CN1401773A - Bt gene with high toxicity to Lepidoptera and Coleoptera insects, expression vector and engineering bacteria - Google Patents
Bt gene with high toxicity to Lepidoptera and Coleoptera insects, expression vector and engineering bacteria Download PDFInfo
- Publication number
- CN1401773A CN1401773A CN 01124164 CN01124164A CN1401773A CN 1401773 A CN1401773 A CN 1401773A CN 01124164 CN01124164 CN 01124164 CN 01124164 A CN01124164 A CN 01124164A CN 1401773 A CN1401773 A CN 1401773A
- Authority
- CN
- China
- Prior art keywords
- gene
- insect
- gene order
- aminoacid sequence
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
The present invention relates to a Bt crylBa3 sequence with resistance to the pests in lepidoptera and coleotera, the gene combination mode of crylbalcrl3Aa, the broad-host expression vector pGM1105, and using said dpGM1105 to introduce the cry3Aa gene to the Bt17 strain containing crylBa gene for efficient expression of said two genes.
Description
Technical field of the present invention:
The invention belongs to the biological control technical field.Further, the present invention relates to lepidopteran, coleopteran pest are all had Bt gene, expression vector and the engineering bacteria of high virulence.Further, the present invention relates to lepidopteran, coleopteran pest are all had Bt cry1Ba3 gene order, the cry1Ba/cry3Aa assortment of genes mode of resistance, to realize efficiently expressing of two kinds of genes; Also relate to wide host expresses carrier pGM1105.
Research background of the present invention:
Tribactur (Bacillus thuringiensis is called for short Bt) forms the crystallin that the phase can produce a kind of insecticidal activity at gemma, has been widely used in the control of agricultural, forestry, sanitary insect pest.
Nineteen eighty-three, and Krieg etc. (Krieg, A. etc., J.Appli.Entomology, 1983,96:500-508) be separated to the Bt bacterial strain (Bt.tenebrionis) of first strain to the high virulence of coleopteran pest.1987, Herrnstadt (Herrnstadt, C. etc., Gene, 1987,57 (1): 37-46) cloned first, be used to prevent and treat colorado potato bug (Leptinotarsa decernlineata (Say)) to the activated Bt insecticidal protein gene of coleopteran pest cry3Aa.U.S. Ecogen company (Sick, A. etc., Nucl.Acids Res., 1990.18,1305; Entwistle, P.F. etc., An Environmental Biopesticide:Theory andPractice[M], Wiley Chichester Press, UK, 1993,125-146) utilize plasmid to make up lepidopteran and the activated Bt engineering bacteria of Coleoptera in conjunction with cell engineering means such as transfers.
A kind of albumen because term single gene is encoded, insect is very fast to produce resistance (Whalon, M.E. etc., J.ofEconomic Entomology, 1993,86 (2): 226-233 to Cry3A albumen; Nicholas, D. etc., Transgenic Plant and Insect PestsBiocontrol[M], John Wiley ﹠amp; Sons Press, USA, 1997,1-18).Because the rapid generation of pest resistance to insecticide will greatly be shortened the work-ing life of transgenic product, cause huge waste like this.Chang in 1993, (Appl.Environ.Micro.1993 59:815-821.) has reported that there is synergistic function in different crystal albumen to larvae in the Bt Israel subclass to people such as C.Y.M. for Chang, C.Y.M. etc.
Therefore, screen the protein combination of high virulence, and then carry out the assortment of genes, can improve the insecticidal activity of Bt product, enlarge its insecticidal spectrum.The more important thing is that the resistance that the insecticidal proteins of different performance can effectively overcome or delay insect produces, and has very strong practicality.
Content of the present invention:
Purpose of the present invention:
At deficiency such as prevent and treat the employed Bt preparation of coleopteran pest at present in the world and transgenic product gene kind is single, insect is easy to produce resistance, insecticidal spectrum is narrower, the present invention adopts two kinds of gene cry3Aa7 and cry1Ba3 to elytrum height of eye virulence to make up, improve virulence, and utilize the also activated characteristics of cry1Ba3 gene pairs lepidoptera pest, enlarge the insecticidal spectrum of product, to be applied to transform microorganism and plant, make it to show toxicity, and overcome, delay insect engineering bacteria and the drug-fast generation of transgenic plant to relevant insect.
Further, for ease of the expression of research Bt insecticidal protein gene in the different microorganisms recipient bacterium, the present invention make up a kind of can be in three kinds of parent microorganisms the carrier of free shuttling, overcome the narrow deficiency of existing carrier host range, and, finish a series of testing by the Btcry3Aa7 gene is inserted wherein.
Technical scheme of the present invention:
1.Bt22 the clone of cry3Aa gene in the bacterial strain
According to Narva (Narva, K.E. etc., EP0462721 A2,1991,8) etc. method is extracted plasmid DNA from the Bt22 bacterial strain, with HindIII enzyme complete digestion plasmid DNA, carry out Southern hybridization, probe is obtained by cry3Aa gene specific primer amplified plasmid dna, is 1.38kb.Primer is:
5’CGAACAATCGAAGTGAACATGATAC
3’CATCTGTTGTTTCTGGAGGCAAT
Carry out mark with 32p; Hybridizing method is undertaken by " molecular cloning experiment guide ", obtains the results of hybridization (see figure 1).Discovery has hybridization signal at 3kb, from gel, reclaim the plasmid DNA HindIII endonuclease bamhi of 3.0kb, be connected with pBluescript SK (+) behind the purifying, transformed into escherichia coli JM107, carry out PCR with the cry3A gene-specific primer and detect, screen positive recombinant plasmid pBY33 (Fig. 2, Fig. 3).Recombinant plasmid contains the big fragment of cry3A gene of 3.0kb.It is carried out subclone obtain pBY33-5, pBY33-6, three kinds of recombinant plasmids of pBY-16, contain 0.72,1.6 respectively, the exogenous genetic fragment of 0.675kb.Determined dna sequence is finished by the logical bio-engineering corporation of Beijing six directions.This gene is by the international called after cry3Aa7 of NK of Bt δNei Dusu gene.
2. from the Bt17 bacterial strain, clone the cry1Ba gene
Extract Bt17 bacterial strain plasmid DNA, carry out partially digested with Sau3A I enzyme, from gel, reclaim the 2-7kb dna fragmentation, be connected with pBluescript SK (+) carrier behind the purifying through BamHI digestion, alkaline phosphatase treatment, behind the transformed into escherichia coli JM107, to carrying out pcr amplification, screen positive transformant with cry1Ba gene-specific primer Sun1Ba5/3.5 ' and 3 ' end primer is respectively:
Forward primer (Forward primer) TCCTGCAGTTGACTTCAAATAGG;
Reverse primer (Reverse primer) CAGTCGACTCATCCGATAAACACGCCAC '.
Screening obtains recombinant plasmid pHT3-66, and this plasmid contains cry1Ba full length gene dna fragmentation.Carry out dna sequence analysis, the result shows that this gene contains 3687bp, is made up of 1229 amino acid, and molecular weight is 139.5kDa.Because of different with known cry1Ba1 gene, its amino acids coding has also become arginine at the 1055th bit base, and promptly aminoacid sequence and known there are differences in the Bt17 bacterial strain.This gene is by the international called after cry1Ba3 of NK of Bt δNei Dusu gene.
