CN1516188A - 磁性随机存取存储器的铁磁共振切换 - Google Patents

磁性随机存取存储器的铁磁共振切换 Download PDF

Info

Publication number
CN1516188A
CN1516188A CNA2003101215708A CN200310121570A CN1516188A CN 1516188 A CN1516188 A CN 1516188A CN A2003101215708 A CNA2003101215708 A CN A2003101215708A CN 200310121570 A CN200310121570 A CN 200310121570A CN 1516188 A CN1516188 A CN 1516188A
Authority
CN
China
Prior art keywords
magnetic
current
resonant frequency
magnetoresistive cell
electric wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2003101215708A
Other languages
English (en)
Other versions
CN100347785C (zh
Inventor
S
S·吉代尔
V·尼基廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1516188A publication Critical patent/CN1516188A/zh
Application granted granted Critical
Publication of CN100347785C publication Critical patent/CN100347785C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

一种在MRAM位单元上进行写入操作的新的方法,具有改进的切换选择性,利用频率接近自由层的铁磁共振频率的振动字写入电流,结合位线中的电流产生的磁场造成的所述频率的偏移,实现了较低的写入电流。该操作在常规的磁性随机存取存储器中实现,该存储器具有多个由字线和位线的网格交叉点形成的磁阻单元,其中网格中的单个单元可被选择,并可通过字线和位线中电流产生的磁场从一种磁性状态切换成另一种磁性状态。

Description

磁性随机存取存储器的铁磁共振切换
技术领域
本发明涉及磁性随机存取存储器,特别涉及在磁性随机存取存储器阵列内高效地选择和切换磁性单元。
技术背景
计算机存储器的理想的特性是高速度、低功耗、非易失性、高数据密度和低成本。动态随机存取存储器(DRAM)单元速度快,消耗的功率小,但每秒钟必须重新刷新多次,并且需要复杂的结构,这使得它相对较为昂贵。闪存类型的EEPROM单元是非易失性的,具有较低的读出功率,可以构建为单个设备,但需要若干微秒写入和若干毫秒擦除,这使得它们对于许多应用来说太慢了,特别是用于计算机存储器中。常规的半导体存储器单元,例如DRAM、ROM和EEPROM,在单元的平面(即“水平的”)中有电流流动,从而占用的总的表面面积等于基本的存储器单元面积与用于电连接区域的面积之和,因此无法达到理论的最小单元面积。
磁性随机存取存储器有希望成为计算机存储器的候选对象,它可以在达到上述目的的同时克服上述设备的许多限制。IEEE有关纳米技术的记录,第1卷,2002年3月第1期(IEEE Transactions onNanotechnology,Vol.1,No.1,March 2002),作者为B.N.Engel等人的“The Science and Technology of Magnetoresistive Tunneling Memory”一文中讨论了磁性随机存取存储器(MRAM)的优点。磁性随机存取存储器本质上是导电位线和字线的网格。位线之间相互平行并与字线垂直,字线之间也相互平行。磁阻单元被置于在每个字线和位线的交叉点,在电气上将特定字线和特定位线连接起来。通过从特定字线到特定位线跨磁阻单元施加电压,可以确定磁阻单元的磁阻和存储状态(memory state)。尽管MRAM阵列中可以使用各种类型的磁阻单元,例如电流垂直于平面巨磁阻元件(Current Perpendicular to Plane Giant MagnetoresistanceElement CPP GMR),大多数开发努力都专注于隧道阀(也称为磁性隧道结(MTJ)单元)的使用,这是因为它们可能具有很高的电阻变化,δR/R。因此,尽管说明MRAM技术的状态时将参考MTJ单元,应了解的是应用于MRAM阵列的相同原理和问题也引入了其它类型的磁阻单元。
在其最通常的意义上,一个MTJ单元包括由薄绝缘层(也称为隧道阻挡层)分隔的第一和第二铁磁层。其中一个铁磁层的磁化被固定(pinned)在预先确定的方向,而另一层可在磁场的影响下旋转。根据自由和固定磁层的磁化(方向)的相对排列,可以允许或禁止通过隧道阻挡层的电子的量子力学隧道。如果自由层的磁化与固定层的磁化方向对齐,则电子可以通过隧道阻挡层;如果两层的磁化(方向)呈反平行(anti-parallel),则电子将不易通过。而且,MTJ被设计为磁性自由层将具有磁性各向异性,它将使自由层的磁化在两种状态之一中最稳定(即,与固定层平行或反平行)。通过这种方式,一旦MTJ单元被置于特定的磁性状态,它将倾向于保持该状态,直至被磁场作用,这就提供了非易失性。通常通过使电流流过字线和位线来完成MTJ单元的切换。
假如字线和位线生成的磁场足够强,位于通电位线和字线交叉点的单元的自由层将经历磁性反转。Stoner-Wohlfarth相干旋转模型相当精确地描述了MRAM单元中典型自由层的切换行为。根据该模型,如果沿着难磁化轴和易磁化轴方向的磁场位于所谓的星状曲线之外,如图4A所示,将会发生切换。选择操作电流,使得它们可以在选定的单元产生磁场,以满足该单元的切换条件,但不会满足沿着字线或位线的任何其它单元的切换条件(即,未选定的位的场必须位于星状曲线之内)。但是,阵列中的单元不具有相同的磁性属性。位大小、形状、纵横比以及结晶的各向异性的差异导致了切换场的分布。这导致了有关位选择性的问题,即对于给定的写入电流,某些选定的位将会切换,但其它位可能不会。简单地增大写入电流可以切换这些难于切换的位;但是,在这样的大电流下,某些未选定的位也会切换。如图4B所示,内部和外部星形线(分别为Amin和Amax)显示了MRAM阵列中自由层的切换分布的极限。如果在Amax内选择了操作点O,则只有位于星形线A之内的单元才能被切换,而位于星形线A以外的其它单元将无法被寻址。要寻址这些单元,操作点必须移动到Amax以外的P点。但这样的话,具有由Amin描述的分布、沿着选定字线或位线的所有单元都将无意地被切换。
另一个负面影响位选择性的因素是相邻单元产生的磁场。这些场会改变在选定操作点切换选择的位所需的场或导致无意地切换未选择的位。在此领域中,人们已广泛地认识到了位选择性问题并提出了大量的解决方法,例如使用热帮助写入(如D.W.Abraham等人的美国专利No.6385082所述)、使用补偿位电流(如Shaoping Le等人的美国专利No.6424561所述)以及使用磁偏置(如L.T.Tran的美国专利No.6163477所述)。但是,这些提出的解决方法通常在MRAM的其它所需方面(如功耗和面积密度)不尽人意。
MRAM中遇到的另一个问题是位的磁稳定性。随着位的尺寸变得更小,它们接近了超顺磁性的极限。要增加稳定性,一个解决方法是增加位的磁各向异性,但这将需要较强的磁场来切换位,并最终需要较大的功耗。
发明内容
本发明允许使用最小的功率选择和切换MRAM阵列中的特定磁阻单元,并且还允许选择要切换的特定单元而不影响邻近的其它单元。本发明利用了单元的铁磁共振频率。通过将一个直流电流施加到与单元相连的线之一,偏移(改变)单元的共振频率。然后一个交流信号将被施加于连接到特定单元的其它线。生成的此交流信号的频率通常与选定单元的已偏移的共振频率相同,并以该相同的频率生成磁场。此磁场使得自由层的磁性以其已偏移的共振频率振动,使得它易于用最小的能量切换。
至少由于若干理由,本发明比以前的技术具有显著的优势。第一,根据本发明的一个方面,选定的磁阻单元可以用最小的输入能量从一种磁阻状态切换为另一种状态。如前所述(参考了以前的技术),MRAM阵列包括由一组平行的字线和一组平行的位线构成的网格,字线和位线通常相互垂直。每个指定字线都通过磁阻单元连接到指定位线。通过使电流流过与选定单元关联的字线和位线,可以控制该单元的磁性状态。电流产生了磁场,它作用于自由层的磁矩,使其从一个方向旋转到另一个方向。通过以铁磁共振频率将交流电流施加于字线,沿着字线的单元的磁化(方向)将旋转一个角度,它要大于施加相同幅值的直流电流旋转的角度。此外,通过向位线施加一个直流电流,将偏移沿着位线的所有单元的铁磁共振频率,因此使得位于字线交叉点的单元具有更大的选择性。
第二,根据本发明的另一个方面,可以偏移(改变)特定选定单元的共振频率,以便通过施加频率为该偏移的频率的上述交流信号,选定的单元将以该共振频率振动,导致大的磁化(方向)旋转,而其它未偏移其共振频率的邻近单元将以小得多的振幅振动。通过产生通过位线的具有直流偏置的电流,可以完成选定单元的共振频率的偏移。例如,可以将预先确定的直流电流施加于位线。这将沿着自由层的易磁化轴产生一个磁场,它将偏移沿着位线的单元的共振频率,其大小由以下公式近似描述:
f FMR = γ 2 π 4 πM ( H Keff ± H ext )
其中,γ是旋磁常数,M是自由层的饱和磁化强度,Hkeff是自由层的有效各向异性,它可以包括结晶各向异性和形状各向异性,Hext是位线的外部场。上述等式假设磁化(方向)和外部场都位于自由层的膜面之内,并沿着易磁化轴方向。外部场可以与磁化(方向)平行或反平行。
然后,可以将频率基本上与选定单元的已偏移的共振频率相同的交流电流施加到与该单元关联的字线,产生一个相同频率的磁场。应当理解,尽管该字线上的所有单元都将暴露于振动磁场,并且位线上的所有单元都将经受恒定磁场Hext,但是位于字线和位线交叉点的单元将具有最大的磁化(方向)旋转,远大于其它单元,因为它是由共振驱动的唯一的单元。
为了更完全地理解本发明的本质和优点,应参考以下详细说明以及附图,图中同样的参考数字指同样的部件。
附图说明
图1是根据本发明的一个实施例的部分MRAM阵列的透视视图(未按比例);
图2是沿图1中圆圈2的放大视图(未按比例);
图3是根据本发明的一个实施例的MRAM阵列的电气原理示意图;
图4A对于单个畴元件的理想Stoner-Wohlfarth星形曲线;
图4B一组星形曲线,显示了MRAM阵列中切换场的分布和可能的操作点;
图5是典型的铁磁共振响应;
图6是零场响应和场中位移的响应;
图7表示沿着字线和位线的单元的磁性状态,包括位于交叉点的选定单元;以及
图8是字和位电流的时序图以及选定单元的磁性响应。
具体实施方式
图1显示了根据本发明的一个优选实施例的示例磁性随机存取存储器(MRAM)阵列100。多个磁性隧道结(MTJ)单元102被设置在导电的线104、106的直角网格的交叉点。这些导电的线包括用作平行字线104的一组导电线(在水平平面中配置)和另一组平行位线106,通常排列在另一水平平面中与该字线垂直,以使字线104和位线106形成一个网格,从上面看来是交叉的。尽管只显示了两条字线104和两条位线106,但是本领域的技术人员会认识到这样的线的数量通常要多得多。在字线104和位线106的每个交叉点都形成有一个MTJ单元102,以垂直地将字线和位线相互连接起来。MTJ单元102可在两种可能的电阻值之间切换,这就定义了其二进制存储状态。在阵列的检测或读取操作期间,将跨单元102在与该MTJ单元102对应的字线104和位线106之间施加电压,确定其电阻值(即,存储状态)。
通过单元102的垂直电流路径允许单元占用非常小的表面面积。图2中未显示,阵列可在一个基板(例如硅)上形成,该基板可能还包含其它电路。此外,字线104和位线106在除了交叉点区域以外的区域通常由绝缘材料(也未显示)分隔。
参考图2,根据本发明的一个优选实施例,MTJ单元102包含一个自由层108。箭头117指示了自由层108的磁矩。MTJ单元102还包含一个磁性固定的铁磁层116。优选地,该固定层包括反平行(AP)耦合的第一和第二铁磁层118、120,它们被AP耦合层122分隔。第一和第二铁磁固定层118、120将在以后分别称为AP1和AP2。AP1层118和AP2层120的磁化(方向)如箭头123和125所示,沿与自由层108的易磁化轴平行的轴固定。AP2 120的磁化(方向)通过与在固定层116邻近形成的反铁磁(AFM)材料层124交换耦合而被强烈地固定,反平行耦合使得AP1强烈地固定在与AP2相反的方向。尽管有若干合适的反铁磁材料,例如FeMn或NiMn,但是AFM层124优选地为PtMn,它同时具备所需的抗腐蚀、居里温度和交换耦合特性。尽管该优选实施例被描述为具有一个AP耦合固定层,但是那些本领域的技术人员会认识到还可以使用一个简单的单个固定层。
字线104通过MTJ单元102的上方,邻近自由层108并与其具有电接触,并与自由层的易磁化轴的方向相同。位线106从MTJ单元102的下方通过,邻近AFM层并与其具有电接触,位线106的方向与字线104、自由层108磁化的易磁化轴以及固定层116的固定磁矩方向垂直。一个薄的绝缘隧道阻挡层126将自由层108与固定层116分隔开来。隧道阻挡层126由绝缘材料(如氧化铝(Al2O3))构成。
当第二铁磁自由层108和AP1 118的磁矩排列为相同的方向时,通过这些层的电子的自旋具有相同的方向,使得电子可以通过隧道阻挡层126(基于已知的隧道阀效应)。当自由层108的磁矩与AP1的磁矩相反时,每层的电子倾向于具有相反的自旋,使得它们不易通过隧道层126。换句话说,当自由层108和AP1 118的磁矩相同时,隧道阻挡层126充当一个导体,当该磁矩相反时,隧道阻挡层126充当一个绝缘体。通过跨隧道结单元102在其关联的字线104和位线106之间施加一个电压,可以确定其电阻,从而读取隧道结单元102的存储状态。
现在参考图3,该图显示了MRAM阵列100的电气原理示意图,一个直流电流源将一个直流电流施加于特定字线106(b)。MTJ单元102、103,示意地表示为可变电阻,具有与它们的自由层108(图3)相关联的其固有磁性共振频率,它是MTJ传感器的材料和几何形状的函数。应当理解,如果使用了另一种磁阻传感器(例如CPP GMR),这也将适用。由于MTJ传感器基本上具有相同的形状和材料组成,它们也将具有基本相同的固有共振频率。根据以下函数,由直流源128产生的直流电流将产生一个磁场,该磁场移动与特定字线106(a)关联的所有MTJ单元的磁性频率:
f FMR = γ 2 π 4 πM ( H Keff ± H ext )
参考图3,该图显示了MRAM阵列100的电气原理示意图,读取单元与在先技术相同。写入也与在先技术相同,但不是将直流电流同时施加到字线和位线,而是将直流电流施加到位线,将频率为自由层的铁磁共振频率的交流电流施加到字线。参考图5,自由层的磁化旋转将在铁磁共振频率处达到最大。此旋转要比相同振幅的直流电流能够产生的旋转大得多,因此需要更少的功率。此外,预先在位线上施加一个直流电流,沿着位的所有单元的共振频率将偏离它们的零场频率。如果选择位电流的极性,使生成的磁场与自由层的磁化方向相反,则共振频率将向下偏离零场频率,如图6所示。在原理上,对于相同的场,频率的向下偏移可以比向上偏移大很多。参考图7,如果选择字线的频率,使其对应于偏移的共振频率,则位于与位线交叉点的选定单元将以偏移的共振频率振动,导致大的磁化旋转。同时,字线上的其它单元将以小得多的振幅振动,因为它们被驱动非共振。直流位电流和交流字电流的组合比在先技术提供了更大的选择性。图8显示了位线和字线的示例时序的详细情况以及自由层的磁化的分量。首先,将直流电流施加到位线,在一小段延迟(对应于位线电流的上升时间)之后,将交流电流施加到字1(word one),频率为交流电流的偏移共振频率。随着每一个连续的周期,难磁化轴磁化的振幅不断增大,最终由于位场造成的自由层的转矩将切换易磁化轴的磁化(方向),使其与位场方向相同。
在本发明的一个替代实施例中,可以以这样的方向初始地生成位线106中的电流:使该电流感应的磁场的方向与自由层初始的磁化方向相同。然后以单元103的共振频率将交流电流施加到字线104之后,位线106中的电流可以被切换为按相反的方向流动,使自由层的磁化(方向)倒转。此替代方法可以提供改进的切换定时,因为通过位线106中的电流切换定时,可以精确地控制单元103的存储状态的切换定时。但是,此定时改进的代价是降低了速度。
前述实施例的另一改进包括一个正反馈电路,以将交流源调整到偏移的共振频率。此改进校正了由于每个单元的有效各向异性的变化带来的各单元在共振频率上的微小变化。初始情况下,选定单元被以接近于偏移的共振频率的频率驱动,并且通过测量单元的磁阻同时检测自由层振动的振幅。振幅信号被耦合回提供正反馈和增益的电路中,导致在共振曲线的峰值处的持续振动。此类反馈电路在LC和石英晶体振荡器中是众所周知的。
应注意的是本发明是作为最佳构想的实施例在本文中说明的,并且并不意味着是穷举的。尽管本发明参考优选实施例进行了特别显示和说明,那些本领域的技术人员将理解在不偏离本发明的实质和范围的情况下,可以对本发明作出形式和细节上的各种更改。例如,尽管说明本发明使用了具有简单、单层自由层的MTJ单元,本发明中还可以引入一个MRAM阵列,它使用具有反平行耦合的自由和/或简单单层固定层的MTJ单元。此外,本发明可以引入一个反平行耦合自由层,其中来自字线的电流通过AP耦合自由层的中心,如共同转让的专利申请10/263,495中所述。此外,MRAM阵列可以使用巨磁阻(GMR)单元,或其它可能的磁阻单元,而不是MTJ单元。因此,公开的实施例只是说明性的,本发明只应由附加的权利要求限定范围。

Claims (17)

1.一种磁性随机存取存储器设备,包括:
具有第一共振频率的磁阻单元;
与该磁阻单元电连接的第一电线;
与该磁阻单元的第二电线;
与该第一线耦合的第一电源,用于提供通过第一线的电流以使该磁阻单元的共振频率偏移到第二共振频率;
与第二电线耦合的交流电源,该交流电源产生一个电流,该电流具有基本等于偏移的共振频率的频率。
2.如权利要求1所述的磁性随机存取存储器,其中该第一电源是具有直流偏置的电压源。
3.如权利要求1所述的磁性随机存取存储器,其中该第一电源是具有直流偏置的电流源。
4.如权利要求1所述的磁性随机存取存储器,其中该磁阻单元是磁性隧道结单元。
5.如权利要求1所述的磁性随机存取存储器,其中该磁阻单元是巨磁阻(GMR)单元。
6.如权利要求1所述的磁性随机存取存储器,其中所述第一电源以第一方向施加直流电流,并切换到以第二方向施加电流。
7.一种磁性随机存取存储器设备,包括:
具有第一共振频率的磁阻单元;
用于将该共振频率偏移到第二共振频率的装置;
用于提供邻近磁阻单元的交变磁场的装置,该交变磁场具有基本等于该第二共振频率的频率。
8.如权利要求7所述的磁性随机存取存储器,进一步包括邻近该磁阻单元设置的电线,其中偏移磁阻单元共振频率的装置是一个直流电源,它与该电线耦合以在其中产生电流。
9.如权利要求7所述的磁性随机存取存储器,进一步包括邻近该磁阻单元设置的第一电线和邻近该磁阻单元设置的第二电线,该第二电线基本垂直于该第一电线;其中偏移该磁阻单元共振频率的装置是与该第一电线耦合的第一电源;其中产生交变场的装置是与该第二电线耦合的交流第二电源。
10.如权利要求7所述的磁性随机存取存储器,其中该磁阻单元是磁性隧道结单元。
11.如权利要求7所述的磁性随机存取存储器,其中该磁阻单元是巨磁阻(GRM)单元。
12.如权利要求9所述的磁性随机存取存储器,其中该第一电源是具有直流偏置的电流源。
13.如权利要求9所述的磁性随机存取存储器,其中该第一电源是具有直流偏置的电压源。
14.一种在磁性随机存取存储器中切换存储状态的方法,该存储器具有第一和第二导电线,这些导电线通过具有第一磁性共振频率的磁阻单元电气地相互耦合,该方法包括以下步骤:
在该第一线中产生电流,该电流产生一个磁场以将磁阻单元的磁性共振频率偏移到第二共振频率;以及
在第二导电线中产生一个交流电流,该交流电流具有基本等于该第二共振频率的频率。
15.如权利要求14所述的方法,进一步包括:以第一方向沿着第一电线施加电流并将该电流方向切换到第二方向。
16.如权利要求14所述的方法,其中在该第一电线中产生的电流具有直流分量。
17.如权利要求14所述的方法,其中该磁阻单元包括具有净磁矩的磁性自由层,并且其中在第一线中产生的电流具有直流分量,该直流分量在与自由层的磁矩相反的方向产生磁场。
CNB2003101215708A 2003-01-02 2003-12-22 磁性随机存取存储器设备及在其中切换存储状态的方法 Expired - Lifetime CN100347785C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/335,671 US6791868B2 (en) 2003-01-02 2003-01-02 Ferromagnetic resonance switching for magnetic random access memory
US10/335,671 2003-01-02

Publications (2)

Publication Number Publication Date
CN1516188A true CN1516188A (zh) 2004-07-28
CN100347785C CN100347785C (zh) 2007-11-07

Family

ID=32680849

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101215708A Expired - Lifetime CN100347785C (zh) 2003-01-02 2003-12-22 磁性随机存取存储器设备及在其中切换存储状态的方法

Country Status (3)

Country Link
US (1) US6791868B2 (zh)
CN (1) CN100347785C (zh)
TW (1) TWI284901B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169728A (zh) * 2010-02-26 2011-08-31 希捷科技有限公司 磁场检测设备及其使用方法
CN101465156B (zh) * 2007-12-17 2011-12-21 株式会社日立制作所 信息存储装置和存储介质
CN103872242A (zh) * 2012-12-17 2014-06-18 国际商业机器公司 热自旋扭矩传输磁阻随机存取存储器

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118197C2 (de) * 2001-04-11 2003-04-03 Infineon Technologies Ag Integrierte magnetoresistive Halbleiterspeicheranordnung und Verfahren zum Beschreiben derselben
US6909631B2 (en) * 2003-10-02 2005-06-21 Freescale Semiconductor, Inc. MRAM and methods for reading the MRAM
CN100429721C (zh) * 2004-04-01 2008-10-29 中国科学院物理研究所 一种基于垂直电流写入的磁随机存取存储器及其控制方法
US7576956B2 (en) * 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
US7224601B2 (en) * 2005-08-25 2007-05-29 Grandis Inc. Oscillating-field assisted spin torque switching of a magnetic tunnel junction memory element
US7777261B2 (en) 2005-09-20 2010-08-17 Grandis Inc. Magnetic device having stabilized free ferromagnetic layer
US7973349B2 (en) * 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
US7859034B2 (en) * 2005-09-20 2010-12-28 Grandis Inc. Magnetic devices having oxide antiferromagnetic layer next to free ferromagnetic layer
US7430135B2 (en) * 2005-12-23 2008-09-30 Grandis Inc. Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
US20070246787A1 (en) * 2006-03-29 2007-10-25 Lien-Chang Wang On-plug magnetic tunnel junction devices based on spin torque transfer switching
US7851840B2 (en) * 2006-09-13 2010-12-14 Grandis Inc. Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier
US7872905B2 (en) * 2006-12-19 2011-01-18 Hitachi Global Storage Technologies Netherlands B.V. Method and apparatus for write enable and inhibit for high density spin torque three dimensional (3D) memory arrays
US7652915B2 (en) * 2006-12-19 2010-01-26 Hitachi Global Storage Technologies Netherlands B.V. High density spin torque three dimensional (3D) memory arrays addressed with microwave current
US7929349B2 (en) * 2007-02-28 2011-04-19 Samsung Electronics Co., Ltd. Method of operating nonvolatile memory device
US8018781B2 (en) * 2007-02-28 2011-09-13 Samsung Electronics, Co., Ltd. Method of operating nonvolatile memory device
US7957179B2 (en) * 2007-06-27 2011-06-07 Grandis Inc. Magnetic shielding in magnetic multilayer structures
US7982275B2 (en) * 2007-08-22 2011-07-19 Grandis Inc. Magnetic element having low saturation magnetization
US8416539B2 (en) * 2008-08-07 2013-04-09 HGST Netherlands B.V. Magnetic field sensing system using spin-torque diode effect
US7894248B2 (en) 2008-09-12 2011-02-22 Grandis Inc. Programmable and redundant circuitry based on magnetic tunnel junction (MTJ)
US8199553B2 (en) * 2009-12-17 2012-06-12 Hitachi Global Storage Technologies Netherlands B.V. Multilevel frequency addressable field driven MRAM
US8508973B2 (en) * 2010-11-16 2013-08-13 Seagate Technology Llc Method of switching out-of-plane magnetic tunnel junction cells
US8830734B2 (en) * 2010-11-19 2014-09-09 Seagate Technology Llc Using a nearby cell to provide field assisted switching in a magnetic memory array
WO2016018503A1 (en) * 2014-07-30 2016-02-04 University Of South Florida Magnetic memory physically unclonable functions
US10916286B2 (en) 2018-08-17 2021-02-09 Taiwan Semiconductor Manufacturing Co., Ltd. Assisted write method for MRAM testing and field applications

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640343A (en) * 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
US5748519A (en) * 1996-12-13 1998-05-05 Motorola, Inc. Method of selecting a memory cell in a magnetic random access memory device
US5966012A (en) * 1997-10-07 1999-10-12 International Business Machines Corporation Magnetic tunnel junction device with improved fixed and free ferromagnetic layers
US6097625A (en) * 1998-07-16 2000-08-01 International Business Machines Corporation Magnetic random access memory (MRAM) array with magnetic tunnel junction (MTJ) cells and remote diodes
US6178131B1 (en) * 1999-01-11 2001-01-23 Ball Semiconductor, Inc. Magnetic random access memory
US6191972B1 (en) * 1999-04-30 2001-02-20 Nec Corporation Magnetic random access memory circuit
US6163477A (en) * 1999-08-06 2000-12-19 Hewlett Packard Company MRAM device using magnetic field bias to improve reproducibility of memory cell switching
US6166948A (en) * 1999-09-03 2000-12-26 International Business Machines Corporation Magnetic memory array with magnetic tunnel junction memory cells having flux-closed free layers
US6188615B1 (en) * 1999-10-29 2001-02-13 Hewlett-Packard Company MRAM device including digital sense amplifiers
US6424561B1 (en) * 2000-07-18 2002-07-23 Micron Technology, Inc. MRAM architecture using offset bits for increased write selectivity
US6335890B1 (en) * 2000-11-01 2002-01-01 International Business Machines Corporation Segmented write line architecture for writing magnetic random access memories
US6385082B1 (en) * 2000-11-08 2002-05-07 International Business Machines Corp. Thermally-assisted magnetic random access memory (MRAM)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465156B (zh) * 2007-12-17 2011-12-21 株式会社日立制作所 信息存储装置和存储介质
CN102169728A (zh) * 2010-02-26 2011-08-31 希捷科技有限公司 磁场检测设备及其使用方法
US8705213B2 (en) 2010-02-26 2014-04-22 Seagate Technology Llc Magnetic field detecting device with shielding layer at least partially surrounding magnetoresistive stack
CN102169728B (zh) * 2010-02-26 2015-06-03 希捷科技有限公司 磁场检测设备及其使用方法
CN103872242A (zh) * 2012-12-17 2014-06-18 国际商业机器公司 热自旋扭矩传输磁阻随机存取存储器
CN103872242B (zh) * 2012-12-17 2017-01-04 国际商业机器公司 热自旋扭矩传输磁阻随机存取存储器

Also Published As

Publication number Publication date
US6791868B2 (en) 2004-09-14
TWI284901B (en) 2007-08-01
US20040130935A1 (en) 2004-07-08
TW200426843A (en) 2004-12-01
CN100347785C (zh) 2007-11-07

Similar Documents

Publication Publication Date Title
CN100347785C (zh) 磁性随机存取存储器设备及在其中切换存储状态的方法
KR100994325B1 (ko) 자기 메모리 및 자기 메모리의 기입 방법
US7616478B2 (en) Magnetic storage device
CN1221978C (zh) 非易失性磁存储单元和器件
KR100450794B1 (ko) 마그네틱 랜덤 엑세스 메모리 및 그 작동 방법
US6728132B2 (en) Synthetic-ferrimagnet sense-layer for high density MRAM applications
EP1609153B1 (en) Simultaneous reading from and writing to different memory cells
WO2000026918A1 (en) Magnetic storage device
US8531876B2 (en) Unipolar spin-transfer switching memory unit
WO1996025740A1 (en) Nonvolatile magnetoresistive memory with fully closed-flux operation
US20090116310A1 (en) Method and apparatus for write enable and inhibit for high density spin torque three dimensional (3d) memory arrays
US8437180B2 (en) Memory and write control method
CN100466094C (zh) 电阻交叉点阵列中多比特存储单元存储器
CN100550458C (zh) 存储元件和存储器
CN100356477C (zh) 磁性随机存取存储器、磁性单元、及切换记忆状态的方法
US8929131B2 (en) Magnetic memory element and non-volatile storage device
US6597618B2 (en) Magnetic tunnel junction magnetic random access memory
EP2332049A1 (en) Cross-point magnetoresistive memory
CN1276435C (zh) 磁随机存取存储器及其制造方法
US7646634B2 (en) Magnetic memory device and method of magnetization reversal of the magnetization of at least one magnetic memory element

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20171103

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171103

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20071107