CN1403817A - 免疫细胞微流体阵列 - Google Patents
免疫细胞微流体阵列 Download PDFInfo
- Publication number
- CN1403817A CN1403817A CN 02138474 CN02138474A CN1403817A CN 1403817 A CN1403817 A CN 1403817A CN 02138474 CN02138474 CN 02138474 CN 02138474 A CN02138474 A CN 02138474A CN 1403817 A CN1403817 A CN 1403817A
- Authority
- CN
- China
- Prior art keywords
- counterbore
- cell
- immunocyte
- microarray
- microfluidic arrays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明涉及一种免疫细胞微流体阵列,属于细胞免疫检验技术领域。在该免疫细胞微流体阵列的高分子化合物底板上制有按顺序排布的微阵列沉孔,各沉孔之间通过微管道连通,两相邻沉孔之间的微管道倾斜设置,排序在前沉孔上的管口高于排序在后邻接沉孔上的管口。使用本发明,一次操作便可检出具有相应白细胞分化抗原的细胞,从而判断细胞表面白细胞分化抗原的种类、细胞分化过程中的白细胞分化抗原消长规律等,工作效率大大提高。并且只要加上培养剂,经过一定时间的培养,就可以观察具有不同白细胞分化抗原的细胞的生长状态,从而对细胞/机体正常与否进行整体评价体,以利于综合评价机体的免疫机能、炎症发生以及肿瘤细胞转移等整体健康水平。
Description
技术领域
本发明涉及一种免疫细胞的检验装置,尤其是免疫细胞的微流体阵列,属于细胞免疫检验技术领域。
背景技术
随着现代生物学、生物化学和免疫学等一系列技术的发展以及各种新技术的应用,人体白细胞分化抗原的研究已取得了很大进展。
研究表明,白细胞分化抗原不但在白细胞(如淋巴细胞、单核细胞、粒细胞等)表面表达,还分布在胸腺细胞、髓样细胞、骨髓干细胞、上皮细胞等的细胞膜上。它是细胞正常分化成熟为不同谱系和不同阶段的细胞表面标记,并随细胞活化程度出现或消失。它们大都是穿膜的蛋白质或糖蛋白,含胞膜外区、穿膜区和胞浆区;有些白细胞分化抗原是以磷脂酰肌醇连接方式“锚”在细胞膜上;少数白细胞分化抗原是碳水化合物半抗原。根据分布与功能,现大体上将其分为9大类,即:1.T细胞;2.B细胞;3.髓样细胞和单核细胞;4.血小板;5.NK细胞和非谱系细胞;6.活化抗原;7.血管内皮细胞;8.黏附因子;9.细胞因子受体。在机体生理和病理过程中,白细胞分化抗原不仅参与识别抗原、捕捉抗原,促进免疫细胞与抗原或免疫分子间的相互作用,而且在介导免疫细胞间、免疫细胞与基质间的黏附作用,免疫应答的识别、活化及效应阶段均发挥重要作用,同时在造血细胞分化和造血过程的调控,炎症发生以及肿瘤细胞的转移等方面也起着重要作用。因此,对白细胞分化抗原的研究不仅是对某些白细胞的研究,同时也可反映整个机体的健康水平,具有重要意义。
目前,不同白细胞分化抗原的检测通常采用将待检细胞样本固定在检测底板上,再滴加某种抗体及指示物的方法。当抗体与细胞膜上相应的抗原结合而产生特异性反应时,即可检出样本细胞中含有某种抗原。这种现有技术存在的主要问题一是检验效率低,因为已确定的白细胞分化抗原有166种分子群及为数众多的亚群,逐一检验十分烦琐;二是固定后的白细胞失去活性,不能进行培养,因此无法进一步观察具有不同白细胞分化抗原的细胞的生长状态。
发明内容
本发明的目的在于:提出一种可以极大提高白细胞分化抗原检验效率的免疫细胞微流体阵列。
为了达到以上目的,本发明的免疫细胞微流体阵列的基本技术方案是:包括高分子化合物底板,该底板上制有按顺序排布的微阵列沉孔,各沉孔之间通过微管道连通,两相邻沉孔之间的微管道倾斜设置,排序在前沉孔上的管口高于排序在后邻接沉孔上的管口。
当进行细胞的白细胞分化抗原分析时,先在微阵列底板的各沉孔底部分别有序地固定各种抗白细胞分化抗原的抗体,然后将被检样品(细胞)源源不断地输往排序在前的微阵列沉孔,细胞液将按序由前向后逐个流经固定了不同抗体的各微阵列沉孔,直至从末位的沉孔中流出。当样本细胞与某沉孔中的抗体发生特异性结合反应而滞留时,便可断定样本细胞中含有对应的分化抗原。这样,一次操作便可检出样本细胞所具有的白细胞分化抗原类型,从而判断细胞表面白细胞分化抗原的种类、细胞分化过程中的白细胞分化抗原消长规律等,工作效率大大提高。并且由于沉孔中固定抗体,当其与细胞膜上相应的抗原结合将细胞分离、固定后,可以保持白细胞的活性,只要加上培养剂,经过一定时间的培养,就可以观察具有不同白细胞分化抗原的细胞的生长状态,从而对细胞/机体正常与否进行整体评价,以利于综合评价机体的免疫机能、炎症发生以及肿瘤细胞转移等整体健康水平。
在以上基本技术方案基础上,本发明进一步的改进是高分子化合物底板上的微阵列沉孔两端分别制有与首位沉孔和末位沉孔连通的首位储液槽和末位储液槽,两储液槽之间通过蠕动泵连接。这样,从末位沉孔流出的细胞液/培养液进入末位储液槽后,可以被蠕动泵重新输送到与首位储液槽,再从首位沉孔逐个流经固定了不同抗体的各微阵列沉孔,直至从末位的沉孔中流出,逐个流经各微阵列沉孔,形成循环流动,使微阵列板上每各沉孔中的液体量一致,更有利于获得理想的检验结果。
附图说明
下面结合附图对本发明作进一步的说明。
图1为本发明一个实施例的结构示意图。
具体实施方式
实施例一
本实施例的免疫细胞微流体阵列如图1所示,在无细胞毒的高分子化合物底板1上制有15×20(或10×20)的免疫(细胞)微阵列沉孔4。底板1的厚度为7~10mm,每个沉孔4的孔径为2mm±0.2mm,各相邻沉孔的间距为2~3mm,相互之间通过直径0.1~0.5mm的微管道2相通。两相邻沉孔的连通微管道按照以下规律斜置,排序在前孔上的微管道开口距孔底部0.8~1.0mm,排序在后孔上微管道开口距孔底部0.1~0.25mm;以此类推,延续下去,形成往复的S形循环流道,使所有的沉孔相连。实验表明,以上设计参数适于细胞免疫检验。
在微阵列底板1的两端,即首位沉孔及末位沉孔的外方,各制有一个可容纳2ml液体的储液槽5。其中,与微阵列首位沉孔相连的储液槽称A槽,与末位沉孔相连的储液槽称B槽,两槽之间用蠕动泵3连接。这样,液体可以从B槽泵至A槽,而A槽的液体则通过水压的重力流入微阵列的首位沉孔、2孔……直至末位沉孔,回流至B槽,形成循环,使微阵列板上的每个沉孔中的液体量一致。
当进行细胞的白细胞分化抗原分析时,先在微阵列板的各沉孔底部分别有序地固定各种抗白细胞分化抗原的抗体,然后将被检样品(细胞)加到A槽中与培养剂混匀,经相通管道流经各沉孔。根据细胞膜上表达的白细胞分化抗原的不同,被检样品(细胞)与相应沉孔中的特异性抗体结合并被固定下来。依据研究目的,可直接在显微镜下观察、分析被检样品(细胞)所具有的白细胞分化抗原。
本实施例的免疫细胞微流体阵列适用于分离、固定并最终鉴别细胞表面表达的白细胞分化抗原的种类,以期分析细胞活化程度、白细胞分化抗原消长规律,不同细胞的分化生长状况,以综合评价机体的整体健康水平。
实施例二
本实施例与实施例一的基本情况相同,区别在于因为需要对细胞进行生长繁殖等进一步研究,因此整个过程在无菌环境操作。为了保证后期的培养达到无菌的效果,高分子化合物底板配有隔离盖。在完成与实施例一相同的操作后,加盖放入培养箱中,并定期通过A槽→B槽的循环更换培养剂,培养时间根据需要确定。这样可以获得更进一步的相关检验结果。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围内。
Claims (7)
1.免疫细胞微流体阵列,包括高分子化合物底板,其特征在于:所述底板上制有按顺序排布的微阵列沉孔,各沉孔之间通过微管道连通,两相邻沉孔之间的微管道倾斜设置,排序在前沉孔上的管口高于排序在后邻接沉孔上的管口。
2.根据权利要求1所述免疫细胞微流体阵列,其特征在于:所述高分子化合物底板上的微阵列沉孔两端分别制有与首位沉孔和末位沉孔连通的首位储液槽和末位储液槽,两储液槽之间通过蠕动泵连接。
3.根据权利要求1或2所述免疫细胞微流体阵列,其特征在于:所述微阵列沉孔底部分别有序地固定抗白细胞分化抗原的抗体。
4.根据权利要求3所述免疫细胞微流体阵列,其特征在于:所述微阵列沉孔之间通过微管道连通形成往复的S形循环流道。
5.根据权利要求3所述免疫细胞微流体阵列,其特征在于:所述微阵列沉孔的孔径为2mm±0.2mm,各相邻沉孔的间距为2~3mm。
6.根据权利要求3所述免疫细胞微流体阵列,其特征在于:所述微管道的直径为0.1~0.5mm。
7.根据权利要求3所述免疫细胞微流体阵列,其特征在于:所述高分子化合物底板配有隔离盖。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021384746A CN1161613C (zh) | 2002-10-22 | 2002-10-22 | 免疫细胞微流体阵列 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021384746A CN1161613C (zh) | 2002-10-22 | 2002-10-22 | 免疫细胞微流体阵列 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1403817A true CN1403817A (zh) | 2003-03-19 |
CN1161613C CN1161613C (zh) | 2004-08-11 |
Family
ID=4749503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021384746A Expired - Fee Related CN1161613C (zh) | 2002-10-22 | 2002-10-22 | 免疫细胞微流体阵列 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1161613C (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102952752A (zh) * | 2011-08-29 | 2013-03-06 | 东南大学 | 一种肿瘤细胞的培养检验装置 |
US8771491B2 (en) | 2009-09-30 | 2014-07-08 | Quantapore, Inc. | Ultrafast sequencing of biological polymers using a labeled nanopore |
CN105929152A (zh) * | 2016-07-15 | 2016-09-07 | 陶少强 | 一种用于降钙素原检测的智能检测仪 |
US9624537B2 (en) | 2014-10-24 | 2017-04-18 | Quantapore, Inc. | Efficient optical analysis of polymers using arrays of nanostructures |
US9651539B2 (en) | 2012-10-28 | 2017-05-16 | Quantapore, Inc. | Reducing background fluorescence in MEMS materials by low energy ion beam treatment |
US9862997B2 (en) | 2013-05-24 | 2018-01-09 | Quantapore, Inc. | Nanopore-based nucleic acid analysis with mixed FRET detection |
US9885079B2 (en) | 2014-10-10 | 2018-02-06 | Quantapore, Inc. | Nanopore-based polymer analysis with mutually-quenching fluorescent labels |
US9903820B2 (en) | 2007-05-08 | 2018-02-27 | The Trustees Of Boston University | Chemical functionalization of solid-state nanopores and nanopore arrays and applications thereof |
US10823721B2 (en) | 2016-07-05 | 2020-11-03 | Quantapore, Inc. | Optically based nanopore sequencing |
-
2002
- 2002-10-22 CN CNB021384746A patent/CN1161613C/zh not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9903820B2 (en) | 2007-05-08 | 2018-02-27 | The Trustees Of Boston University | Chemical functionalization of solid-state nanopores and nanopore arrays and applications thereof |
US11002724B2 (en) | 2007-05-08 | 2021-05-11 | Trustees Of Boston University | Chemical functionalization of solid-state nanopores and nanopore arrays and applications thereof |
US10101315B2 (en) | 2007-05-08 | 2018-10-16 | Trustees Of Boston University | Chemical functionalization of solid-state nanopores and nanopore arrays and applications thereof |
US8771491B2 (en) | 2009-09-30 | 2014-07-08 | Quantapore, Inc. | Ultrafast sequencing of biological polymers using a labeled nanopore |
US9279153B2 (en) | 2009-09-30 | 2016-03-08 | Quantapore, Inc. | Ultrafast sequencing of biological polymers using a labeled nanopore |
CN102952752A (zh) * | 2011-08-29 | 2013-03-06 | 东南大学 | 一种肿瘤细胞的培养检验装置 |
US9651539B2 (en) | 2012-10-28 | 2017-05-16 | Quantapore, Inc. | Reducing background fluorescence in MEMS materials by low energy ion beam treatment |
US9862997B2 (en) | 2013-05-24 | 2018-01-09 | Quantapore, Inc. | Nanopore-based nucleic acid analysis with mixed FRET detection |
US9885079B2 (en) | 2014-10-10 | 2018-02-06 | Quantapore, Inc. | Nanopore-based polymer analysis with mutually-quenching fluorescent labels |
US10597712B2 (en) | 2014-10-10 | 2020-03-24 | Quantapore, Inc. | Nanopore-based polymer analysis with mutually-quenching fluorescent labels |
US9624537B2 (en) | 2014-10-24 | 2017-04-18 | Quantapore, Inc. | Efficient optical analysis of polymers using arrays of nanostructures |
US11041197B2 (en) | 2014-10-24 | 2021-06-22 | Quantapore, Inc. | Efficient optical analysis of polymers using arrays of nanostructures |
US10823721B2 (en) | 2016-07-05 | 2020-11-03 | Quantapore, Inc. | Optically based nanopore sequencing |
CN105929152A (zh) * | 2016-07-15 | 2016-09-07 | 陶少强 | 一种用于降钙素原检测的智能检测仪 |
Also Published As
Publication number | Publication date |
---|---|
CN1161613C (zh) | 2004-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Marzano et al. | Sperm selection in assisted reproduction: A review of established methods and cutting-edge possibilities | |
CN101102847B (zh) | 利用含排列成图案的立柱的微通道分离细胞 | |
Salieb-Beugelaar et al. | Latest developments in microfluidic cell biology and analysis systems | |
CN106497771B (zh) | 一种用于多种药物及细胞同时筛选的多功能微流控芯片 | |
CN102695804B (zh) | 用于分离颗粒的方法和设备,包括分离和增殖胚胎及干细胞 | |
US11566224B2 (en) | Dendritic cell generator | |
Rothbauer et al. | Recent advances and future applications of microfluidic live-cell microarrays | |
US20160161392A1 (en) | Methods and apparatus for the manipulation of particle suspensions and testing thereof | |
US10988723B1 (en) | Modular assemblies and systems for cell cultures and methods thereof | |
CN205556699U (zh) | 一种高通量、全自动微流控芯片细胞分选装置 | |
CN101535466A (zh) | 用微通道设备检测或分离靶分子 | |
CN1161613C (zh) | 免疫细胞微流体阵列 | |
CN101305087A (zh) | 用于磁富集细胞和其他颗粒的装置和方法 | |
CN111440697B (zh) | 微流控通道、微流控芯片及对细胞进行处理的方法 | |
CN108795693B (zh) | 一种捕获血液稀有细胞的微流控芯片 | |
WO2010080978A2 (en) | Pre-depletion of leukocytes in whole blood samples prior to the capture of whole blood sample components | |
Espulgar et al. | Single cell trapping and cell–cell interaction monitoring of cardiomyocytes in a designed microfluidic chip | |
CN1735466A (zh) | 颗粒分选的设备和方法 | |
US12071611B2 (en) | Rare cell capture system and application thereof | |
Lee et al. | Recombinant human interleukin-8, but not human interleukin-1β, induces bovine neutrophil migration in an in vitro co-culture system | |
CN110747102B (zh) | 一种基于微流控芯片的单细胞分离装置及方法 | |
JPH0843378A (ja) | 磁気的細胞測定のための方法および装置 | |
WO2017210494A1 (en) | Microfluidic-based multiplex cell assay for drug compound testing | |
CN102851199A (zh) | 微流控细胞分选获取装置 | |
CN218465831U (zh) | 一种细胞筛选微流控芯片 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |