CN1405546A - 扫描探针显微镜 - Google Patents

扫描探针显微镜 Download PDF

Info

Publication number
CN1405546A
CN1405546A CN02143466A CN02143466A CN1405546A CN 1405546 A CN1405546 A CN 1405546A CN 02143466 A CN02143466 A CN 02143466A CN 02143466 A CN02143466 A CN 02143466A CN 1405546 A CN1405546 A CN 1405546A
Authority
CN
China
Prior art keywords
molecule
scanning probe
tube
carbon nano
probe microscopy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02143466A
Other languages
English (en)
Other versions
CN1230669C (zh
Inventor
武笠幸一
末冈和久
加茂直树
细井浩贵
泽村诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Publication of CN1405546A publication Critical patent/CN1405546A/zh
Application granted granted Critical
Publication of CN1230669C publication Critical patent/CN1230669C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/10STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/50MFM [Magnetic Force Microscopy] or apparatus therefor, e.g. MFM probes
    • G01Q60/54Probes, their manufacture, or their related instrumentation, e.g. holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • G01Q70/12Nanotube tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/16Probe manufacture
    • G01Q70/18Functionalisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/838Magnetic property of nanomaterial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/86Scanning probe structure
    • Y10S977/868Scanning probe structure with optical means
    • Y10S977/869Optical microscope
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/86Scanning probe structure
    • Y10S977/875Scanning probe structure with tip detail
    • Y10S977/876Nanotube tip

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明提供一种扫描探针显微镜,其中在探针最前端形成具有椅型晶体结构或其最前端经改性分子进行化学改性的碳纳米管。

Description

扫描探针显微镜
技术领域
本发明涉及一种扫描探针显微镜。
背景技术
可以用扫描探针显微镜来探查物质的表面状态。而且,可以按照从纳米尺寸到原子尺寸的数量级精确操纵原子和分子。因此,扫描探针显微镜在纳米技术中起着重要的作用。
然而,用常规的扫描探针显微镜只能测定物质表面的纵横比或类似特性,而不能测量物质的其他物理特性,例如磁特性。因此,扫描探针显微镜的应用受到了限制,从而不能用于生物化学领域。
发明内容
本发明的目的是提供一种新的扫描探针显微镜,它能测定和探查物质的各种特性并能用于各种领域,诸如生物领域中。
为了实现上述目的,本发明所涉及的扫描探针显微镜由以下部分组成:
悬臂,
形成于悬臂上的探针,以及
位于探针最前端的碳纳米管(nanotube),它具有椅型晶体结构和导电特性。
本发明还涉及一种扫描探针显微镜,它由以下部分组成:
悬臂,
形成于悬臂上的探针,以及
位于探针最前端的碳纳米管,它的前端由改性分子化学地改性(modify)并取代。
在本发明的扫描探针显微镜中,碳纳米管位于探针的最前端,该探针由硅材料或类似的材料构成,因此实际所使用的探针是由此产生的复合型探针。由于将碳纳米管的直径设置在0.4-50mm范围内,因此可用此扫描探针显微镜来测定和探查物质的细微结构。
在本发明的第一种扫描探针显微镜中,构成探针的碳纳米管具如图1所示的椅型晶体结构。这样的碳纳米管趋于表现金属特性,因而具有导电性。
因此,如果利用碳纳米管的量子传导,则可以精确测量和探查物质的物理特性。碳纳米管可与自旋极化(spin-polarization)电子束源连接,该电子束源可由以下材料构成:铁磁材料,例如Fe、超导材料,例如在强磁场力作用下自旋的Al薄片(split),或半导体材料,例如由光激发的GaAs。如果碳纳米管与电子源相连,则电子射入给定的磁性物质中,然后检测从该磁性物质中流出的隧道电流或轨道电子发射电流。如此,通过隧道电流或轨道电子发射电流可以研究磁性物质的磁结构或空间分布,例如自旋极化。
在本发明的第二种扫描探针显微镜中,碳纳米管的最前端由改性分子改性。因此,通过适当选择改性分子的种类和数量,可使最终产生的扫描探针显微镜用于各种领域,例如生物化学领域。
附图说明
为了更好理解本发明,请参见附图,其中
图1是椅型碳纳米管晶体结构示意图,
图2是根据本发明的扫描探针显微镜主要部分侧视示意图,
图3是如图2中所示的扫描探针显微镜从底面看的底平面图,
图4是根据本发明的另一扫描探针显微镜的示意图,
图5是根据本发明的一种扫描探针显微镜中的碳纳米管的示意图,该碳纳米管的最前端由过渡金属复合分子改性,以及
图6是扫描探针显微镜中的另一碳纳米管示意图,该碳纳米管的最前端由自由基分子改性。
具体实施方式
现参照附图对本发明作详细描述。图2是根据本发明的扫描探针显微镜主要部分侧视示意图,图3是图2中所示的扫描探针显微镜从底面看的底平面图。如图2、3所示,根据本发明的扫描探针显微镜包括:悬臂1,位于悬臂1上由硅材料制成的探针2,和位于探针2的最前端的碳纳米管3。因此,探针2和碳纳米管3构成了复合型探针。
在本发明的第一种扫描探针显微镜中,需要碳纳米管3具有如图1所示的椅型晶体结构。这样,可以利用碳纳米管3的量子传导来进行测量和探查。
图4示出自旋极化电子束源连接于图2和3所示的碳纳米管3上的状态。如图4中所示,自旋极化电子束源5设置在碳纳米管3的后部。该电子束源5由铁磁性金属部件6,例如Fe制成,用于激磁的线圈缠绕在部件6上。
在线圈7中流过给定电流以将铁磁性元件6磁化,自旋电子从碳纳米管3射入置于碳纳米管3对面的给定磁性物质S中。然后,检测从磁性物质S中流出的隧道电流或轨道电子发射电流,从而测定磁性物质S的磁阻。结果,通过检测到的隧道电流或轨道电子发射电流可以测定和探查磁性物质S的表面磁结构或空间分布(例如自旋极化)。
另外,当线圈7中流过的电流反向时,铁磁性金属部件6也反向磁化,以便可以发射具有相反自旋方向的自旋电子。
自旋极化电子束源5可由超导材料,例如在强磁场力作用下自旋的Al薄片,半导体材料,例如由光激发的GaAs制成。
在本发明的第二种扫描探针显微镜中,需要将图2和3所示的碳纳米管3的最前端进行化学改性。这样,位于碳纳米管3最前端的碳原子由改性分子取代。可以根据待测量和探查物质的种类和该物质的物理特性适当选择改性分子的种类和数量。因此,第二种扫描探针显微镜可应用于各种领域,诸如生物化学领域,如上所述的常规扫描探针显微镜不能应用这些领域。
在第二种扫描探针显微镜中,并不总需要碳纳米管能导电。因此,碳纳米管除具有椅型晶体结构外,还可以具有之字型(zigzag type)晶体结构或手性型晶体结构。
图5是其前端经过渡金属复合分子化学改性的碳纳米管的晶体结构示意图。如图5所示,在其最前端碳纳米管的碳原子A由过渡金属复合分子B部分取代。
因此,如果利用直径为0.4-50nm的碳纳米管的微小结构和复合分子B的物理特性,可以原子尺寸的数量级通过基于磁性物质的磁偶极子相互作用或交换相互作用的相互作用力来检测和探查磁性物质的表面磁结构。
过渡金属复合物例如可以是铁酞菁(phthalocyanine),镍酞菁,钴酞菁,铁卟啉,镍卟啉,钴卟啉,Fe-TMHD和Ni-TMHD。最好使用铁酞菁,因为它易于得到和被改性。
图6是其最前端经自由基分子化学改性的碳纳米管晶体结构示意图。这样,在其最前端碳纳米管的碳原子A由自由基分子C部分取代。该术语“自由基分子”为包括自由基族的分子的总称。
如果采用其最前端经自由基分子改性的碳纳米管,可以利用构成自由基分子的不成对电子来测量磁特性。因此,当碳纳米管位于磁性物质表面附近,并且检测磁性物质的磁偶极子相互作用或交换相互作用时,就可以按原子尺寸的数量级探查磁性物质表面的磁结构。
如果利用自由基分子的自由基族与给定物质之间的反应来检测给定的物理值那么就可以测定和探查物质的特定物理性质。
自由基分子例如可以是:TTF型四自由基供体分子,硝酰自由基,N-羟基四甲基哌啶衍生物,和N-羟基二甲基噁唑烷。最好使用TTF型四自由基供体分子,因为它易于得到和被改性。
碳纳米管的最前端可以由抗体分子来改性和取代。在这种情况下,抗体分子显示对给定抗原分子巨大的抗体-抗原作用,于是可以利用该抗体-抗原反应来测定抗原分子在特定生物体中的分布。例如,通过测定给定的物理值,如抗体-抗原反应中的相互作用力,就可以检测抗原原子的分布。
而且,碳纳米管的最前端可以由构成DNA的鸟嘌呤分子或腺嘌呤分子改性和取代。鸟嘌呤分子和腺嘌呤分子与胞嘧啶分子或胸腺嘧啶分子之间强烈相互作用。因此,如果测定一物理值,例如相互作用中的化学结合力,就可以按分子尺寸的数量级检测胞嘧啶分子和胸腺嘧啶分子的分布。
相反,可以由构成DNA的胞嘧啶分子或胸腺嘧啶分子来改性碳纳米管的最前端。这样,可按分子尺寸测定鸟嘌呤分子或胸腺嘧啶分子的分布。
此外,可以由构成RNA的胸腺嘧啶分子或尿嘧啶分子来改性碳纳米管的最前端。这样,可以分子尺寸的数量级检测尿嘧啶分子或胸腺嘧啶分子的分布。
如图2和3所示的本发明的扫描探针显微镜按如下步骤制成:首先,利用腐蚀性气体,例如SF6来蚀刻由硅材料制成的基底,以使悬臂1和探针2形成一体。然后,含有金属离子,例如Fe离子或Cr离子的甲醇溶液催化剂通过旋涂(spin coating)的方式涂覆于探针2的最前端。接着,将悬臂1和探针2放于炉中,并在600-1200℃条件下加热。
然后,甲烷气体与涂覆的甲醇溶液触媒接触。这样,汽相生长沿探针2的侧壁发生以形成导电椅型碳纳米管3。
此处,通过汽相生长法或电弧放电法制成多个碳纳米管,然后通过电渗的方式将这些碳纳米管排成刀口形状,以便在SEM的观察下用粘合剂将这些纳米管与探针2连接。碳纳米管通过碳覆膜与探针2连接,该膜用电子束沉积法形成以使之覆盖在碳纳米管的边缘部分。
在本发明的第二种扫描探针显微镜中,碳纳米管的最前端与含上述改性分子的溶液或气体接触,从而被这些改性分子化学地改性和取代。
如图5所示,在此例中碳纳米管的最前端由过渡金属复合分子改性和取代,该最前端与由有机溶剂构成的有机溶液接触,例如其中含有乙醇和铁酞菁的有机溶液。
如图6所示,在此例中碳纳米管的最前端由自由基分子改性和取代,该最前端与由有机溶剂构成的有机溶液接触,例如其中含有乙醇和TTF型四自由基供体分子的有机溶液。当碳纳米管的最前端由抗体分子、鸟嘌呤分子或腺嘌呤分子改性时,根据待测定和探查的物质种类适当地选择其中含有这些改性分子的特定溶剂,从而测定和探查该物质的物理特性。
碳纳米管最前端的改性可以不用溶液或气体而如下进行。首先,通过光学镊子将特定的改性分子传送到碳纳米管的最前端。然后,碳纳米管的最前端与改性分子在作为辅助方式的光辐射作用下进行化学反应,以便用改性分子进行改性。
虽然本发明参照以上实施例进行了详细描述,但本发明不局限于上述公开的内容,在不背离本发明的范围的情况下,还可以做出各种改变和调整。
在本发明的扫描探针显微镜中,碳纳米管具有椅型晶体结构或其最前端由特定改性分子进行化学改性。因此,可以在细微尺寸范围内通过碳纳米管的导电性和改性分子的物理特性来测定和探查各种物质的各种物理特性。

Claims (16)

1.一种扫描探针显微镜,包括:
悬臂,
形成于所述悬臂上的探针,和
位于所述探针最前端的碳纳米管,它具有椅型晶体结构和导电特性。
2.如权利要求1的扫描探针显微镜,其进一步包括与所述碳纳米管连接的自旋极化电子束源。
3.一种扫描探针显微镜,包括:
悬臂,
形成于所述悬臂上的探针,和
位于所述探针最前端的碳纳米管,它的最前端经改性分子化学改性并取代。
4.如权利要求3所述的扫描探针显微镜,其特征在于,所述改性分子是含过渡金属元素的金属复合分子。
5.如权利要求4所述的扫描探针显微镜,其特征在于,所述金属复合分子是铁酞菁分子。
6.如权利要求3所述的扫描探针显微镜,其特征在于,所述的改性分子是自由基分子。
7.如权利要求6所述的扫描探针显微镜,其特征在于,所述自由基分子是TTF型四自由基供体分子。
8.如权利要求3所述的扫描探针显微镜,其特征在于,所述的改性分子是抗体分子。
9.如权利要求3所述的扫描探针显微镜,其特征在于,所述的改性分子是鸟嘌呤分子。
10.如权利要求3所述的扫描探针显微镜,其特征在于,所述的改性分子是腺嘌呤分子。
11.如权利要求3所述的扫描探针显微镜,其特征在于,所述的改性分子是胸腺嘧啶分子。
12.如权利要求3所述的扫描探针显微镜,其特征在于,所述的改性分子是胞嘧啶分子。
13.如权利要求3所述的扫描探针显微镜,其特征在于,所述的改性分子是尿嘧啶分子。
14.如权利要求1所述的扫描探针显微镜,其特征在于,所述碳纳米管按如下步骤制成:覆盖含金属离子的甲醇溶液触媒,然后通过热化学汽相沉积法CVD在所述探针的最前端与甲烷气体接触。
15.如权利要求3所述的扫描探针显微镜,其特征在于,通过使所述碳纳米管的最前端与含所述改性分子的溶液或气体接触从而改性所述碳纳米管的最前端。
16.如权利要求3所述的扫描探针显微镜,其特征在于,通过用光学镊子将所述改性分子传送到所述碳纳米管的最前端,并使所述改性分子与所述碳纳米管的最前端进行化学反应,从而改性所述碳纳米管的最前端。
CNB021434662A 2001-06-26 2002-06-26 扫描探针显微镜 Expired - Fee Related CN1230669C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP192149/2001 2001-06-26
JP2001192149A JP3557459B2 (ja) 2001-06-26 2001-06-26 走査型プローブ顕微鏡

Publications (2)

Publication Number Publication Date
CN1405546A true CN1405546A (zh) 2003-03-26
CN1230669C CN1230669C (zh) 2005-12-07

Family

ID=19030643

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021434662A Expired - Fee Related CN1230669C (zh) 2001-06-26 2002-06-26 扫描探针显微镜

Country Status (6)

Country Link
US (1) US6655196B2 (zh)
EP (1) EP1271554A3 (zh)
JP (1) JP3557459B2 (zh)
KR (1) KR20030004070A (zh)
CN (1) CN1230669C (zh)
HK (1) HK1052743B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356542C (zh) * 2003-04-10 2007-12-19 三星电子株式会社 制造具有电阻尖端的半导体探针的方法
CN101313206B (zh) * 2005-12-06 2011-03-16 国际商业机器公司 作为分析具有成角度形貌的衬底的afm探针的y-形碳纳米管
CN110176254A (zh) * 2019-04-19 2019-08-27 北京大学(天津滨海)新一代信息技术研究院 一种基于分子自旋态的磁场调控存储器件及数据存储方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562386B2 (en) 2001-05-07 2003-05-13 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization
WO2004101429A1 (ja) * 2003-04-25 2004-11-25 National Institute Of Information And Communications Technology プローブ
KR20050088592A (ko) * 2004-03-02 2005-09-07 한국기계연구원 기능성 나노튜브 신호 프로브
US7429371B2 (en) * 2004-03-02 2008-09-30 E. I. Du Pont De Nemours And Company Reversible oxidation of carbon nanotubes
US20060042364A1 (en) * 2004-08-31 2006-03-02 Hongtao Cui Angled tip for a scanning force microscope
KR100736358B1 (ko) 2004-11-12 2007-07-06 재단법인서울대학교산학협력재단 탐침 현미경의 탐침 끝 부분에 나노구조가 선택적으로흡착되는 방법 및 그 탐침이 장착된 탐침 현미경
KR20060105848A (ko) * 2005-04-04 2006-10-11 주식회사 하이닉스반도체 나노 니들 팁을 구비한 프로브 및 이를 이용한 분석 장치
KR20080006590A (ko) * 2005-04-07 2008-01-16 이 창 훈 프로브, 프로브의 제조방법 및 프로브의 응용
KR100781036B1 (ko) * 2005-12-31 2007-11-29 성균관대학교산학협력단 금속용기를 전극으로 이용한 탄소나노튜브 나노프로브 제조 장치 및 방법
US8069492B2 (en) * 2008-03-31 2011-11-29 Seagate Technology Llc Spin-torque probe microscope
CN102768292B (zh) * 2012-07-25 2014-05-21 天津大学 基于碳纳米管探针的超高真空快速扫描探针显微方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355241A1 (en) 1988-08-18 1990-02-28 International Business Machines Corporation Spin-polarized scanning tunneling microscope
EP0511662B1 (en) * 1991-04-30 1996-07-10 Matsushita Electric Industrial Co., Ltd. Scanning probe microscope, molecular processing method using the scanning probe microscope and DNA base arrangement detecting method
JP3473038B2 (ja) * 1993-03-11 2003-12-02 ソニー株式会社 キャリアのスピンのフィルタ及びこれを用いた磁化分布測定方法、走査型トンネル顕微鏡用探針
EP0927331B1 (en) 1996-08-08 2004-03-31 William Marsh Rice University Macroscopically manipulable nanoscale devices made from nanotube assemblies
JPH10332718A (ja) 1997-06-03 1998-12-18 Hitachi Ltd 走査型プローブ顕微鏡
US6287765B1 (en) 1998-05-20 2001-09-11 Molecular Machines, Inc. Methods for detecting and identifying single molecules
US6159742A (en) * 1998-06-05 2000-12-12 President And Fellows Of Harvard College Nanometer-scale microscopy probes
US6346189B1 (en) 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
JP3766682B2 (ja) 1999-05-16 2006-04-12 喜萬 中山 ナノチューブプローブ
US6401526B1 (en) * 1999-12-10 2002-06-11 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotubes and methods of fabrication thereof using a liquid phase catalyst precursor
JP2002202238A (ja) 2000-12-28 2002-07-19 Toshiba Corp スピン偏極走査型トンネル顕微鏡及び再生装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356542C (zh) * 2003-04-10 2007-12-19 三星电子株式会社 制造具有电阻尖端的半导体探针的方法
CN101313206B (zh) * 2005-12-06 2011-03-16 国际商业机器公司 作为分析具有成角度形貌的衬底的afm探针的y-形碳纳米管
CN110176254A (zh) * 2019-04-19 2019-08-27 北京大学(天津滨海)新一代信息技术研究院 一种基于分子自旋态的磁场调控存储器件及数据存储方法
CN110176254B (zh) * 2019-04-19 2020-12-29 北京大学(天津滨海)新一代信息技术研究院 一种基于分子自旋态的磁场调控存储器件及数据存储方法

Also Published As

Publication number Publication date
EP1271554A3 (en) 2003-05-02
KR20030004070A (ko) 2003-01-14
JP2003004619A (ja) 2003-01-08
HK1052743A1 (en) 2003-09-26
CN1230669C (zh) 2005-12-07
HK1052743B (zh) 2006-07-14
EP1271554A2 (en) 2003-01-02
US20030010099A1 (en) 2003-01-16
US6655196B2 (en) 2003-12-02
JP3557459B2 (ja) 2004-08-25

Similar Documents

Publication Publication Date Title
CN1230669C (zh) 扫描探针显微镜
CN1250957C (zh) 导电性扫描型显微镜用探针及使用该探针的加工方法
US7052666B2 (en) Method for cutting single-wall carbon nanotubes
TWI310022B (en) Methods of producing carbon nanotubes using peptide or nucleic acid micropatterning
WO2005104179A2 (en) Use of carbon nanotubes (cnts) for analysis of samples
CN1232813C (zh) 制备纳米管探针针尖的方法
Snyder et al. Scanning tunneling microscopy, atomic force microscopy, and related techniques
Ueda et al. Atomic force microscopy observation of deoxyribonucleic acid stretched and anchored onto aluminum electrodes
Louder et al. Scanning probe microscopy
Onoa et al. Carbon nanotubes and nucleic acids: tools and targets
Lee et al. Fabrication of multiwalled carbon nanotube bridges by poly-methylmethacrylate suspended dispersion
Bansod et al. Chemically Modified Carbon Nanotubes for Lab on Chip Devices
Guo et al. Molecular-scale electronics: concept, fabrication and applications
Bang Tailoring Nanoscopic and Macroscopic Noncovalent Chemical Patterns on Layered Materials at Sub-10 nm Scales
de Asis et al. Carbon nanotube atomic force microscopy with applications to biology and electronics
Mashaghi Tabari Chirality-controlled preparation and single molecule characterisation of carbon nanotubes
Krstic et al. Role of the metal in contacting Single-Walled Carbon Nanotubes
Han DNA Directed Self-Assembly of Carbon Nanotube Structures
Kelly et al. Prospects for
Rana Investigation of genetically-engineered β-sheet polypeptides for nanoelectronics
ALLOWING et al. mu uuuu ui iiui iiui mil lull uiu mu uiii uiu mui uu uii mi
JP2013148461A (ja) プローブ及びその製造方法
JP2008249594A (ja) 核酸2重鎖の検出方法及び装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee