 1610757 A CN1610757 A CN 1610757A
- Authority
- CN
- China
- Prior art keywords
- nucleic acid
- acid probe
- sequence
- probe
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了通过杂化作用检测靶核酸的方法,在该方法中a)用至少一种其端部之一和固相连接的核酸探针,与具有靶核酸序列或与其互补的序列的核酸探针进行杂化作用,该序列以短核酸序列侧接在3’-端位上并以与其互补的核酸序列侧接在5’-端位上,这构成DNA双链和由此构成的裂解模块,该模块可以被双链特异性的核酸酶所裂解且具有的核酸探针在另一端具有一个标记;b)利用至少一种双链特异性的核酸酶进行至少一次处理,和c)确定经步骤b)后连接在固相上的标记的比例。
Description
本发明特别涉及一种通过固相连接的标记低聚核苷酸(以下称为核酸探针)以序列特异性方式检测RNA-或DNA-分子(以下记做靶核酸)的方法。
这种可以是DNA或DNA/PNA嵌合体的核酸探针,根据在其碱基序列的互补区而可构成含有双链(doppelstrangig)区的分子内的次级结构。这种双链区包括序列基元,而其又是可由双链特异性的核酸酶(限制性核酸内切酶)进行识别和裂解的,并且这里称为裂解模块。通过待测样品中的核酸探针与互补的靶核酸的杂化作用,就能阻止核酸探针内的分子内裂解模块的形成,从而在接着用双链特异性的核酸酶进行消化后,就可以将经杂化的核酸探针从未经杂化的核酸探针核酸酶中区分出来。
在优选的实施方式中,该方法包括,使用全部被固定在一个点上或某个特定面积内的不同标记的核酸探针,而对碱基序列不一致的各种靶核酸进行检测。在生物芯片技术中已经众所周知的将许多如此的核酸最小化地排布在很小面积上。
在常规制备DNA阵列的方法中是通过就地低聚核苷酸合成法[Fodor,S.P.A.等“Very large scale immobilized polymer synthesis”美国专利号5424186]或是通过印刷法[Cheung,V.G.等“Making and reading microarrays”,NatureGenetics,vol.21,Jan.1999;Bowtell,D.D.L.,“Options available-from start tofinish-for obtaining expression data by microarray”,Nature Genetics,vol.21,1999]而将未标记的核酸探针放置到固体基体上并与其共价键接。核酸探针是以所谓的“点”形式编排在DNA阵列的表面上。在杂化试验开始前是不可能确定固定到固体基体上的核酸量的。只有通过DNA阵列与标记的核酸试样和作为内标物的第二标记的核酸试样的杂化作用(双标记,Wang,B.,“Quantitative microarray hybridization arrays”,美国专利号6004755),就可以通过计算固定在固体基体上的未标记的核酸探针量中的偏差而进行补偿。
在另一方法中利用了核酸酶保护试验[Sambrook,J.等,“MolecularCloning”2001,第三版,Cold Spring Harbor Laboratory]的原理,利用单链特异性的核酸酶来分解未杂化的,也是单链标记的核酸探针[Kumar,R.等,“Nuclease protection assays”,美国专利号5770370]。该方法的精确性首先取决于由探针和靶核酸所组成的双链体(Duplices)的稳定性和所用单链特异性核酸酶的专一性。所给出的可以是DNA/DNA-、DNA/RNA-、DNA/PNA-、RNA/RNA-、RNA/PNA-或PNA/PNA-双链体的核酸双链体的稳定性,通过在互补链之间的沃森-克里克(Watson-Crick)碱基对的数目和强度而确定的,而它们又可以由氢键调解[Lewin,B.,“Genes VI”.1997.牛津大学出版社(以及其他常见的分子生物学的教科书)]。在其末端区,核酸双链体会受到周围介质的影响,如H2O,而这种介质又会削弱互补链之间的氢键。出于这原因,在能促进单链特异性的核酸酶进行反应的条件(30-37℃)下,双链体的末端区以部分单链的形式存在,并且可以通过核酸酶而裂解。这种方法的另一缺点在于,如果反应混合物中核酸与核酸酶的含量比值不是精确滴定的,则单链特异性的核酸酶诸如S1-核酸酶、绿豆核酸酶、核糖核酸酶A、核糖核酸酶T1、核酸外切酶VII、Bal 31核酸酶、球菌核酸酶或核酸酶P1等就不能以序列特异性方式裂解核酸,并且会非常易于分解双链区[Sambrook,J.等,“MolecularCloning”2001,第三版,Cold Spring Harbor Laboratory]。
在借助其能用于检测未标记的核酸试样的杂化作用的另一体系中,使用了所谓的分子信标[Tyagi,S.等,“Detectably labeled dual conformationoligonucleotide probes,assays and kits”,US专利5925517]作为核酸探针,并且其是共价连接在玻璃制微米或纳米颗粒上的[Steemers,F.J.等,“Screeningunlabeled DNA targets with randomly ordered fiber-optic gene arrays”,2000,Nature Biotech.,vol.18]。分子信标就是那些能构成分子内次级结构且其端部共价连接到不同荧光团的核酸探针,同时荧光团由于分子内的次级结构而彼此相邻空间紧密排列。两个荧光团之一(猝灭剂)会吸收由另一荧光团(发射体)所发射出的光子。分子信标和靶核酸的杂化作用会分解分子内的次级结构,并且由受激的荧光团(发射体)所发射出的光不再能为猝灭剂所吸收。这种方法的致命缺点,即其信号-本底比为约25:1[Steemers,F.J.等,“Screeningunlabeled DNA targets with randomly ordered fiber-optic gene arrays”,2000,Nature Biotech.,vol.18]。因为不同基因的转录速率的差异会明显大于分子信标的信号-本底比,所以基于电子共振能或荧光共振能转换操作的体系就只会在通过放大目标序列而定量确定靶核酸的范围内工作[Gelfand,D.H.等:“Detection of specific polymerase chain reaction product by utilizing the 5’to 3’exonuclease activity of Thermus aquaticus DNA-polymerase”,1991,Proc.Natl.Acad.Sci.,vol.88和US专利5210015(1993);Tyagi,S.等:“Molecular Beacons:probes that fluoresce upon hybridization”,1996,Nature biotech.,vol.14],或是在非定量确定核酸的范围内[Steemers F.J.等,“Screening unlabeled DNAtargots with randomely ordered fiber-optiegene arrays”2000,Nature.Biotech,vol18]。
目前,在DNA阵列上每cm2可以固定超过10000个“点”,也就是超过10000个不同核酸探测点[Bowtell,D.D.L.,“Options available-from start tofinish-for obtaining expression data by microarray”,Nature Genetics,vol.21,Jan.1999]。可彼此区别的测试点(“点”)的最大数目由技术上可实现的最小点位尺寸来确定。而这又取决于物理数值,如被转化液体的粘度和表面张力,因为在阵列制备中液体量会转化到毫微升尺度。另一个用以规定测试点大小的下限的参数是光显微镜的光学分辨能力,因为所有的用于检测荧光,冷光或磷光的装置都是以相应于光学显微镜(聚焦激光扫描显微镜)的光学系统进行工作的。因此不可能任意地将许多测试点(“点”)固定在DNA阵列上。
因此,本发明内容在于一种通过杂化作用检测靶核酸的方法,在该方法中
a)与至少一种其一个端部结合到固相的核酸探针进行杂化作用。每个核酸探针都含有靶核酸序列,该序列以短核酸序列侧接在3’-端位上和以其互补的核酸序列侧接在5’-端位上,这就构成了一条短的DNA双链。该双链可以被双链特异性的核酸酶(限制性核酸内切酶)所裂解并由此形成裂解模块。另外,核酸探针在另一没有结合到固相的端部位置处具有一个标记;
b)利用至少一种双链特异性的核酸酶进行至少一次处理。通过核酸酶的消化分解,只分割已经构成双链的各个裂解模块。如果由于靶核酸与待检测的核酸已发生杂化则不能构成双链,从而不会形成双链的裂解模块并且核酸也不会被分割。
c)最后确定经步骤b)后连接到固相上的标记的量。
在优选的实施方式中,在方法开始时使用的是含有不同靶序列的多个不同的核酸探针。
也可以是优选的在一方法中使用多个具有能再次被不同双链特异性的核酸酶所裂解的不同裂解模块的核酸探针。同样,可以使核酸探针具有各种标记,而这种标记是荧光团和/或部分结合对(Bindungspaare)。
本发明方法的一项优点在于,根据本发明所使用的核酸探针含有不同的变量。一方面,可以变化靶序列并由此可以在待测的样品中检测完全不同的核酸序列。另一方面,裂解模块可以含有适于不同限制性核酸内切酶的识别序列。结果,可以以平行或连续地利用不同限制性核酸内切酶来消化核酸探针。最后核酸探针也可具有不同标记。然后根据工作的性质,可以构建相应的DNA阵列并可以以平行或连续地进行多个不同的处理和评价步骤,由此可以获得信息的最大量。
本发明内容也涉及一种用于检测与靶核酸进行杂化作用的试验盒,同时利用试验盒可以与至少一种本发明所用的核酸探针进行至少一次杂化作用。
在本发明方法的范围内也可以使用那些在其他核酸检测方法中所公开的技术。在如Northernblots、Southernblots或核酸酶保护试验的方法中,可以是DNA或RNA的靶核酸的序列特异性检测,是通过检测靶核酸与标记过的可以是DNA、RNA或PNA的核酸探针所形成杂化体(双链体)来进行的。在DNA阵列中未标记的核酸探针连接到固体基体,并且其可以和标记过的cDNA或cRNA(以下称为核酸试样)进行杂化。通常是通过检测荧光、化学冷光、化学荧光或放射性来检测核酸中的杂化作用[Sambrook,J.等,“MolecularCloning”2001,第三版,Cold Spring Harbor Laboratory]。为荧光标记核酸试样或核酸探针,可以使用一系列的荧光团,如荧光素、白角丝胺(Lissamin)、藻红素、若丹明(Perkin Elmer Cetus)、Cy2、CY3、Cy3.5、Cy5、Cy5.5、Cy7、FluorX(Amersham)[Kricka,L:“Non isotopic DNA probe techniques”,1992,Academic Press,San Diego]。为对核酸进行标记,除了这里所述的荧光团外还可以使用这里没有提及的其他荧光团。它们包括了能与核酸共价键接的所有荧光团,并且它们的激发与发射峰值都位于光谱的红外区域、可见光区或UV区内。如果核酸试样或核酸探针是以部分结合对进行标记的,如生物素、洋地黄毒苷或其他半抗原,则在杂化后,与可检测标记共轭的结合对的第二部分(链霉抗生物素或抗洋地黄毒苷AK)与双链体培育。结合对的第二部分的可检测标记可以是荧光团或酶(碱性磷酸酶、辣根过氧化物酶等),并且该酶转化为光发射条件下的基质(化学冷光或化学荧光)[“Fluorescent andLuminescent Probes for biological activity”,1999,第二版,Mason,W.T.ed.]。
使核酸进行非放射性标记是在有核苷三磷酸盐存在下,通过酶催化的DNA或RNA合成来完成的,且核苷三磷酸盐的核苷酸碱基是与荧光团、部分结合对(如生物素、洋地黄毒苷或其他半抗原)或反应性基团(NH2或SH)共价结合。在由DNA或RNA聚合物(AMMV-逆转录酶、MMuLV-逆转录酶、T7-RNA聚合酶、T3-RNA聚合酶、SP6-RNA-聚合酶、Taq-聚合酶、Klenow-片段、DNA聚合酶等)催化的合成过程中,这些改性的核苷三磷酸盐会结合入新生成的核酸中[Sambrook,J.等,“Molecular Cloning”2001,第三版,ColdSpring Harbor Laboratory]。用作用于合成标记的核酸试样的模板(Matrize)的mRNA的完整性在这方面有着重要的意义。通过从RNA的逆转录、通过PCR或体外转录而从DNA合成得到的核酸探针的长度,除了其碱基组合外,对于标记效率也是十分重要的。待标记的核酸越短,则在合成过程中被结合的以可检测基团改性的核苷三磷酸盐(dNTPs或rNTPs)就越少。如果mRNA种群通过RNase而被降解,则由这些RNA群体所合成的核酸试样就会一方面变得难以标记,而另一方面又不能代表在待试验的细胞种、组织或器官中占优势地转录状态。具有代表性的核酸试样可以只由绝对完整的mRNA中合成得到。用以上述基团改性碱基的核苷三磷酸盐会被所有已知的能分别催化DNA或RNA合成的DNA或RNA聚合物所结合,但是其效率比未经改性的核苷三磷酸盐要明显低的多[Molecular Dynamics Inc.,“FluorescentDNA-Labeling by PCR”,1999,Molecular Dynamics Application Note#62]。因此,对比放射性体系,被标记的核酸探针的产量是很小的,并且试样材料的损失则会由于继合成过程后的净化步骤而变得非常高。
基于这些理由,为了合成那些用于例如DNA阵列杂化的非放射性标记的核酸,就必须使用较大量的样品材料,如培养细胞或组织样品,并且从其中能分离出要分析的mRNA。为此,DNA阵列只能很有限地用在如临床诊断领域,其中测试材料限制在适用于分析的量上。另外,核酸还具有附着在杂质颗粒表面上的性质。为此,通过与标记过的核酸进行杂化而对结合固相的未标记过的核酸进行检测的过程,首先在DNA阵列上由于杂质颗粒而易受到干扰,并因此而导致错误的阳性的结果。
在生物技术领域,并且首先是在如临床诊断或工业活性化合物研究等的那些要参照自动化方法来保证高的样品处理量的领域内,需要找到能用以实现测量结果的标准化而毋需高昂的校准测量过程。用于检测核酸中杂化作用的现有技术的体系,以及其用于表达分析方面强烈地依赖于用作核酸试样或作为合成核酸试样模板的待测mRNA的完整性。这些体系首先由于标记要杂化的未结合固相的核酸(核酸试样)而变得易于错误解释,这就会弄错所有的测量结果。
本发明的方法可用于表达分析,并且在这分析过程中未标记的靶核酸与连接固相的探针的序列特异性杂化作用可以定量确定,而并不依赖于核酸试样的完整性。能在表面上检测不同核酸探针的最大数值是受限于光学和“微流控”的面积中的物理限制,而本发明公开了一种使用某种体系的DNA阵列,该体系中不受因光学和“微流控”面积的物理限制而受到限制,而且和现有技术中的体系相比较,特定面积上可检测的核酸试样可以明显提高。
一优选实施方式,公开了一种用于检测在固相结合的核酸探针上发生杂化作用的方法,该方法通过使用固相结合的标记过的探针而实现了测量结果的标准化,使用未标记的核酸试样或靶核酸并同时在特定点上对不同靶核酸的表达进行分析。本发明的固相结合的核酸试样可以是DNA或DNA/PNA嵌合体形式[Finn,P.J.等:“Synthesis and properties of DNA-PNA chimericoligomers”,1996,Nuc.Acids.Res.,vol.24(17):Ratilainen.T.等:“Thermodynamics of sequence-specific binding of PNA to DNA”,2000,Biochemistry,vol.39;van der Laan,A.C.等:“Optimization of the bindingproperties of PNA-(5’)-DNA-Chimerae”,1998,Bioorg.Med.Chem.Lett.,vol.8],由于其自身序列而构成分子内的次级结构,该结构可以通过双链特异性的核酸内切酶而进行识别和裂解。本发明由于形成分子内次级结构而以双链形式存在的核酸探针的部分基本上是DNA,从而就能保障对双链特异性的核酸内切酶的可达性。
由于本发明的固相结合的探针-靶核酸与待检测的核酸进行杂化作用,因而分子内的二级结构,并因此双链区会分解,并且不再能通过双链特异性的核酸内切酶进行识别和裂解。非杂化的且固相结合的核苷酸探针能被酶裂解。本发明核酸探针的标记部分由于酶的裂解而从表面分离,渗入到周围介质中,并且适当时还可以将其洗去。在紧接着将非杂化的核酸探针进行酶分解后,测定那些杂化过且未被酶平截的核酸探针的荧光团。该方法的信号-本底比只是取决于所用双链特异性的核酸内切酶的质量以及与未杂化的核酸探针的分离完全性,并对应于与用放射性标记的核酸进行杂化作用的信号-本底比。
由于不是对确定的核酸试样或靶核酸,而是对固相结合的核酸探针进行标记,所以可以将许多具有不同序列特殊性的核酸探针固定在表面上的特定的面积或特定的点上(点),这些核酸探针的数量等于所存在的荧光体团数量,因而具有可以根据其激发或发射最大值而从光谱上进行区分的荧光团。本方法的灵敏度可以通过与核酸探针共价连接的荧光体数目而进行提高。
除了已知的荧光团外也可以使用部分结合对,如洋地黄毒苷、生物素或其他半抗原用于标记固相结合的探针。特别是结合不同半抗原的分子(免疫球蛋白,链菌抗生物素)是与不同底物特异性的酶共价连结的。这些酶可以是碱性磷酸酶、过氧化物酶、酸性磷酸酶等。因此可以根据可用的不同半抗原的数目和可用的不同酶共轭体的数目,将任意多的具有不同序列特性的核酸探针固定在表面上的特定的面积或点(点)上。
用于与经固定的核酸探针进行杂化作用的核酸试样或靶核酸可以是未经标记的DNA、cDNA、cRNA或mRNA。与传统体系相比,为仅使用部分靶核酸或核酸试样进行杂化作用,这部分是与核酸探针的检测模块互补的,因为在本体系中核酸探针是标记的。所述体系的另一优点是,检测灵敏度并不取决于核酸试样的标记效果,而是只取决于核酸探针的标记。而这就可以更为精确地进行确定。
本发明的核酸探针如图1A所示。典型的核酸探针具有以下成分:
·至少一种官能基团(1)如氨基基团(NH2)、硫醇基(SH),或是部分结合对如生物素、洋地黄毒苷用以接合到固相。
·优选是大于11个C2键长度的间隔模块(2),且其端部之一与官能基团共价连接。
·序列段α(识别和分裂模块),其长度优选为5-12个核苷酸,由DNA组成并且其3’-端位上共价连接到与固相连结的间隔模块的末端。序列段α含有用于限制性核酸内切酶的识别序列。
·序列片段β(检测模块),其长度优选为12道30个核苷酸,其3’-端位上共价连接到序列片段α(识别和分裂模块)的5’-端位并且它可以是DNA、RNA或PNA。序列片段β是构成分子的部分该分子,它在适当反应条件下可作为探针和待检测的靶核酸形成异源双链体。序列片段β的核苷酸和/或糖-磷酸盐主链或假肽主链(Pseudopeptidrückgrat)可以和荧光团共价连结。
·序列片段α’(识别和分裂模块),其由DNA组成并且其3’-端位与序列片段β的5’-端位共价连接。片段α’的序列互补于对应的序列片段α。
·间隔模块(3),其优选具有大于11个C2键的长度并共价连接到序列段α’的5’-端位。
·适当时还有一分支模块[Newcome G.R.等“Dendritic Molecules:Conepts,Synthesis,Perspectives”,1966.CH Publishers](未示出),其共价连接到间隔模块(3)的端部且其不与序列片段α’的5’-端位连接。在该分支模块的各端上可以连接有直至n个的其他分支模块,从而获得3n末端的最大数,同时在各个末端
·连接有荧光团(4)或是部分结合对(生物素或洋地黄毒苷)。
探针通过单元(1)与固态基体连接。此外,该固体表面可以是平整表面,也可以是凸的或是凹的,还可以是纤维或是无机、有机材料制成的微米或纳米颗粒。以下将连接到这种固态基体上的本发明的核酸探针称为DNA阵列。序列片段α和α’是彼此互补的并且可以在适当的条件下形成双链区,也就是双链体α-α’(参见图1B)。通过分子内的双链体形成作用而生成的发夹结构,对于单链构象的热动力学是有利的。于是,在低于序列片段α或α’的平衡熔融温度Tm的温度下,分子只以具有分子内双链体α-α’的发夹结构存在,而该结构通过限制性核酸内切酶而以序列特异性方式分裂。
在利用限制性核酸内切酶进行裂解后,单元(1),(2)和适当时还有少量的单元(α)的核苷酸还是保持与固相连接。探针的标记单元会渗入周围的介质,并适当时将其洗去。
通过与靶核酸杂化,该核酸可以是RNA或DNA并且其序列是与序列片段β的序列互补的,探针是以与核酸试样构成的双链体形式部分存在。在这种情况下序列片段α和α’以单链形式存在,并不能通过限制性核酸内切酶或其他双链特异性的核酸酶裂解。与分子内双链体α-α’相比,为保证由核酸试样和序列片段β所组成的异源双链体能具有足够的稳定性,序列片段β的平衡熔融温度Tm(β)必须要高于序列片段α或α’的;也就是Tm(β)>Tm(α)[Bonnet,G.等,“Thermodynamic basis of the enhanced specificity ofstructured DNA probes”,1999,Proc.Natl.Acad.Sci.,vol.96]。理想的是,由核酸试样与序列片段β所构成的异源双链体的平衡熔融温度Tm(β)要高于分子内双链体α-α’的平衡熔融温度10℃-25℃。和带有相同靶核酸的线形核酸探针相比,可以构成次级结构的核酸探针具有更高的序列特异性。不具有错配碱基的核酸探针/靶核酸双链体和具有错配碱基的核酸探针/靶核酸双链体的平衡熔融温度差ΔTm,在能构成次级结构的核酸探针中约为在线形核酸探针中的两倍高[[Bonnet,G.等,“Thermodunamic basis of the enhanced specificity ofstructured DNA probes”,1999,Proc.Natl.Acad.Sci.,vol.96]。
本发明的方法可优选用于多重分析。在这种情况下,将n个不同的核酸探针固定在相同面积上,且这些核酸探针本身在序列片段β中,在荧光团的激发光谱和发射光谱内[Vet,J.A.M.等,“Multiplex detection of four pathogenicretroviruses using molecular beacons”,1999,Proc.Natl.Acad.Sci.,vol.96;Marras,S.A.E.等,“Multiplex detection of single-nucleotide variations using molecularbeacons”,1999,Genetic Analysis;Biomolecular Engineering,vol.14],以及适当时也在包含于序列段α和α’中的对于限制性核酸内切酶的识别序列方面是可以相互区分的。用印刷法将含有等摩尔量的这些n个不同核酸探针的水溶液沉积并固定在固体表面上[Cheung,V.G.等“Making and readingmicroarrays”,Nature Genetics,vol.21,Jan.1999;Bowtell,D.D.L.,“Optionsavailable-from start to finish-for obtaining expression data by microarray”,Nature Genetics,vol.21,1999]。这些面积可以是DNA阵列上的“点”或者是微米或纳米颗粒的表面。
这样,就可以同时分析具有不同序列的n个不同的靶核酸与其序列片段α和α’含有对限制性核酸内切酶相同的识别序列的n个不同核酸探针之间的杂化作用。如果核酸探针的序列片段α和α’含有针对n个不同限制性核酸内切酶的n个不同的识别序列,则就可以对n个不同序列的不同靶核酸与n个不同核酸探针之间的杂化作用进行同时或是优选进行顺次的分析。
可以根据以下方法而将本发明的方法用于对核酸探针与靶核酸或核酸试样之间的杂化作用进行多重分析:
在下述的优选条件下使由一个或多个连接到固态基体的本发明的核酸探针组成的DNA阵列与可以是RNA或DNA的未标记的核酸试样相接触。根据要杂化的表面而在45℃下用20μl-200μl合适的杂化缓冲液培养DNA阵列。
将0.1μg-50μg的未标记核酸试样溶于300μl合适的杂化溶液中,在与DNA阵列的杂化作用开始前在约99℃加热5分钟,并接着冷却5分钟至约45℃。从DNA阵列中去除杂化缓冲液,并用含有核酸试样的杂化液代替。用核酸试样在45℃-60℃下培养DNA阵列16小时。在去除了核酸试样溶液之后,各在50℃-65℃下用不同离子浓度的洗涤缓冲液洗涤DNA阵列。根据核酸试样的种类(DNA或RNA),它们的长度以及根据被固定的核酸探针的种类(DNA,RNA或PNA)和长度来挑选合适的杂化和洗涤条件[Anderson,M.L.M.:“Nucleic acid Hybridization”,1998,Springer-Verlag Telos;Schena,M.:“DNA-Microarrays:A practical approach”.1999,Oxford University Press]。
在α-α’双链体范围内通过限制性核酸内切酶而进行的未杂化核酸探针的裂解过程优选是在25℃-37℃下并在生产商所推荐的反应条件下进行。限制性核酸内切酶的活性可以通过向反应物料中添加类脂类化合物而提高到高达34倍[Kinnunen等,“Materials and methods for digestion of DNA or RNA usingrestriction endonucleases”,美国专利5879950]。在洗涤步骤后,根据要杂化的表面,而在25℃-37℃下用20μl-200μl由生产商所推荐的反应缓冲液来培养DNA阵列20-60分钟,并且该缓冲液含有0.5U-5U的能在α-α’双链体范围内裂解核酸探针的限制性核酸内切酶。在室温下通过用1×TE缓冲液洗涤,将被裂解的核酸试样,标记和限制性核酸内切酶从DNA阵列的表面分离除去。
由本发明方法得到的信号和数据优选按以下方法来检测和分析:
在使用印刷法将标记过的探针转移和固定到固态表面上去[Cheung,V.G.等“Making and reading microarrays”,Nature Genetics,vol.21,Jan.1999;Bowtell,D.D.L.,“Options available-from start to finish-for obtaining expression data bymicroarray”,Nature Genetics,vol.21,1999]之前,要确定每个核酸探针的标记度。通过在260nm的波长下借助Lambert-Beerschen规则测定核酸水溶液的吸收量来确定核酸浓度(A260=ε×d×c,其中A260是λ=260nm时的吸收量,ε是核酸的摩尔消光系数[cm-1M-1],其取决于碱基序列和待测核酸的长度,d是所用比色皿的层厚度而c是核酸的浓度[M])。
共轭连接核酸探针的荧光团的浓度是通过利用Lambert-Beerschen规则,在符合荧光团吸收最大值(λmax)的波长处,测定标记过的核酸探针水溶液的吸收度来确定。为了能精确确定与荧光团共轭连接的核酸的浓度,必须要考虑到大多数的荧光团都吸收波长为260nm的光。在260nm处的总吸收度中要扣除荧光团提供的部分,这部分是在荧光团最大吸收度(λmax)的波长处的荧光团吸收度与校正因子CF260的乘积(A核酸=A260-(Aλmax×CF260))。不同荧光团的摩尔消光系数和260nm处的吸收度的校正因子(CF260)都可从这些荧光团的生产商那里得到(Molecular Probes,BioRad等)。
与核酸探针共轭连接的荧光团浓度对核酸探针浓度的比等于与核酸探针共轭连接的荧光团的量。为了确定被标记的核酸探针的特定荧光,就要确定的这些核酸探针特定量的荧光。然后特殊的荧光就可以在与靶核酸或核酸试样进行杂化作用之前精确确定连接在固态基体上的核酸探针分子的数量。这样,要考虑被固定核酸探针的含量变化,这种变化影响与靶核酸或核酸试样进行的杂化作用,并对其计算修正。因此,按本发明基于靶核酸或核酸试样与核酸探针之间的杂化作用而进行的测量可以是标准化的。
优选通过聚焦激光扫描显微镜来确定DNA阵列中每个样品点的荧光放射。用于在很小面积上确定荧光放射的装置可由一系列的厂商提供,并且在生物技术领域中是实验室标准的[Cheung,V.G.等“Making and readingmicroarrays”,Nature Genetics,vol.21,Jan.1999;Bowtell,D.D.L.,“Optionsavailable-from start to finish-for obtaining expression data by microarray” ,Nature Genetics,vol.21,Jan.1999]。为使测量结果标准化,就要在杂化作用前确定被固定的核酸探针的荧光。如果在阵列的每一个样品点上都固定有核酸探针该探针是特定序列特异性并用特定荧光团标记,则可以用具有相应于荧光团最大吸收值(λAbs.max)的波长的光来激发荧光,并在相应于最大发射值(λEm.max)的波长处进行检测。如果在DNA阵列的每个样品点上固定有具有不同序列特异性的n个不同核酸探针,且这些探针标记有n个不同的光谱上区分的荧光团,则可以用具有相应于这些荧光团最大吸收值(λAbs.max)的波长的光来激发n个不同荧光团的荧光,并在相应于最大发射值(λEm.max)的波长处进行检测。根据所用的仪器,可以同时或相继确定不同荧光团的荧光。
本发明将通过以下实施例更详细地得到阐述。
实施例1:
将两次改性的的低聚脱氧核苷酸且其5’-和3’-端位各以C22的间隔与共价连接到异硫氰酸盐荧光素(FITC)和氨基基团(NH2)(序列A:FITC-5’gcccgcgcAATAGGGATGGCTCAACAgcgcgggc3-(C22)NH2和B:FITC-5’gcccgcgcTTAGAGTGCAAAATGAAAGCGCCgcgcgggc3-(C22)NH2)溶入100μl的偶合缓冲液(500mM Na2HPO4,pH8.5,1mM EDTA)中(浓度:500pmol/ml)。在RT(室温)下于微滴定盘(Thermowell M PCR-Platte,Corning*Surface Technologies)的孔中,在各情况下培养100μl低聚核苷酸溶液30min,且该低聚核苷酸共价连接在孔的表面,如表1所示:
表1
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
A | A | - | - | - | A | - | - | - | A | - | - | - |
B | - | - | B | - | - | - | B | - | - | - | B | - |
C | A | - | - | - | A | - | - | - | A | - | - | - |
D | - | - | B | - | - | - | B | - | - | - | B | - |
E | A | - | - | - | A | - | - | - | A | - | - | - |
F | - | - | B | - | - | - | B | - | - | - | B | - |
G | A | - | - | - | A | - | - | - | A | - | - | - |
H | - | - | B | - | - | - | B | - | - | - | B | - |
表1:微滴定盘上核酸试样A和B的位置
然后用200μl的10mM Tris pH8.0,150mM的NaCl洗涤微滴定盘中的孔5次。然后在荧光分光光度计中(分子设备(Molecular Devices):SpectramaxGemini XS),于λAbs.max=490nm的激发波长和λEm.max=520nm的发射波长的条件下测定结合在微滴定盘孔中的低聚核苷酸的荧光强度。所得数据列于表3和画于图2(图表1)中:
表3
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
A | 352 | 0 | 0 | 0 | 348 | 0 | 0 | 0 | 351 | 0 | 0 | 0 |
B | 0 | 0 | 351 | 0 | 0 | 0 | 356 | 0 | 0 | 0 | 351 | 0 |
C | 356 | 0 | 0 | 0 | 355 | 0 | 0 | 0 | 348 | 0 | 0 | 0 |
D | 0 | 0 | 350 | 0 | 0 | 0 | 353 | 0 | 0 | 0 | 349 | 0 |
E | 348 | 0 | 0 | 0 | 350 | 0 | 0 | 0 | 356 | 0 | 0 | 0 |
F | 0 | 0 | 356 | 0 | 0 | 0 | 354 | 0 | 0 | 0 | 352 | 0 |
G | 351 | 0 | 0 | 0 | 352 | 0 | 0 | 0 | 352 | 0 | 0 | 0 |
H | 0 | 0 | 353 | 0 | 0 | 0 | 351 | 0 | 0 | 0 | 358 | 0 |
表3:共价连接在微滴定盘孔中的低聚核苷酸的荧光强度×1000
各用125μl的含有0.1mg/ml鲑鱼精子DNA碎片(Gibco BRL/LifeTechnologies);0.5mg/ml乙酰化的BSA(Gibco BRL/Life Technologies);1×MES(100mM MES,1.0M NaCl,20mM EDTA,0.01% Tween 20)的杂化溶液在60℃温度下对微滴定盘的孔进行预杂化4小时。
在分离了预杂化溶液后,将125μl的含有1nmol在0.1mg/ml鲑鱼精子DNA碎片(Gibco BRL/Life Technologies)中的样品-RNA-低聚核苷酸(序列A’=5’UGUUGAGCCAUCCCUAUU3’和B’=5’GGCGCUUUCAUUUUGCACUCUAA3’);0.5mg/ml乙酰化的BSA(Gibco BRL/Life Technologies);1×MES(100mMMES,1.0M NaCl,20mM EDTA,0.01% Tween 20)的杂化溶液添加到微滴定盘的孔中。配料列于表2中:
表2
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
A | A’ | A’ | A’ | A’ | B’ | B’ | B’ | B’ | - | - | - | - |
B | A’ | A’ | A’ | A’ | B’ | B’ | B’ | B’ | - | - | - | - |
C | A’ | A’ | A’ | A’ | B’ | B’ | B’ | B’ | - | - | - | - |
D | A’ | A’ | A’ | A’ | B’ | B’ | B’ | B’ | - | - | - | - |
E | A’ | A’ | A’ | A’ | B’ | B’ | B’ | B’ | - | - | - | - |
F | A’ | A’ | A’ | A’ | B’ | B’ | B’ | B’ | - | - | - | - |
G | A’ | A’ | A’ | A’ | B’ | B’ | B’ | B’ | - | - | - | - |
H | A’ | A’ | A’ | A’ | B’ | B’ | B’ | B’ | - | - | - | - |
表2:微滴定盘上以A’,B’和-标记的区域与核酸试样A’,B’或预杂化溶液进行杂化。
在95℃加热配料20min,在一小时内再冷却到60℃并在60℃下杂化16小时。
在去除核酸试样溶液后,在25℃下用“不精确的”缓冲洗液(6×SSPE;0.01% Tween 20)对微滴定盘的孔洗涤十次5分钟,接着再在55℃下用“精确的”缓冲洗液(100mM MES;0.1M NaCl;0.01% Tween 20)对其洗涤五次5分钟。洗涤后,在37℃下用150μl的1×反应缓冲液(NEB Buffer3)使微滴定盘的孔均衡化10分钟,接着各用100μl的含有2单元的限制性核酸内切酶Aci1(New England Biolabs)的1×反应缓冲液在37℃下培养1小时。反应通过添加1/5体积终止液(0.5%w/v SDS,50mM EDTA)和将微滴定盘加热至75℃而终止。接着在室温下用各150μl的1×TE缓冲液(10mM Tris,1mM EDTA,pH=8.0)洗涤微滴定盘孔6次。所有在室温下没有进行的培养物在有盖的加热器的Biometra UNOTM Thermoblock中进行加热。然后在荧光分光光度计中(Molecular Devices:Spectramax Gemini XS),于λAbs.max=490nm的激发波长和λEm.max=520nm的发射波长的条件下测定各个微滴盘孔中的荧光强度。所得数据列于表4和图表1(图2)中:
表4
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
A | 308 | 0 | 0 | 0 | 2.06 | 0 | 0 | 0 | 2.11 | 0 | 0 | 0 |
B | 0 | 0 | 2.11 | 0 | 0 | 0 | 309 | 0 | 0 | 0 | 2.11 | 0 |
C | 309 | 0 | 0 | 0 | 2.16 | 0 | 0 | 0 | 2.01 | 0 | 0 | 0 |
D | 0 | 0 | 2.14 | 0 | 0 | 0 | 308 | 0 | 0 | 0 | 2.1 | 0 |
E | 306 | 0 | 0 | 0 | 2.01 | 0 | 0 | 0 | 2.14 | 0 | 0 | 0 |
F | 0 | 0 | 2.14 | 0 | 0 | 0 | 354 | 0 | 0 | 0 | 2.12 | 0 |
G | 307 | 0 | 0 | 0 | 2.15 | 0 | 0 | 0 | 2.12 | 0 | 0 | 0 |
H | 0 | 0 | 2.12 | 0 | 0 | 0 | 351 | 0 | 0 | 0 | 2.13 | 0 |
表4:在杂化与限制性消化后,共价连接于微滴定盘孔中的低聚核苷酸的荧光强度×1000
可在孔2A-2H,4A-4H,6A-6H,8A-8H,10A-10H,12A-12H,1B,1D,1E,1H,3A,3C,3E,3G,5B,5D,5F,5H,7A,7C,7E,7G,9B,9D,9F,9H,11B,11D,11E以及11G的孔区域检测到的信号对应于系统的背景荧光,并且要将它们从在核酸试样A和B的区域中检测到的信号中扣除。
实施例2:
以异氰酸酯荧光素(FITC)标记的核酸试样的序列A:FITC-5’gcccgcgcAATAGGGATGGCTCAACAgcgcgggc3,B:FITC-5’gcccgcgc TTAGAGTGCAAAATGAAAGCGCCgcgcgggc3’和C:FITC-5’gcccgcgc GTTTT TTTTTTTTGGTTTTTTTTTTTC-gcgcgggc3’(对照;背景荧光的确定),在固定在固态基体上不同测试点上使其与从K562细胞中分离出来的5μg样品-RNA,在25pM对照-RNA,0.1mg/ml鲑鱼精子DNA碎片DNA(Gibco BRL/Life Technologies);0.5mg/ml乙酰化的BSA(Gibco BRL/Life Technologies);1×MES(100mM MES,1.0M NaCl,20mMEDTA,0.01% Tween 20)中在55℃温度下进行杂化16小时。在去除了核酸试样溶液后,在25℃下用“不精确的”缓冲洗液(6×SSPE;0.01%Tween 20)对DNA阵列洗涤十次5分钟,接着再在50℃下用“精确的”缓冲洗液(100mM MES;0.1M NaCl;0.01% Tween 20)对其洗涤五次5分钟。
洗涤后,在37℃下用1×反应缓冲液对DNA阵列进行均衡化处理10分钟。接着用100μl含有2单元的限制性核酸内切酶Acil的1×反应缓冲液在37℃下培养1小时。反应通过添加1/5体积终止液(0.5%w/v SDS,50mM EDTA)并将DNA阵列加热至75℃而终止。接着在室温下于1×TE缓冲液(10mM Tri,1mM EDTA,pH=8.0)中洗涤DNA阵列4-8次。用波长为λAbs.max=490nm的光波激发滞留在DNA阵列上的杂化过的探针的荧光,并在波长λEm.max=520nm处的光波下进行检测。可在核酸试样C的范围内检测到的信号对应于系统的背景荧光,并且要将它们从在核酸试样A和B的区域中检测到的信号中扣除。
实施例3:
将用荧光团FITC(λAbs.max=490nm,λEm.max=520nm),Cascade Blue(λAbs.max=400nm,λEm.max=420nm)和BODIPY TR14(λAbs.max=595nm,λEm.max=625nm)标记过的核酸试样共同固定到规定面积A(试样点A)上,核酸试样具有序列A:(FITC)-5’gcccgcgcAATAGGGATGGCTCAACA-gcgcgggc3’,
B:(Cascade Blue)-5’gcccgcgcTTAGAGTGCAAAATGAAAGCGCCgcgcgggc3’和
C:(BODIPY TR14)-5’gcccgcgcTTTCTCTACCTCCTCACATTGTGgcgcgggc3’。将用作用于确定背景荧光的对照物的核酸探针共同固定在另一规定面积B(试样点B)上,该核酸探针是
D:(FITC)-5’gcccgcgcGTTTTTTTTTTTTGGTTTTTTTTTTTC-gcgcgggc3’,
E:(Cascade Blue)-5’gcccgcgcGTTTTTTTTTTTTGGTTTTTTTTTTTC-gcgcgggc3’和
F:(BODIPY TR14)-5’gcccgcgcGTTTTTTTTTTTTGGTTTTTTTTTTTC-gcgcgggc3’。使DNA阵列与0.1μg的样本RNA(cRNA),在25pM对照-RNA,0.1mg/ml鲑鱼精子DNA碎片(Gibco BRL/Life Technologies);0.5mg/ml乙酰化的BSA(Gibco BRL/Life Technologies);1×MES(100mM MES,1.0M NaCl,20mM EDTA,0.01% Tween 20)中进行杂化16小时,温度为55℃,且试样RNA含有序列D’=5’UGUUGAGCCAUCCCUAUU3’,
E’=5’GGCGCUUUCAUUUUGCACUCUAA3’和
F’=5’CACAAUGUGAGGAGGUAGAGAAA3’。在去除了核酸试样溶液后,在25℃下用“非精确的”缓冲洗液(6×SSPE;0.01% Tween 20)对DNA阵列洗涤十次5分钟,接着再在50℃下用“精确的”缓冲洗液(100mM MES;0.1M NaCl;0.01% Tween 20)对其洗涤五次5分钟。
洗涤后,在37℃下用1×反应缓冲液对DNA阵列进行均衡化处理10分钟。接着用100μl的含有2单元的限制性核酸内切酶Acil的1×反应缓冲液在37℃下培养1小时。反应通过添加1/5体积终止液(0.5%w/v SDS,50mMEDTA)和将DNA阵列加热至75℃而终止。接着在室温下于1×TE(10mM Tris,1mM EDTA,pH=8.0)中洗涤DNA阵列4-8次。用波长为λAbs.max=490nm,λAbs.max=400nm或λAbs.max=595nm的光波激发滞留在DNA阵列上且用荧光团FITC,Cascade Blue或BODIPY TR14标记过的杂化探针的荧光,并在波长λEm.max=520nm,λEm.max=420nm或λEm.mmax=625nm处的光波下进行检测。在试样点B的范围内检测到的信号对应于系统的背景荧光,并且要将它们从在试样点A的区域中检测到的信号中扣除。
Claims (7)
1.通过杂化作用检测靶核酸的方法,其特征在于,在该方法中
a)使用至少一种以其端部之一和一固相连接的核酸探针进行杂化作用,其中核酸探针是靶核酸序列或与其互补的序列,该序列以在短核酸序列侧接在其3’-端位并以与该核酸互补的核酸序列侧接到5’-端位上,该核酸构成了一条DNA双链并由此构成裂解模块,该模块可以被双链特异性的核酸酶所裂解并具有的核酸探针在另一端部具有一个标记;
b)利用至少一种双链特异性的核酸酶来进行至少一次处理,和
c)确定经步骤b)后连接到固相上的标记的比例。
2.根据权利要求1的方法,其特征在于在建立的方法中同时使用多个含有相互不同靶序列的核酸探针。
3.根据权利要求1或2之一的方法,其特征在于,在一过程中使用多个具有彼此不同的并能为不同双链特异性的核酸酶所裂解的分解模块的核酸探针。
4.根据权利要求1-3中之一的方法,其特征在于核酸探针具有多个彼此不同的标记。
5.根据权利要求4的方法,其特征在于上述标记是指荧光团和/或部分结合对。
6.用于检测与靶核酸进行杂化作用的试验盒,其特征在于试验盒是用于实施一种可使用至少其端部之一和固相连接的核酸探针,和含有靶核酸序列的核酸探针进行杂化作用,该序列以短核酸序列侧接在3’-端位上并以与此核酸互补的核酸序列侧接在5’-端位上,该核酸序列构成了DNA双链并因此而可构成裂解模块并能被双链特异性的核酸酶所裂解,且具有的核酸探针在其另一端具有标记。
7.根据权利要求6的试验盒,其特征在于适于实施如权利要求1至5中之一所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10158516.0 | 2001-11-29 | ||
DE10158516A DE10158516A1 (de) | 2001-11-29 | 2001-11-29 | Verfahren zum Nachweis von Hybridisierungsereignissen in Nukleinsäuren |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1610757A true CN1610757A (zh) | 2005-04-27 |
Family
ID=7707346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA028265599A Pending CN1610757A (zh) | 2001-11-29 | 2002-11-25 | 检测核酸中杂化作用的方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20060057569A1 (zh) |
EP (1) | EP1453975B1 (zh) |
JP (1) | JP2005536983A (zh) |
CN (1) | CN1610757A (zh) |
AT (1) | ATE335853T1 (zh) |
AU (1) | AU2002352121A1 (zh) |
CA (1) | CA2468411A1 (zh) |
DE (2) | DE10158516A1 (zh) |
WO (1) | WO2003046215A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112996899A (zh) * | 2018-11-09 | 2021-06-18 | 横河电机株式会社 | 核酸序列检测用装置 |
CN114280128A (zh) * | 2021-12-24 | 2022-04-05 | 清华大学 | 双标记gFET的制备及其在miRNA检测中的应用 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010144150A2 (en) * | 2009-06-12 | 2010-12-16 | Pacific Biosciences Of California, Inc. | Real-time analytical methods and systems |
DK2545189T3 (en) | 2010-03-08 | 2018-04-23 | Dana Farber Cancer Inst Inc | COMPLETE COLD-PCR ENRICHMENT WITH REFERENCE BLOCKING SEQUENCE |
WO2012135664A2 (en) | 2011-03-31 | 2012-10-04 | Dana-Farber Cancer Institute, Inc. | Methods and compositions to enable multiplex cold-pcr |
JP6941568B2 (ja) * | 2015-06-24 | 2021-09-29 | デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド | ヌクレアーゼを使用する野生型dnaの選択的分解および突然変異体対立遺伝子の濃縮 |
EP3491147B1 (en) * | 2016-08-01 | 2020-06-17 | H. Hoffnabb-La Roche Ag | Methods for removal of adaptor dimers from nucleic acid sequencing preparations |
US11371090B2 (en) | 2016-12-12 | 2022-06-28 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for molecular barcoding of DNA molecules prior to mutation enrichment and/or mutation detection |
JP2019154396A (ja) * | 2018-03-16 | 2019-09-19 | 株式会社リコー | 核酸検出方法、並びに、それに用いる標的核酸検出用プローブ、及び標的核酸検出用デバイス |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5543292A (en) * | 1992-06-16 | 1996-08-06 | Hitachi, Ltd. | Process for the measurement of nucleic acids |
US5858659A (en) * | 1995-11-29 | 1999-01-12 | Affymetrix, Inc. | Polymorphism detection |
CA2170264A1 (en) * | 1993-09-10 | 1995-03-16 | Michael W. Konrad | Optical detection of position of oligonucleotides on large dna molecules |
US5925517A (en) * | 1993-11-12 | 1999-07-20 | The Public Health Research Institute Of The City Of New York, Inc. | Detectably labeled dual conformation oligonucleotide probes, assays and kits |
AU2001292794A1 (en) * | 2000-09-19 | 2002-04-02 | Atom Sciences, Inc. | Detection of unlabeled hybridized dna and rna using restriction enzyme digestion |
-
2001
- 2001-11-29 DE DE10158516A patent/DE10158516A1/de not_active Withdrawn
-
2002
- 2002-11-25 AT AT02787794T patent/ATE335853T1/de not_active IP Right Cessation
- 2002-11-25 CN CNA028265599A patent/CN1610757A/zh active Pending
- 2002-11-25 AU AU2002352121A patent/AU2002352121A1/en not_active Abandoned
- 2002-11-25 DE DE50207820T patent/DE50207820D1/de not_active Expired - Fee Related
- 2002-11-25 CA CA002468411A patent/CA2468411A1/en not_active Abandoned
- 2002-11-25 WO PCT/EP2002/013215 patent/WO2003046215A1/de active IP Right Grant
- 2002-11-25 EP EP02787794A patent/EP1453975B1/de not_active Expired - Lifetime
- 2002-11-25 US US10/497,130 patent/US20060057569A1/en not_active Abandoned
- 2002-11-25 JP JP2003547646A patent/JP2005536983A/ja not_active Ceased
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112996899A (zh) * | 2018-11-09 | 2021-06-18 | 横河电机株式会社 | 核酸序列检测用装置 |
CN114280128A (zh) * | 2021-12-24 | 2022-04-05 | 清华大学 | 双标记gFET的制备及其在miRNA检测中的应用 |
Also Published As
Publication number | Publication date |
---|---|
US20060057569A1 (en) | 2006-03-16 |
JP2005536983A (ja) | 2005-12-08 |
EP1453975A1 (de) | 2004-09-08 |
AU2002352121A1 (en) | 2003-06-10 |
DE10158516A1 (de) | 2003-06-12 |
DE50207820D1 (de) | 2006-09-21 |
WO2003046215A1 (de) | 2003-06-05 |
CA2468411A1 (en) | 2003-06-05 |
EP1453975B1 (de) | 2006-08-09 |
ATE335853T1 (de) | 2006-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2285985B1 (en) | Simultaneous detection of multiple nucleic acid sequences in a reaction | |
US8852863B2 (en) | Detection of multiple nucleic acid sequences in a reaction cartridge | |
JP2000509278A (ja) | 試験サンプル中の複数の核酸配列を検出するための方法および試薬 | |
JP2008533974A (ja) | 核酸分子の増大したダイナミックレンジ検出のための組成物および方法 | |
US20070172841A1 (en) | Probe/target stabilization with add-in oligo | |
US20030082583A1 (en) | Bioluminescence regenerative cycle (BRC) for nucleic acid quantification | |
US7754475B2 (en) | Nucleic acid probes and microarrays for analysis of polynucleotides | |
CN1610757A (zh) | 检测核酸中杂化作用的方法 | |
EP1989327A2 (en) | Methods for mutation detection | |
WO2003054214A2 (en) | Tsunami chain reaction - geometric dna amplification | |
US20060073486A1 (en) | Multiple array substrates and methods for using the same | |
WO2005003373A2 (en) | Fluorogenic nucleic acid probes including lna for methods to detect and/or quantify nucleic acid analytes | |
US8518642B2 (en) | Method of analyzing probe nucleic acid, microarray and kit for the same | |
Vasantgadkar | A novel method for detecting DNA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned | ||
C20 | Patent right or utility model deemed to be abandoned or is abandoned |