CN1591033A - 一种小电流接地选线及故障定位的方法 - Google Patents

一种小电流接地选线及故障定位的方法 Download PDF

Info

Publication number
CN1591033A
CN1591033A CN 03134177 CN03134177A CN1591033A CN 1591033 A CN1591033 A CN 1591033A CN 03134177 CN03134177 CN 03134177 CN 03134177 A CN03134177 A CN 03134177A CN 1591033 A CN1591033 A CN 1591033A
Authority
CN
China
Prior art keywords
branch line
zero
value
icm
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 03134177
Other languages
English (en)
Other versions
CN100335911C (zh
Inventor
陈昌鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNB031341772A priority Critical patent/CN100335911C/zh
Publication of CN1591033A publication Critical patent/CN1591033A/zh
Application granted granted Critical
Publication of CN100335911C publication Critical patent/CN100335911C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本发明所述的一种小电流接地选线及故障定位的方法是一种新的可准确实现单相接地选线和故障地位的方法。在发生单相接地故障第一时间检测出系统零序电压和各分支线零序电流值;在第二时间,对于中性点不接地系统,改变整个配电网对地电容值,对于消弧线圈接地系统,改变消弧线圈补偿度,或者改变整个配电网对地电容值,调整后检测出第二时间系统零序电压和各分支线零序电流值。两次时间分别用支线零序电流值除以系统零序电压值,得结果值。发生了单相接地故障的分支线上的结果值两次时间发生变化。确定单相接地故障分支线路后,上传该分支线路检测到的零序电流值,用检测到的零序电流值除以系统中零序电压值,并加以判别,就可以确定故障点位置。

Description

一种小电流接地选线及故障定位的方法
所属技术领域
本发明所述的一种小电流接地选线及故障定位的方法是一种新的可准确实现单相接地选线和故障地位的方法。
背景技术
目前,单相接地故障选线基本上是依靠零序电流比较进行的,当线路上发生单相非金属接地时,由于受接地电阻的影响,及三相对地电容不平衡的影响,能够选出故障线路范围很小,其理论推导有尽多不实之处。对于中性点不接地和小电流接地系统,规程规定,发生单相接地故障时,允许带故障运行两小时,由于非故障相电压升高至线电压,长时间运行有可能导致绝缘击穿,因此快速的单相接地故障选线及故障定位长时间以来一直是我们的课题,没有得到很好的解决。现有的微机接地故障选线装置其原理是利用零序电流的基波和5次谐波的大小和方向进行判别,实践中并不十分有效,而且其判别原理比较复杂。因此,时至今日,有的供电部门仍在采用“拉线法”进行故障选线,在对配电自动化要求日益完善的今天。这严重影响供电可靠性。针对现有技术所存在的问题来研制一种的新的小电流接地选线及故障定位的方法是十分必要的。
发明内容
鉴于上述现有技术所存在的问题来发明是为了提供一种可准确找到故障线路及故障点位置的新的单相接地选线和故障地位的方法。
本发明所述的一种小电流接地选线及故障定位的方法,
其分为以下步骤:
(1)在发生单相接地故障第一时间检测出系统零序电压和各分支线零序电流值;
(2)故障线的确定;
在第二时间,对于中性点不接地系统,仅可以改变整个配电网对地电容值,调整后检测出第二时间系统零序电压和各分支线零序电流值;对于消弧线圈接地系统,可以改变消弧线圈补偿度,或者改变整个配电网对地电容值,调整后检测出第二时间系统零序电压和各分支线零序电流值。两次时间分别用支线零序电流值除以系统零序电压值,得其结果值。对于没有发生故障的线路,这个结果值两次时间没有发生变化,对于发生故障的线路,这个结果值两次时间发生了变化,当确定某支线存在这个变化值,就可以确定该支线发生了单相接地故障;
对于中性点经过电阻接地,本方法同样适用,调整方法可以通过改变零序系统阻抗实现;
(3)故障点的确定;
在已确定单相接地故障分支线路后,通过上传该分支线路各区间微机智能配电终端检测到的零序电流值,新的小电流接地选线微机装置接受后,用检测到的零序电流值除以系统中零序电压值,并加以判别,就可以确定故障点位置。故障点负荷侧零序电流值于系统零序电压值的比值两次时间没有发生变化,故障点电源侧零序电流值于系统零序电压值的比值两次时间发生了变化。由此就可以确定故障线路上故障点位置。
本发明所述的一种小电流接地选线及故障定位的方法,
(1)对于中性点不接地系统:
中性点n的电位设为Un,当a相经过接地电阻R发生接地故障时,各相流出的电流为:
        Ia=Ua/R+jwCa·Ua=(Ea+Un)/R+jwCa·(Ea+Un)
        Ib=jwCb·Ub=jwCb·(Eb+Un)
        Ic=jwCc·Uc=jwCc·(Ec+Un)
由于      Ia+Ib+Ic=0
设定      Ca=Cb=Cc=Cs
那        Ea+Un·(1+j3wCsR)=0
          Un=-Ea/(1+j3wCsR)                         (1)
配电网系统发生单相接地时,全配电系统将出现零序电压,采用零序电压启动,用零序电流除以零序电压结果值来判别故障线路。在某分支线上A相发生单相接地故障后非故障分支线上有零序电流,其电容性无功功率的实际方向为母线流向线路侧,
非故障分支线上零序电流为:
Icm=jwCsm(Ua+Ub+Uc)=j3wCsmUn                       (2)
而在发生故障分支线上的零序电流其数值等于整个配网对地电容电流之和减去发生故障分支线本身对地电容电流,其电容性无功功率的实际方向为线路流向母线侧。计算公式如下:
发生故障分支线本身对地电容电流:
Ic1=jwCs1(Ua+Ub+Uc)=j3wCs1Un
发生故障分支线零序电流:
Ic0=∑Icm-Ic1=j3w(∑Csm-Cs1)Un                     (3)
由公式(2)、(3)可以看出,系统中零序电流是与系统中零序电压有关系的量,而由公式〔1〕可以看出,系统中零序电压是与故障点接地电阻值R、电网中电容值Cs均有关系的变化量,尤其系统中故障点接地电阻R是个变化很复杂的量。当系统中单相接地不是很明显时,系统中零序电流会很小,因此单纯比较系统中各分支线零序电流大小或者零序无功功率方向的办法会很难确定发生单相接地故障的分支线。如果将公式(2)、(3)改变为:
Icm/Un=3wCsm                                       (4)
Ic0/Un=3w(∑Csm-Cs1)                               (5)
用分支线上零序电流值比上系统中零序电压值,对于非发生故障分支线其结果值仅与该分支线对地电容值Csm有关,对于发生故障分支线其结果值与整个配网和该分支线对地电容值之差(∑Csm-Cs1)有关,如果系统中投入或切除一回10kV配出线路,改变整个配网对地电容值,那么,前者是个无变化量的值,而后者是个有变化量的值,系统中检测设备如果检测到这个变化值,就可以确定发生单相接地故障的分支线。如果能够先前测定发生故障分支线对地电容值,给出该分支线上零序电流值比上系统中零序电压值的基准结果值,当检测到该分支线上零序电流值比上系统中零序电压值有较大变化,即可确定该分支线上发生了单相接地故障。
以上公式中:
Ea-a相感应相电势;  Eb-b相感应相电势;  Ec-c相感应相电势;
Ua-a相对地电压;    Ub-b相对地电压;    Uc-c相对地电压;
Un-中性点对地电压;
Ca-a相对地电容;    Cb-b相对地电容;    Cc-c相对地电容;
Ia-a相对地电容电流;Ib-b相对地电容电流;Ic-c相对地电容电流;
R-a相接地电阻;
Cs1-分支线1各相对地电容(三相平衡);
Cs2-分支线2各相对地电容(三相平衡);
Csm-分支线m各相对地电容(三相平衡);
Ic1-分支线1对地电容电流;
Ic2-分支线2对地电容电流;
Icm-分支线m对地电容电流;
Ic0-分支线1零序电流;
∑Icm-各分支线对地电容电流之和;
(2)对于中性点经消弧线圈接地电网:
中性点n的电位设为Un′,当a相经过接地电阻R′发生接地故障时,各相流出的电流为:
Ia′=Ua′/R′+jwCa′·Ua′=(Ea+Un′)/R′+jwCa′·(Ea+Un′)
Ib′=jwCb′·Ub′=jwCb′·(Eb+Un′)
Ic′=jwCc′·Uc′=jwCc′·(Ec+Un′)
流经消弧线圈零序电流:
        In′=Un′/jwLn′=-jUn′/wLn′
由于    Ia′+Ib′+Ic′+In′=0
设定    Ca′=Cb′=Cc′=Cs′
那么    Ea+Un′·[1+j(3wCs′R′-1/wLn′)]=0
        Un′=-Ea/[1+j(3wCs′R′-1/wLn′)]            (6)
当配电网系统发生单相接地时,全配电系统将出现零序电压,采用零序电压启动,用零序电流除以零序电压结果值判别。在某分支线上A相发生单相接地故障后非故障分支线上有零序电流,其电容性无功功率的实际方向为母线流向线路侧,非故障分支线上零序电流为:
Icm′=jwCsm′(Ua′+Ub′+Uc′)=j3wCsm′Un′          (7)
而在发生故障分支线上的零序电流其数值等于其分支线本身对地电容电流减去流经故障点的残余电流,因为流经故障点的残余电流为经过消弧线圈补偿后的残余电流,且在系统采用过补偿方式,过补偿不大的情况下,发生故障分支线上的零序电流值接近于其分支线本身对地电容电流,电容性无功功率的实际方向也为母线流向线路侧。计算公式如下:
发生故障分支线本身对地电容电流:
Ic1′=jwCs1′(Ua′+Ub′+Uc′)=j3wCs1′Un′
流经消弧线圈零序电流:
In′=Un′/jwLn′=-jUn′/wLn′
故障点经过补偿后的残余电流:
In0′=In′+∑Icm′=-jUn′/wLn′+j3w∑Csm′
Un′=j(3w∑Csm′-1/wLn′)Un ′
发生故障分支线零序电流:
Ic0′=Ic1′-In0′=j[1/wLn′-3w(∑Csm′-Cs1′)]Un′  (8)
由公式(7)、(8)可以看出,系统中零序电流是与系统中零序电压有关系的量,而由公式(2)可以看出,系统中零序电压是与故障点接地电阻值R′、电网中电容值Cs′、系统中补偿消弧线圈电感值Ln′均有关系的变化量,尤其系统中故障点接地电阻R是个变化很复杂的量。因此单纯比较系统中各分支线零序电流大小的办法很难确定发生单相接地故障的分支线。如果将公式(7)、(8)改变为:
Icm′/Un′=3wCsm′                                   (9)
Ic0′/Un′=1/wLn′-3w(∑Csm′-Cs1′)                 (10)
用分支线上零序电流值比上系统中零序电压值,对于非发生故障分支线其结果值仅与该分支线对地电容值Csm′有关,对于发生故障分支线其结果值与消弧线圈电感值Ln′及整个配网和该分支线对地电容值之差(∑Csm′-Cs1′)有关,如果改变消弧线圈电感值Ln′,即适当调整消弧线圈补偿度,或者,同先前办法一样,系统中投入或切除一回10kV配出线路,改变整个配网对地电容值,那么,前者是个无变化量的值,而后者是个有变化量的值,系统中检测设备如果检测到这个变化值,就可以确定发生单相接地故障的分支线。
以上公式中:
Ea-a相感应相电势;    Eb-b相感应相电势      Ec-c相感应相电势;
Ua′-a相对地电压;    Ub′-b相对地电压;    Uc′-c相对地电压;
Un′-中性点对地电压;
Ca′-a相对地电容;    Cb′-b相对地电容;    Cc′-c相对地电容;
Ia′-a相对地电容电流;Ib′-b相对地电容电流;Ic′-c相对地电容电流;
R′-a相接地电阻;     Ln′-消弧线圈电感值;
Cs1′-分支线1各相对地电容(三相平衡);
Cs2′-分支线2各相对地电容(三相平衡);
Csm′-分支线m各相对地电容(三相平衡);
Ic1′-分支线1对地电容电流;
Ic2′-分支线2对地电容电流;
Icm′-分支线m对地电容电流;
Ic0′-分支线1零序电流;
∑Icm′-各分支线对地电容电流之和;
In′-流经消弧线圈零序电流;
In0′-故障点经过补偿后残余电流
本发明所述的一种小电流接地选线及故障定位的方法,其特征在于故障点的确定的过程如下:
在已确定单相接地故障分支线路后,通过上传该分支线路各区间微机智能配电终端检测到的零序电流值,新的小电流接地选线微机装置接受后,用检测到的零序电流值除以系统中零序电压值,并加以判别,就可以确定故障点位置。
对于中性点不接地系统:
故障点负荷侧检测到的零序电流(公式推导见前述):
I2=j3wC2Un
I2/Un=3wC2                                           (11)
故障点电源侧检测到的零序电流(公式推导见前述):
I1=j3wC1Un
I1/Un=3wC1                                           (12)
对于中性点经消弧线圈接地系统:
故障点负荷侧FTU检测到的零序电流(公式推导见前述):
I2=j3wC2Un′
I2/Un′=3wC2                                       (13)
故障点电源侧检测到的零序电流(公式推导见前述):
I1=j[1/wLn′-3wC1]Un′
I1/Un′=1/wLn′-3wC1                               (14)
当系统中调整消弧线圈补偿度,改变消弧线圈电感值,或者,系统中投入或切除一回配出线路,改变整个配网对地电容值时,由公式(11)、(12)、(13)、(14)可以看出,故障点电源侧的检测到的零序电流值与系统中零序电压值的比值发生了变化,故障点负荷侧的检测到的零序电流值与系统中零序电压值的比值是个固定值。从而确定单相接地故障点。
以上公式中:
C1-故障点电源侧整个配电网各相对地电容(三相平衡);
C2-分支线故障点负荷侧各相残余对地电容(三相平衡)。
本发明所述所述的一种小电流接地选线及故障定位的方法,其特征在于校正过程如下:
上述单相接地选线及故障点定位方案是基于一种完全理想化配网系统推导出的,即整个配网系统及各分支线三相对地电容认为完全一致。而实际配网系统情况很复杂,各分支线及整个配网系统三相对地电容有可能不同,给故障选线和定位带来各种问题。当考虑三相对地电容不同时,非故障分支线上实际零序电流:
Icm实际=jwCamUa+jwCbmUb+jwCcmUc
       =(jwCamEa+jwCbmEb+jwCcmEc)+j3wCsmUn
式中,Cam、Cbm、Ccm分别是分支线m的a相、b相、c相对地电容值,Csm是分支线m三相对地电容平均值,将公式改变为:
Icm实际=Icm不平衡+Icm理想
式中,Icm不平衡=jwCamEa+jwCbmEb+jwCcmEc,是分支线m三相对地电容值不平衡产生的电流;Icm理想为分支线m理想状态(三相平衡)零序电流,其计算方法同前,Icm理想=j3wCsmUn。
当Icm不平衡值足够大,不可忽略时,将会影响Icm实际/Un比值,造成两次时间非故障分支线Icm实际/Un比值产生变化,不能进行准确选线。如果用两次时间检测到的分支线实际零序电流矢量之差与两次时间检测到的系统零序电压矢量之差进行比值计算,计算公式如下:
ΔIcm实际=Icm实际2-Icm实际1
         =(Icm不平衡+Icm理想2)-(Icm不平衡+Icm理想1)
         =Icm理想2-Icm理想1
         =j3wCsm(Un实际2-Un实际1)
ΔIcm实际/ΔUn实际=j3wCsm(Un实际2-Un实际1)/(Un实际2-Un实际1)
ΔIcm实际/ΔUn实际=3wCsm
以上公式中:
Icm实际1-调整前非故障分支线m实际检测到的零序电流;
Icm实际2-调整后非故障分支线m实际检测到的零序电流;
Icm理想1-调整前非故障分支线m理想状态(三相平衡)计算的零序电流;
Icm理想2-调整后非故障分支线m理想状态(三相平衡)计算的零序电流;
Icm不平衡-调整前、后非故障分支线m三相不平衡产生的零序电流;
Un实际1-调整前系统实际检测到的零序电压;
Un实际2-调整后系统实际检测到的零序电压;
ΔIcm实际-调整前、后非故障分支线m实际检测到的零序电流矢量之差;
ΔUn实际-调整前、后系统实际检测到的零序电压矢量之差。
由上边公式可见,ΔIcm实际/ΔUn实际比值仅与该分支线三相对地电容平均值Csm有关,是个常数,当进行第二次配网系统参数调整(或整体改变配网对地电容值,或改变消弧线圈电感值),两次调整时间ΔIcm实际/ΔUn实际比值不会发生变化。上述观点是针对非故障分支线而言。对于发生故障分支线,ΔIcm实际/ΔUn实 际比值是个变化很复杂的量,当进行第二次配网系统参数调整,两次调整时间ΔIcm实际/ΔUn实际比值将会发生变化。由此而来,可以很准确地找到发生故障分支线。对于故障分支线上故障点定位,采用的办法是同样的。
附图说明
本发明共有两张附图,其中:
图1a:中性点不接地电网结构示意图
图1b:中性点不接地电网电压矢量图
图2a:消弧线圈接地电网结构示意图
图2b:消弧线圈接地电网及电压矢量图
图3:中性点不接地系统单相接地零序电流分布图
图4:消弧线圈接地系统单相接地零序电流分布图
图5a:某分支线结构示意图
图5b:某分支线单相接地故障点前后电网参数分布图
图中:Ea-a相感应相电势;  Eb-b相感应相电势;  Ec-c相感应相电势;
Ua(Ua′)-a相对地电压;    Ub(Ub′)-b相对地电压;
Uc(Uc′)-c相对地电压;
Un(Un′)-中性点对地电压;
Ca(Ca′)-a相对地电容;    Cb(Cb′)-b相对地电容;
Cc(Cc′)-c相对地电容;
Ia(Ia′)-a相对地电容电流;Ib(Ib′)-b相对地电容电流;
Ic(Ic′)-c相对地电容电流;
R(R′、RX)-a相接地电阻;
Cs1(Cs1′)-分支线1各相对地电容(三相平衡);
Cs2(Cs2′)-分支线2各相对地电容(三相平衡);
Csm(Csm′)-分支线m各相对地电容(三相平衡);
Ic1(Ic1′)-分支线1对地电容电流;
Ic2(Ic2′)-分支线2对地电容电流;
Icm(Icm′)-分支线m对地电容电流;
Ic0(Ic0′)-分支线1零序电流;
∑Icm(∑Icm′)-各分支线对地电容电流之和;
Ln′-消弧线圈电感值;
In′-流经消弧线圈零序电流;
In0′-故障点经过补偿后残余电流
C1-故障点电源侧整个配电网各相对地电容(三相平衡);
C2-分支线故障点负荷侧各相残余对地电容(三相平衡)。
I1-故障点电源侧零序电流
I2-故障点负荷侧零序电流
S1(S2、S3、S4、S5、S6、S7)-分支线联络开关
g(g′)-大地
F-故障点
具体实施方式
本发明所述的一种小电流接地选线及故障定位的方法的具体实施方式如附图所示,本发明以10kV配电网为例,阐述中性点经消弧线圈接地和不接地方式下,小电流接地选线及故障定位的方法。本发明所述的一种小电流接地选线及故障定位的方法,其分为以下步骤:
(1)在发生单相接地故障第一时间检测出系统零序电压和各分支线零序电流值;
(2)故障线的确定;
在第二时间,对于中性点不接地系统,仅可以改变整个配电网对地电容值,调整后检测出第二时间系统零序电压和各分支线零序电流值;对于消弧线圈接地系统,可以改变消弧线圈补偿度,或者改变整个配电网对地电容值,调整后检测出第二时间系统零序电压和各分支线零序电流值。两次时间分别用支线零序电流值除以系统零序电压值,得其结果值。对于没有发生故障的线路,这个结果值两次时间没有发生变化,对于发生故障的线路,这个结果值两次时间发生了变化,当确定某支线存在这个变化值,就可以确定该支线发生了单相接地故障;
对于中性点经过电阻接地,本方法同样适用,调整方法可以通过改变零序系统阻抗实现;
(3)故障点的确定;
在已确定单相接地故障分支线路后,通过上传该分支线路各区间微机智能配电终端检测到的零序电流值,新的小电流接地选线微机装置接受后,用检测到的零序电流值除以系统中零序电压值,并加以判别,就可以确定故障点位置。故障点负荷侧零序电流值与系统零序电压值的比值两次时间没有发生变化,故障点电源侧零序电流值与系统零序电压值的比值两次时间发生了变化。由此就可以确定故障线路上故障点位置。
(1)对于中性点不接地系统:图1a为中性点不接地电网结构示意图,图1b为中性点不接地电网电压矢量图,
图中,中性点n的电位设为Un,大地设为g。当a相经过接地电阻R发生接地故障时,各相流出的电流为:
           Ia=Ua/R+jwCa·Ua=(Ea+Un)/R+jwCa·(Ea+Un)
           Ib=jwCb·Ub=jwCb·(Eb+Un)
           Ic=jwCc·Uc=jwCc·(Ec+Un)
由于            Ia+Ib+Ic=0
设定            Ca=Cb=Cc=Cs
那么            Ea+Un·(1+j3wCsR)=0
                Un=-Ea/(1+j3wCsR)                         (1)
正如图1b所示,(1)式表示中性点对地电压Un是在圆弧a-g-n上移动,圆弧的直径为Ea。
当R=0(金属接地)时,→g点与a点重合,中性点对地电压Un=-Ea,非故障相电压 Ub = Uc = 3 · Ea , 故障相电压Ua=0。
当R=∞(无故障状态)时,→g点与n点重合,中性点对地电压Un=0。
根据R值大小的变化,有可能产生非故障相电压 Uc > 3 · Ea .
当10kV配电系统发生单相接地时,全10kV配电系统将出现零序电压,采用零序电压启动,用零序电流除以零序电压结果值判别。图3为某变电站10kV配电系统分支线上A相发生单相接地故障零序电流分布图,图中10kV配电网中性点采用不接地方式,如图3所示,在某分支线上A相发生单相接地故障后非故障分支线上有零序电流,其电容性无功功率的实际方向为母线流向线路侧,非故障分支线上零序电流为:
Icm=jwCsm(Ua+Ub+Uc)=j3wCsmUn                   (2)
而在发生故障分支线上的零序电流其数值等于整个配网对地电容电流之和减去发生故障分支线本身对地电容电流,其电容性无功功率的实际方向为线路流向母线侧。计算公式如下:
发生故障分支线本身对地电容电流:
Ic1=jwCs1(Ua+Ub+Uc)=j3wCs1Un
发生故障分支线零序电流:
Ic0=∑Icm-Ic1=j3w(∑Csm-Cs1)Un                 (3)
由公式(2)、(3)可以看出,系统中零序电流是与系统中零序电压有关系的量,而由公式(1)可以看出,系统中零序电压是与故障点接地电阻值R、电网中电容值Cs均有关系的变化量,尤其系统中故障点接地电阻R是个变化很复杂的量。当系统中单相接地不是很明显时,系统中零序电流会很小,因此单纯比较系统中各分支线零序电流大小或者零序无功功率方向的办法会很难确定发生单相接地故障的分支线。如果将公式(2)、(3)改变为:
Icm/Un=3wCsm                                    (4)
Ic0/Un=3w(∑Csm-Cs1)                            (5)
用分支线上零序电流值比上系统中零序电压值,对于非发生故障分支线其结果值仅与该分支线对地电容值Csm有关,对于发生故障分支线其结果值与整个配网和该分支线对地电容值之差(∑Csm-Cs1)有关,如果系统中投入或切除一回10kV配出线路,或者,在母线上并联一组调整电容器,对之进行投入和切除操作,改变整个配网对地电容值,那么,前者是个无变化量的值,而后者是个有变化量的值,系统中检测设备如果检测到这个变化值,就可以确定发生单相接地故障的分支线。如果能够先前测定发生故障分支线对地电容值,给出该分支线上零序电流值比上系统中零序电压值的基准结果值,当检测到该分支线上零序电流值比上系统中零序电压值有较大变化,即可确定该分支线上发生了单相接地故障。
(2)对于中性点经消弧线圈接地电网:
图2a为消弧线圈接地电网结构示意图,图2b为消弧线圈接地电网及电压矢量图,图中,中性点n的电位设为Un′,大地设为g′。当a相经过接地电阻R′发生接地故障时,各相流出的电流为:
Ia′=Ua′/R′+jwCa′·Ua′=(Ea+Un′)/R′+jwCa′·(Ea+Un′)
Ib′=jwCb′·Ub′=jwCb′·(Eb+Un′)
Ic′=jwCc′·Uc′=jwCc′·(Ec+Un′)
流经消弧线圈零序电流:
              In′=Un′/jwLn′=-jUn′/wLn′
由于          Ia′+Ib′+Ic′+In′=0
设定          Ca′=Cb′=Cc′=Cs′
那么          Ea+Un′·[1+j(3wCs′R′-1/wLn′)]=0
              Un′=-Ea/[1+j(3wCs′R′-1/wLn′)]       (6)
正如图2中电压矢量图所示,(6)式表示中性点对地电压Un′是在整个圆a-g-n上移动,圆的直径为Ea。
当R=0(金属接地)时,→g点与a点重合。(6)式中,中性点对地电压
Un′=-Ea/(1-j/wLn),实际上图2中g点与a点并没有重合,这是因为系统中A相电势已经发生变化,变化后新A相电势Ea′=Ea/(1-j/wLn),非故障相电压Ub′=Uc′=√3·Ea不再成立,这与传统上的看法是不一致的。而故障相电压Ua=0。
当R′=∞(无故障状态)时,→g点与n点重合,中性点对地电压Un′=0。
根据R′值和Ln′值大小的变化,有可能产生非故障相电压Uc′>√3·Ea,或者,Ub′>√3·Ea。
公式(6)计算中,没有考虑3Cs′(Ca′∥Cb′∥Cc′)与Ln′组成的零序串联回路发生谐振条件,当该串联回路接近谐振条件时,中性点对地电压Un′会变得很大。由于运行中规定中性点对地电压Un′不大于15%的相电压(Un′<0.15Ea),系统中通常作法是在消弧线圈回路中串联或并联电阻增大阻尼,或者调整消弧线圈电感,使LC不完全谐振实现。
当10kV配电系统发生单相接地时,全10kV配电系统将出现零序电压,新的解决方案是采用零序电压启动,用零序电流除以零序电压结果值判别。图4为某变电站10kV配电系统分支线上A相发生单相接地零序电流分布图,图中10kV配电网中性点采用消弧线圈接地方式,如图4所示,在某分支线上A相发生单相接地故障后非故障分支线上有零序电流,其电容性无功功率的实际方向为母线流向线路侧,非故障分支线上零序电流为:
Icm′=jwCsm′(Ua′+Ub′+Uc′)=j3wCsm′Un′            (7)
而在发生故障分支线上的零序电流其数值等于其分支线本身对地电容电流减去流经故障点的残余电流,因为流经故障点的残余电流为经过消弧线圈补偿后的残余电流,且在系统采用过补偿方式,过补偿不大的情况下,发生故障分支线上的零序电流值接近于其分支线本身对地电容电流,电容性无功功率的实际方向也为母线流向线路侧。计算公式如下:
发生故障分支线本身对地电容电流:
Ic1′=jwCs1′(Ua′+Ub′+Uc′)=j3wCs1′Un′
流经消弧线圈零序电流:
In′=Un′/jwLn′=-jUn′/wLn′
故障点经过补偿后的残余电流:
In0′=In′+∑Icm′=-jUn′/wLn′+j3w∑Csm′
Un′=j(3w∑Csm′-1/wLn′)Un′
发生故障分支线零序电流:
Ic0′=Ic1′-In0′=j[1/wLn′-3w(∑Csm′-Cs1′)]Un′   (8)
由公式(7)、(8)可以看出,系统中零序电流是与系统中零序电压有关系的量,而由公式(6)可以看出,系统中零序电压是与故障点接地电阻值R′、电网中电容值Cs′、系统中补偿消弧线圈电感值Ln′均有关系的变化量,尤其系统中故障点接地电阻R是个变化很复杂的量。因此单纯比较系统中各分支线零序电流大小的办法很难确定发生单相接地故障的分支线。如果将公式(7)、(8)改变为:
Icm′/Un′=3wCsm′                              (9)
Ic0′/Un′=1/wLn′-3w(∑Csm′-Cs1′)            (10)
用分支线上零序电流值比上系统中零序电压值,对于非发生故障分支线其结果值仅与该分支线对地电容值Csm′有关,对于发生故障分支线其结果值与消弧线圈电感值Ln′及整个配网和该分支线对地电容值之差(∑Csm′-Cs1′)有关,如果改变消弧线圈电感值Ln′,即适当调整消弧线圈补偿度,或者,同先前办法一样,系统中投入或切除一回10kV配出线路,或者,在母线上并联一组调整电容器,对之进行投入和切除操作,调整整个配网对地电容值,那么,前者是个无变化量的值,而后者是个有变化量的值,系统中检测设备如果检测到这个变化值,就可以确定发生单相接地故障的分支线。
本发明所述的一种小电流接地选线及故障定位的方法,其特征在于故障点的确定的过程如下:
在已确定单相接地故障分支线路后,通过上传该分支线路各区间微机智能配电终端检测到的零序电流值,新的小电流接地选线微机装置接受后,用检测到的零序电流值除以系统中零序电压值,并加以判别,就可以确定故障点位置。
对于中性点不接地系统:
故障点负荷侧检测到的零序电流(公式推导见前述):
I2=j3wC2Un
I2/Un=3wC2                                          (11)
故障点电源侧检测到的零序电流(公式推导见前述):
I1=j3wC1Un
I1/Un=3wC1                                          (12)
对于中性点经消弧线圈接地系统:
故障点负荷侧FTU检测到的零序电流(公式推导见前述):
I2=j3wC2Un′
I2/Un′=3wC2                                        (13)
故障点电源侧检测到的零序电流(公式推导见前述):
I1=j[1/wLn′-3wC1]Un′
I1/Un′=1/wLn′-3wC1                                (14)
如图5a所示,分支线联络开关处可安装智能配电终端(FTU),设定故障点发生在分支线联络开关S4-S5之间,当系统中调整消弧线圈补偿度,改变消弧线圈电感值,或者,系统中投入或切除一回10kV配出线路,或者,在母线上并联一组调整电容器,对之进行投入和切除操作,改变整个配网对地电容值时,由公式(11)、(12)、(13)、(14)可以看出,分支线联络开关S4处及S4处前的智能配电终端(FTU)检测到的零序电流值与系统中零序电压值的比值调整前后有变化,而分支线联络开关S5处及S5处后的智能配电终端(FTU)检测到的零序电流值与系统中零序电压值的比值是个固定值。因此,当系统检测到分支线联络开关S5为第一个零序电流值与系统中零序电压值比值的固定值,就可以确定单相接地故障点发生在分支线联络开关S4-S5之间。
故障选线及定位的校正过程如下:
上述单相接地选线及故障点定位方案是基于一种完全理想化配网系统推导出的,即整个配网系统及各分支线三相对地电容认为完全一致。而实际配网系统情况很复杂,各分支线及整个配网系统三相对地电容有可能不同,给故障选线和定位带来各种问题。当考虑三相对地电容不同时,非故障分支线上实际零序电流:
Icm实际=jwCamUa+jwCbmUb+jwCcmUc
       =(jwCamEa+jwCbmEb+jwCcmEc)+j3wCsmUn
式中,Cam、Cbm、Ccm分别是分支线m的a相、b相、c相对地电容值,Csm是分支线m三相对地电容平均值,将公式改变为:
Icm实际=Icm不平衡+Icm理想
式中,Icm不平衡=jwCamEa+jwCbmEb+jwCcmEc,是分支线m三相对地电容值不平衡产生的电流;Icm理想为分支线m理想状态(三相平衡)零序电流,其计算方法同前,Icm理想=j3wCsmUn。
当Icm不平衡值足够大,不可忽略时,将会影响Icm实际/Un比值,造成两次时间非故障分支线Icm实际/Un比值产生变化,不能进行准确选线。如果用两次时间检测到的分支线实际零序电流矢量之差与两次时间检测到的系统零序电压矢量之差进行比值计算,计算公式如下:
ΔIcm实际=Icm实际2-Icm实际1
         =(Icm不平衡+Icm理想2)-(Icm不平衡+Icm理想1)
         =Icm理想2-Icm理想1
         =j3wCsm(Un实际2-Un实际1)
ΔIcm实际/ΔUn实际=j3wCsm(Un实际2-Un实际1)/(Un实际2-Un实际1)
ΔIcm实际/ΔUn实际=3wCsm
以上公式中:
Icm实际1-调整前非故障分支线m实际检测到的零序电流;
Icm实际2-调整后非故障分支线m实际检测到的零序电流;
Icm理想1-调整前非故障分支线m理想状态(三相平衡)计算的零序电流;
Icm理想2-调整后非故障分支线m理想状态(三相平衡)计算的零序电流;
Icm不平衡-调整前、后非故障分支线m三相不平衡产生的零序电流;
Un实际1-调整前系统实际检测到的零序电压;
Un实际2-调整后系统实际检测到的零序电压;
ΔIcm实际-调整前、后非故障分支线m实际检测到的零序电流矢量之差;
ΔUn实际-调整前、后系统实际检测到的零序电压矢量之差。
由上边公式可见,ΔIcm实际/ΔUn实际比值仅与该分支线三相对地电容平均值Csm有关,是个常数,当进行第二次配网系统参数调整(或整体改变配网对地电容值,或改变消弧线圈电感值),两次调整时间ΔIcm实际/ΔUn实际比值不会发生变化。上述观点是针对非故障分支线而言。对于发生故障分支线,ΔIcm实际/ΔUn实 际比值是个变化很复杂的量,当进行第二次配网系统参数调整,两次调整时间ΔIcm实际/ΔUn实际比值将会发生变化。由此而来,可以很准确地找到发生故障分支线。对于故障分支线上故障点定位,采用的办法是同样的。

Claims (4)

1、一种小电流接地选线及故障定位的方法,其特征在于其分为以下步骤:
(1)在发生单相接地故障第一时间检测出系统零序电压和各分支线零序电流值;
(2)故障线的确定:
在第二时间,对于中性点不接地系统,仅可以改变整个配电网对地电容值,调整后检测出第二时间系统零序电压和各分支线零序电流值;对于消弧线圈接地系统,可以改变消弧线圈补偿度,或者改变整个配电网对地电容值,调整后检测出第二时间系统零序电压和各分支线零序电流值;两次时间分别用支线零序电流值除以系统零序电压值,得其结果值;对于没有发生故障的线路,这个结果值两次时间没有发生变化,对于发生故障的线路,这个结果值两次时间发生了变化,当确定某支线存在这个变化值,就可以确定该支线发生了单相接地故障;
对于中性点经过电阻接地,本方法同样适用,调整方法可以通过改变零序系统阻抗实现;
(3)故障点的确定:
在已确定单相接地故障分支线路后,通过上传该分支线路各区间微机智能配电终端检测到的零序电流值,新的小电流接地选线微机装置接受后,用检测到的零序电流值除以系统中零序电压值,并加以判别,就可以确定故障点位置;故障点负荷侧零序电流值与系统零序电压值的比值两次时间没有发生变化,故障点电源侧零序电流值与系统零序电压值的比值两次时间发生了变化;由此就可以确定故障线路上故障点位置。
2、根据权利要求1所述的一种小电流接地选线及故障定位的方法,其特征在于
(1)对于中性点不接地系统:
中性点n的电位设为Un,当a相经过接地电阻R发生接地故障时,各相流出的电流为:
Ia=Ua/R+jwCa·Ua=(Ea+Un)/R+jwCa·(Ea+Un)
Ib=jwCb·Ub=jwCb·(Eb+Un)
Ic=jwCc·Uc=jwCc·(Ec+Un)
由于Ia+Ib+Ic=0
设定Ca=Cb=Cc=Cs
那么Ea+Un·(1+j3wCsR)=0
    Un=-Ea/(1+j3wCsR)          (1)
配电网系统发生单相接地时,全配电系统将出现零序电压,采用零序电压启动,用零序电流除以零序电压结果值来判别故障线路;在某分支线上A相发生单相接地故障后非故障分支线上有零序电流,其电容性无功功率的实际方向为母线流向线路侧,
非故障分支线上零序电流为:
Icm=jwCsm(Ua+Ub+Uc)=j3wCsmUn        (2)
而在发生故障分支线上的零序电流其数值等于整个配网对地电容电流之和减去发生故障分支线本身对地电容电流,其电容性无功功率的实际方向为线路流向母线侧;计算公式如下:
发生故障分支线本身对地电容电流:
Ic1=jwCs1(Ua+Ub+Uc)=j3wCs1Un
发生故障分支线零序电流:
Ic0=∑Icm-Ic1=j3w(∑Csm-Cs1)Un      (3)
由公式(2)、(3)可以看出,系统中零序电流是与系统中零序电压有关系的量,而由公式(1)可以看出,系统中零序电压是与故障点接地电阻值R、电网中电容值Cs均有关系的变化量,尤其系统中故障点接地电阻R是个变化很复杂的量;如果将公式(2)、(3)改变为:
Icm/Un=3wCsm                         (4)
Ic0/Un=3w(∑Csm-Cs1)                 (5)
用分支线上零序电流值比上系统中零序电压值,对于非发生故障分支线其结果值仅与该分支线对地电容值Csm有关,对于发生故障分支线其结果值与整个配网和该分支线对地电容值之差(∑Csm-Cs1)有关,如果改变整个配网对地电容值,那么,前者是个无变化量的值,而后者是个有变化量的值,系统中检测设备如果检测到这个变化值,就可以确定发生单相接地故障的分支线;如果能够先前测定发生故障分支线对地电容值,给出该分支线上零序电流值比上系统中零序电压值的基准结果值,当检测到该分支线上零序电流值比上系统中零序电压值有较大变化,即可确定该分支线上发生了单相接地故障;
以上公式中:
Ea-a相感应相电势;  Eb-b相感应相电势;  Ec-c相感应相电势;
Ua-a相对地电压;    Ub-b相对地电压;    Uc-c相对地电压;
Un-中性点对地电压;
Ca-a相对地电容;    Cb-b相对地电容;    Cc-c相对地电容;
Ia-a相对地电容电流;Ib-b相对地电容电流;Ic-c相对地电容电流;
R-a相接地电阻;
Cs1-分支线1各相对地电容(三相平衡);
Cs2-分支线2各相对地电容(三相平衡);
Csm-分支线m各相对地电容(三相平衡);
Ic1-分支线1对地电容电流;
Ic2-分支线2对地电容电流;
Icm-分支线m对地电容电流;
Ic0-分支线1零序电流;
∑Icm-各分支线对地电容电流之和;
(2)对于中性点经消弧线圈接地电网:
中性点n的电位设为Un′,当a相经过接地电阻R′发生接地故障时,各相流出的电流为:
Ia′=Ua′/R′+jwCa′·Ua′=(Ea+Un′)/R′+jwCa′·(Ea+Un′)
Ib′=jwCb′·Ub′=jwCb′·(Eb+Un′)
Ic′=jwCc′·Uc′=jwCc′·(Ec+Un′)
流经消弧线圈零序电流:
    In′=Un′/jwLn′=-jUn′/wLn′
由于Ia′+Ib′+Ic′+In′=0
设定Ca′=Cb′=Cc′=Cs′
那么Ea+Un′·[1+j(3wCs′R′-1/wLn′)]=0
    Un′=-Ea/[1+j(3wCs′R′-1/wLn′)]           (6)
当配电网系统发生单相接地时,全配电系统将出现零序电压,采用零序电压启动,用零序电流除以零序电压结果值判别;在某分支线上A相发生单相接地故障后非故障分支线上有零序电流,其电容性无功功率的实际方向为母线流向线路侧,非故障分支线上零序电流为:
Icm′=jwCsm′(Ua′+Ub′+Uc′)=j3wCsm′Un′     (7)
而在发生故障分支线上的零序电流其数值等于其分支线本身对地电容电流减去流经故障点的残余电流,因为流经故障点的残余电流为经过消弧线圈补偿后的残余电流,且在系统采用过补偿方式,过补偿不大的情况下,发生故障分支线上的零序电流值接近于其分支线本身对地电容电流,电容性无功功率的实际方向也为母线流向线路侧;计算公式如下:
发生故障分支线本身对地电容电流:
Ic1′=jwCs1′(Ua′+Ub′+Uc′)=j3wCs1′Un′
流经消弧线圈零序电流:
In′=Un′/jwLn′=-jUn′/wLn′
故障点经过补偿后的残余电流:
In0′=In′+∑Icm′=-jUn′/wLn′+j3w∑Csm′
Un′=j(3w∑Csm′-1/wLn′)Un′
发生故障分支线零序电流:
Ic0′=Ic1′-In0′=j[1/wLn′-3w(∑Csm′-Cs1′)]Un′    (8)
由公式(7)、(8)可以看出,系统中零序电流是与系统中零序电压有关系的量,而由公式(6)可以看出,系统中零序电压是与故障点接地电阻值R′、电网中电容值Cs′、系统中补偿消弧线圈电感值Ln′均有关系的变化量,尤其系统中故障点接地电阻R′是个变化很复杂的量;将公式(7)、(8)改变为:
Icm′/Un′=3wCsm′                      (9)
Ic0′/Un′=1/wLn′-3w(∑Csm′-Cs1′)    (10)
用分支线上零序电流值比上系统中零序电压值,对于非发生故障分支线其结果值仅与该分支线对地电容值Csm′有关,对于发生故障分支线其结果值与消弧线圈电感值Ln′及整个配网和该分支线对地电容值之差(∑Csm′-Cs1′)有关,如果改变消弧线圈电感值Ln′,即调整消弧线圈补偿度,或者,同先前办法一样,改变整个配网对地电容值,那么,前者是个无变化量的值,而后者是个有变化量的值,系统中检测设备如果检测到这个变化值,就可以确定发生单相接地故障的分支线;
以上公式中:
Ea-a相感应相电势;    Eb-b相感应相电势;    Ec-c相感应相电势;
Ua′-a相对地电压;    Ub′-b相对地电压;    Uc′-c相对地电压;
Un′-中性点对地电压;
Ca′-a相对地电容;    Cb′-b相对地电容;    Cc′-c相对地电容;
Ia′-a相对地电容电流;Ib′-b相对地电容电流;Ic′-c相对地电容电流;
R′-a相接地电阻;     Ln′-消弧线圈电感值;
Cs1′-分支线1各相对地电容(三相平衡);
Cs2′-分支线2各相对地电容(三相平衡);
Csm′-分支线m各相对地电容(三相平衡);
Ic1′-分支线1对地电容电流;
Ic2′-分支线2对地电容电流;
Icm′-分支线m对地电容电流;
Ic0′-分支线1零序电流;
∑Icm′-各分支线对地电容电流之和;
In′-流经消弧线圈零序电流;
In0′-故障点经过补偿后残余电流。
3、根据权利要求1或2所述的一种小电流接地选线及故障定位的方法,其特征在于故障点的确定的过程如下:
在已确定单相接地故障分支线路后,通过上传该分支线路各区间微机智能配电终端检测到的零序电流值,新的小电流接地选线微机装置接受后,用检测到的零序电流值除以系统中零序电压值,并加以判别,就可以确定故障点位置;
对于中性点不接地系统:
故障点负荷侧检测到的零序电流(公式推导见前述):
I2=j3wC2Un
I2/Un=3wC2                                       (11)
故障点电源侧检测到的零序电流(公式推导见前述):
I1=j3wC1Un
I1/Un=3wC1                     (12)
对于中性点经消弧线圈接地系统:
故障点负荷侧检测到的零序电流(公式推导见前述):
I2=j3wC2Un′
I2/Un′=3wC2                   (13)
故障点电源侧检测到的零序电流(公式推导见前述):
I1=j[1/wLn′-3wC1]Un′
I1/Un′=1/wLn′-3wC1           (14)
当系统中调整消弧线圈补偿度,改变消弧线圈电感值,或者,系统中投入或切除一回配出线路,改变整个配网对地电容值时,由公式(11)、(12)、(13)、(14)可以看出,故障点电源侧检测到的零序电流值与系统中零序电压值的比值发生了变化,故障点负荷侧检测到的零序电流值与系统中零序电压值的比值是个固定值;由此可以确定单相接地故障点;
以上公式中:
C1-故障点电源侧整个配电网各相对地电容(三相平衡);
C2-分支线故障点负荷侧各相残余对地电容(三相平衡)。
4、根据权利要求1或2或3所述的一种小电流接地选线及故障定位的方法,其特征在于校正过程如下:
上述单相接地选线及故障点定位方案是基于一种完全理想化配网系统推导出的,即整个配网系统及各分支线三相对地电容认为完全一致;当考虑三相对地电容不同时,非故障分支线m实际零序电流:
Icm实际=jwCamUa+jwCbmUb+jwCcmUc
       =(jwCamEa+jwCbmEb+jwCcmEc)+j3wCsmUn
式中,Cam、Cbm、Ccm分别是分支线m的a相、b相、c相对地电容值,Csm是分支线m三相对地电容平均值,将公式改变为:
Icm实际=Icm不平衡+Icm理想
式中,Icm不平衡=jwCamEa+jwCbmEb+jwCcmEc,是分支线m三相对地电容值不平衡产生的电流;Icm理想为分支线m理想状态(三相平衡)零序电流,其计算方法同前,Icm理想=j3wCsmUn;
当Icm不平衡值足够大,不可忽略时,将会影响Icm实际/Un比值,造成两次时间非故障分支线Icm实际/Un比值产生变化,不能进行准确选线;如果用两次时间检测到的分支线实际零序电流矢量之差与两次时间检测到的系统零序电压矢量之差进行比值计算,计算公式如下:
ΔIcm实际=Icm实际2-Icm实际1
           =(Icm不平衡+Icm理想2)-(Icm不平衡+Icm理想1)
           =Icm理想2-Icm理想1
           =j3wCsm(Un实际2-Un实际1)
ΔIcm实际/ΔUn实际=j3wCsm(Un实际2-Un实际1)/(Un实际2-Un实际1)
ΔIcm实际/ΔUn实际=3wCsm
以上公式中:
Icm实际1—调整前非故障分支线m实际检测到的零序电流;
Icm实际2—调整后非故障分支线m实际检测到的零序电流;
Icm理想1—调整前非故障分支线m理想状态(三相平衡)计算的零序电流;
Icm理想2—调整后非故障分支线m理想状态(三相平衡)计算的零序电流;
Icm不平衡—调整前、后非故障分支线m三相不平衡产生的零序电流;
Un实际1—调整前系统实际检测到的零序电压;
Un实际2—调整后系统实际检测到的零序电压;
ΔIcm实际—调整前、后非故障分支线m实际检测到的零序电流矢量之差;
ΔUn实际—调整前、后系统实际检测到的零序电压矢量之差;
由上边公式可见,ΔIcm实际/ΔUn实际比值仅与该分支线三相对地电容平均值Csm有关,是个常数,当进行第二次配网系统参数调整(或整体改变配网对地电容值,或改变消弧线圈电感值),两次调整时间ΔIcm实际/ΔUn实际比值不会发生变化;上述观点是针对非故障分支线而言;对于发生故障分支线,ΔIcm实际/ΔUn实 际比值是个变化很复杂的量,当进行第二次配网系统参数调整,两次调整时间ΔIcm实际/ΔUn实际比值将会发生变化;由此而来,可以很准确地找到发生故障分支线;对于故障分支线上故障点定位,采用的办法是同样的。
CNB031341772A 2003-08-26 2003-08-26 一种小电流接地选线及故障定位的方法 Expired - Fee Related CN100335911C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB031341772A CN100335911C (zh) 2003-08-26 2003-08-26 一种小电流接地选线及故障定位的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB031341772A CN100335911C (zh) 2003-08-26 2003-08-26 一种小电流接地选线及故障定位的方法

Publications (2)

Publication Number Publication Date
CN1591033A true CN1591033A (zh) 2005-03-09
CN100335911C CN100335911C (zh) 2007-09-05

Family

ID=34597144

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031341772A Expired - Fee Related CN100335911C (zh) 2003-08-26 2003-08-26 一种小电流接地选线及故障定位的方法

Country Status (1)

Country Link
CN (1) CN100335911C (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201379B (zh) * 2006-12-11 2010-06-23 山东科汇电力自动化有限公司 电力系统小电流接地故障指示、分段方法
CN102074950A (zh) * 2011-01-13 2011-05-25 长沙理工大学 一种配电网接地故障消弧和保护方法
CN102081131A (zh) * 2010-12-02 2011-06-01 河南省电力公司南阳供电公司 一种城市电网小电流接地系统接地点查找方法
CN102103180A (zh) * 2010-12-02 2011-06-22 河南省电力公司南阳供电公司 一种农村电网小电流接地系统接地点查找方法
CN102279349A (zh) * 2011-07-13 2011-12-14 国网电力科学研究院 基于残流变量的小电流接地选线方法
CN102540010A (zh) * 2010-12-29 2012-07-04 吴昌德 小电流接地系统零序电流逐渐转移选线的试验方法
CN102621449A (zh) * 2012-03-16 2012-08-01 河南理工大学 一种小电流接地系统单相接地故障区段定位方法
CN102788926A (zh) * 2012-07-04 2012-11-21 河南理工大学 小电流接地系统单相接地故障区段定位方法
CN102798795A (zh) * 2012-08-14 2012-11-28 大连电力勘察设计院有限公司 一种小电流接选线及故障定位的方法
CN102879710A (zh) * 2012-09-24 2013-01-16 吉林市简通电气科技有限公司 配电线路单相接地故障点检测系统和检测方法
CN102928731A (zh) * 2012-11-06 2013-02-13 昆明理工大学 一种利用零序电流全量Hough变换的配电网故障选线方法
CN103163416A (zh) * 2013-03-28 2013-06-19 瑞安电力有限责任公司 一种分支线路单相接地故障检测方法及装置
CN103235235A (zh) * 2013-03-28 2013-08-07 北京昊创瑞通电气设备有限公司 一种架空线路接地故障监测的方法及装置
CN103293387A (zh) * 2013-06-05 2013-09-11 中国南方电网有限责任公司 一种基于故障录波数据的输电线路故障接地电阻计算方法
CN103424671A (zh) * 2013-09-03 2013-12-04 刘天明 电力系统小电流接地故障人工判别选线系统
CN103944156A (zh) * 2014-04-16 2014-07-23 江苏汉天星配电自动化科技有限公司 消弧线圈接地方式的接地预告方法
CN104849617A (zh) * 2015-05-15 2015-08-19 国家电网公司 利用虚拟功率最大原理实现配网单相故障选线方法
CN105425112A (zh) * 2015-12-18 2016-03-23 深圳供电局有限公司 一种小电流接地系统的故障选线方法及装置
CN106370961A (zh) * 2016-08-17 2017-02-01 积成电子股份有限公司 基于电容负荷注入的变电站小电流接地故障选线方法
CN106771877A (zh) * 2017-01-11 2017-05-31 北京衡天北斗科技有限公司 中性点非有效接地系统的故障点位置的确定方法和装置
CN109444672A (zh) * 2018-12-28 2019-03-08 张安斌 一种自动跟踪小电流选线装置及选线方法
CN109507520A (zh) * 2018-12-20 2019-03-22 国网北京市电力公司 变压器的匝间故障检测方法、装置、存储介质和处理器
CN110261720A (zh) * 2019-08-06 2019-09-20 云南电网有限责任公司电力科学研究院 配电网接地故障的单相接地判别方法及装置
CN111262232A (zh) * 2020-03-05 2020-06-09 南京方自科技有限公司 一种配网接地状态安全识别及工况控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101435845B (zh) * 2008-12-15 2010-11-03 辽宁省电力有限公司锦州供电公司 小接地电流系统双回线单相接地故障测距方法
CN101598761B (zh) * 2009-07-29 2011-01-26 江苏省电力公司常州供电公司 配电网小电流接地系统故障选线方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180272C (zh) * 2001-11-28 2004-12-15 淄博科汇电气有限公司 电力系统小电流接地故障选线、分段方法
CN1209634C (zh) * 2002-08-16 2005-07-06 华中科技大学 小电流接地系统馈线接地故障区段定位方法

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201379B (zh) * 2006-12-11 2010-06-23 山东科汇电力自动化有限公司 电力系统小电流接地故障指示、分段方法
CN102081131A (zh) * 2010-12-02 2011-06-01 河南省电力公司南阳供电公司 一种城市电网小电流接地系统接地点查找方法
CN102103180A (zh) * 2010-12-02 2011-06-22 河南省电力公司南阳供电公司 一种农村电网小电流接地系统接地点查找方法
CN102081131B (zh) * 2010-12-02 2013-11-20 国网河南省电力公司南阳供电公司 一种城市电网小电流接地系统接地点查找方法
CN102540010A (zh) * 2010-12-29 2012-07-04 吴昌德 小电流接地系统零序电流逐渐转移选线的试验方法
CN102074950A (zh) * 2011-01-13 2011-05-25 长沙理工大学 一种配电网接地故障消弧和保护方法
CN102074950B (zh) * 2011-01-13 2013-07-31 长沙理工大学 一种配电网接地故障消弧和保护方法
WO2013007051A1 (zh) * 2011-07-13 2013-01-17 国网电力科学研究院 基于残流变量的小电流接地选线方法
CN102279349A (zh) * 2011-07-13 2011-12-14 国网电力科学研究院 基于残流变量的小电流接地选线方法
CN102279349B (zh) * 2011-07-13 2013-10-02 国网电力科学研究院 基于残流变量的小电流接地选线方法
CN102621449A (zh) * 2012-03-16 2012-08-01 河南理工大学 一种小电流接地系统单相接地故障区段定位方法
CN102788926B (zh) * 2012-07-04 2014-11-05 河南理工大学 小电流接地系统单相接地故障区段定位方法
CN102788926A (zh) * 2012-07-04 2012-11-21 河南理工大学 小电流接地系统单相接地故障区段定位方法
CN102798795A (zh) * 2012-08-14 2012-11-28 大连电力勘察设计院有限公司 一种小电流接选线及故障定位的方法
CN102798795B (zh) * 2012-08-14 2014-11-05 大连电力勘察设计院有限公司 一种小电流接地选线及故障定位的方法
CN102879710A (zh) * 2012-09-24 2013-01-16 吉林市简通电气科技有限公司 配电线路单相接地故障点检测系统和检测方法
CN102879710B (zh) * 2012-09-24 2015-02-18 吉林市简通电气科技有限公司 配电线路单相接地故障点检测系统和检测方法
CN102928731A (zh) * 2012-11-06 2013-02-13 昆明理工大学 一种利用零序电流全量Hough变换的配电网故障选线方法
CN103235235B (zh) * 2013-03-28 2015-09-09 北京昊创瑞通电气设备有限公司 一种架空线路接地故障监测的方法及装置
CN103163416A (zh) * 2013-03-28 2013-06-19 瑞安电力有限责任公司 一种分支线路单相接地故障检测方法及装置
CN103163416B (zh) * 2013-03-28 2015-04-01 国家电网公司 一种分支线路单相接地故障检测方法及装置
CN103235235A (zh) * 2013-03-28 2013-08-07 北京昊创瑞通电气设备有限公司 一种架空线路接地故障监测的方法及装置
CN103293387A (zh) * 2013-06-05 2013-09-11 中国南方电网有限责任公司 一种基于故障录波数据的输电线路故障接地电阻计算方法
CN103424671A (zh) * 2013-09-03 2013-12-04 刘天明 电力系统小电流接地故障人工判别选线系统
CN103944156A (zh) * 2014-04-16 2014-07-23 江苏汉天星配电自动化科技有限公司 消弧线圈接地方式的接地预告方法
CN104849617A (zh) * 2015-05-15 2015-08-19 国家电网公司 利用虚拟功率最大原理实现配网单相故障选线方法
CN105425112A (zh) * 2015-12-18 2016-03-23 深圳供电局有限公司 一种小电流接地系统的故障选线方法及装置
CN106370961A (zh) * 2016-08-17 2017-02-01 积成电子股份有限公司 基于电容负荷注入的变电站小电流接地故障选线方法
CN106370961B (zh) * 2016-08-17 2019-03-29 积成电子股份有限公司 基于电容负荷注入的变电站小电流接地故障选线方法
CN106771877A (zh) * 2017-01-11 2017-05-31 北京衡天北斗科技有限公司 中性点非有效接地系统的故障点位置的确定方法和装置
CN109507520A (zh) * 2018-12-20 2019-03-22 国网北京市电力公司 变压器的匝间故障检测方法、装置、存储介质和处理器
CN109507520B (zh) * 2018-12-20 2021-03-16 国网北京市电力公司 变压器的匝间故障检测方法、装置、存储介质和处理器
CN109444672A (zh) * 2018-12-28 2019-03-08 张安斌 一种自动跟踪小电流选线装置及选线方法
CN110261720A (zh) * 2019-08-06 2019-09-20 云南电网有限责任公司电力科学研究院 配电网接地故障的单相接地判别方法及装置
CN111262232A (zh) * 2020-03-05 2020-06-09 南京方自科技有限公司 一种配网接地状态安全识别及工况控制方法

Also Published As

Publication number Publication date
CN100335911C (zh) 2007-09-05

Similar Documents

Publication Publication Date Title
CN100335911C (zh) 一种小电流接地选线及故障定位的方法
CN1175543C (zh) 串联补偿器
CN1180271C (zh) 并行双输电线故障定位装置和方法
CN1048594C (zh) 电力变换系统
CN1061798C (zh) 防漏电装置及防漏电方法
CN1147998C (zh) 电源控制设备及其控制方法
CN1248073C (zh) 电动机位置控制装置
CN1766658A (zh) 电压检测电路、过电流检测电路、充电电流控制系统及电压检测方法
CN1134885C (zh) 高频换流器及应用该高频换流器的感应加热烹调器
CN1961475A (zh) 交流电机的减速方法以及逆变器装置
CN1479965A (zh) 同步电机控制方法及其装置
CN1314190C (zh) 等离子显示板的持续脉冲发生器
CN1494658A (zh) 检测和计算接地故障电阻的设备和方法
CN1165592A (zh) 充电方法、充电装置及集成电路
CN1217479C (zh) 同步电动机控制器
CN1801592A (zh) 开关电源电路
CN1132287C (zh) 电子机器和电子机器的控制方法
CN101065517A (zh) 用于铝电解还原槽的电连接与磁补偿方法及其系统
CN1237710A (zh) 多回路型计测器和用于该计测的分割型变流器
CN100351742C (zh) 信息处理装置与方法以及计算机可读介质
CN1491474A (zh) 具有由发动机驱动的发电机的电力系统
CN1239982C (zh) 数据处理系统
CN1206233A (zh) 电力变换装置的控制装置
CN1286259C (zh) 开关电源电路
CN1921976A (zh) 放电加工机的电源装置以及电源控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070905

Termination date: 20100826