3. the structure of shuttle vectors
The plasmid pHT315 (6.5kb) that will contain the Bt replicon cuts with AatII, mends into flush end with the Klenow enzyme; With StuI and StiI double digestion plasmid pUCP19, what obtain 1.2kb contains pseudomonas replicon plasmid DNA fragment, mend flat with the big fragment of Klenow, these two kinds of DNA are connected, transformed into escherichia coli JM107, the recombinant plasmid of screening 7.7kb, cut evaluation through enzyme and obtain pGM1105 (7.7kb), it is transformed Pseudomonas fluorescens P303 bacterial strain (RifR respectively, Nad) and Bt wild strain Bt17, Bt22, Btk does not have crystal mutant strain BE20 (method for transformation such as Lereclus, Lereclus, D. etc., FEMSMicrobiology Letters, 1989,60:211-217), all can grow positive transformant, and extract all kinds of transformant plasmids and carry out restriction analysis, this carrier of proof pGM1105 can shuttle back and forth in three kinds of bacteriums and genetic stability, and stability is greater than 90%.
4. the structure of expression vector
Cry3Aa7 gene (3.0kb) is cloned on the HindIII site of pGM1105, transformed into escherichia coli JM107, filter out the recombinant plasmid pLF31105 (10.7kb) that contains the cry3Aa gene, behind its transformed into escherichia coli SCS110 bacterial strain, extract plasmid, these plasmids are transformed Pseudomonas fluorescens P303 bacterial strain and Bt wild strain Bt17 (containing the crylBa3 gene) respectively, carry out Protein Detection respectively, SDS-PAGE analysis revealed cry3A gene is equal energy normal expression 67kDa albumen in P303 and Bt17, and its importing does not influence the albumen of crylBa3 genetic expression 140kDa among the Bt17.The cry3A gene imports Bt17 and obtains transformant, through various Molecular Detection, proves to transform successfully, with this transformant called after engineering bacteria BiotIII-I.
5. the cultivation of engineering bacteria and observation
Adopt GT substratum, 1/2 LB substratum and ZShi substratum (this laboratory self-control), cultivate the BiotIII-I engineering bacteria respectively, scanning electron microscope and observation by light microscope result, in BiotIII-I, exist square and two kinds of crystal of the bipyramid bodily form (seeing Figure 18), prove the coexpression of two kinds of genes.
6. desinsection biological activity determination
The test insect is:
Lepidoptera pest-small cabbage moth (Plutella xylostella);
Coleopteran pest-elm fleautiauxia armata (Pyrrhalta aenescens),
Colorado potato bug (Leplinotarsa decernlineata).
Beneficial effect of the present invention:
The present invention's use all has the Bt cry1Ba gene of resistance to lepidopteran, coleopteran pest and the activated cry3Aa gene of coleopteran pest is made up; The wide host's shuttle expression carrier pGM1105 that utilizes the present invention to make up can import the cry3Aa gene transformation and contain in the Bt17 bacterial strain of cry1Ba gene, realizes efficiently expressing of two kinds of genes.The virulence to coleopteran pest that combination produced of these two kinds of gene expression products is better than similar natural bacterial strain and the engineering strain of finding in the world at present, illustrates that there is remarkable role in synergy in two kinds of gene expression products.
Further, cry1Ba3 gene order, cry1Ba/cry3Aa assortment of genes mode, wide host expresses carrier pGM1105 involved in the present invention are also peculiar by the present invention.
Description of drawings:
Fig. 1 is Bt22 plasmid Southern Blotting result.
Wherein, road 1,2,3,4,5 is represented cry3Aa1.38kb, λ DNA/HindIII, Bt22 plasmid/PstI, Bt22 plasmid/HindIII, Bt22 plasmid respectively.
Fig. 2 is Bt22, Bt17cry gene identification collection of illustrative plates.
Wherein, on behalf of cry3Aa 1.38kb PCR product, 1.38kb/EcoRI, pUC DNA, road 1,2,3,4,5,6 mix (1116,883 respectively, 692,501,489,404,331,242,190,147,111,110bps), λ DNA/EcoO130I, cry1Ba1.6kb PCR product, 1.6kb/Bgl II.
Fig. 3 is the restricted enzyme cutting analysis of recombinant plasmid pBY33 (6.0kb).
Wherein, road 1,2,3,4,5,6 and M represent pBY33/BamHI, pBY33/EcoRI, pBY33/HindIII, pBY33/PstI, pBY33/SalI, pBY33/XbaI, λ/EcoO130I respectively.
Fig. 4 is the subclone schema of cry3Aa gene.
Fig. 5 is three kinds of subclone recombinant plasmids of cry3Aa7 gene restriction analysis result.
Wherein, road 1,2,3,4 and M represent pBY33-16/EcoRI, pBY33-6/EcoRI, pBY33-5/EcoRI+HindIII, pBY33/EcoRI, 1kb gradient (Ladder) (1.0~9.5kb) respectively.
Fig. 6 is a Bt17 plasmid DNA Southern results of hybridization.
Wherein, road 1,2,3,4,5,6 is represented UV17 plasmid DNA/BamHI, UV17 plasmid DNA/SstI, UV17 plasmid DNA/SalI, UV17 plasmid DNA, λ DNA/EcoO130I, cry1Ba1.6kb respectively.
Fig. 7 is a Bt17 plasmid DNA library construction schema.
Fig. 8 is the partially digested result of Bt17 plasmid DNA.
Wherein, on behalf of the enzyme of different enzyme amounts, road 1-7 cut the result respectively, and road M represents λ DNA/Eco130 I.
Fig. 9 is a cry1Ba gene recombination plasmid restriction analysis.
Wherein, road 1,2,3,4 and M represent pHT3-67/SalI, pHT3-66/SalI, pHT3-66/HindIII, pHT3-66/EcoRI, λ/Eco130I respectively.
Figure 10 is that cry1Ba gene recombination plasmid PCR detects.
Wherein, road 1,2 and M represent pUC Mix, 1.6kb PCR product, product/PstI respectively.
Figure 11 is a pGM1105 vector construction schema.
Figure 12 cuts the result for pUCP19 and pHT315 enzyme.
Wherein, road 1,2,3, M
1And M
2Represent pUCP19/HindIII, pUCP19/SfiI+StuI, pHT315/AatII, λ/EcoO130I, 1kb gradient respectively.
Figure 13 is that pGM1105 (7.7kb) enzyme is cut detected result.
Wherein, road 1,2,3,4,5 and M represent pGM1105/BamHI, pGM1105/EcoRI, pGM1105/HindIII, pGM1105/SalI, pHT315/AatII, λ/EcoO130I respectively.
Figure 14 is a recombinant plasmid pLF31105 restriction analysis.
Wherein, road 1,2,3,4,5 and M represent pLF31105/SalI, pLF31105/HindIII, pLF31105/EcoRI, pBY33/HindIII, pGM1105/HindIII, 1kb gradient respectively.
Figure 15 transforms Pf, Bt, E.coil plasmid and restriction analysis thereof for pLF31105.
Wherein, road 1,2,3,4,5,6 and M represent pLF31105 (BE20), pLF31105 (Pf), pLF31105 (E.coli), pLF31105/EcoRI, pLF31105/SalI, pLF31105/HindIII, 1kb gradient respectively.
Figure 16 is a cry3Aa gene PCR analytical results in each transformant.
Wherein, road 1,2,3 is the PCR product, is respectively pLF31105 (BE20), pLF31105 (Pf), pLF31105 (E.coli); Road 4,5,6 is PCR product/EcoRI, is respectively pLF31105 (BE20), pLF31105 (Pf), pLF31105 (E.coli); Road M
1And M
2Represent pUC Mix and λ/EcoO130I respectively.
Figure 17 is a Bt engineering bacteria cry3Aa gene expression results (1/2LB substratum).
Wherein, road M, 1,2,3,4,5 and 6 represents protein label (marker), Btt, Bt22, BiotIII205, BiotIII-I, Bt17, HD-1 respectively.
Figure 18 is bivalent gene engineering mycoprotein crystal scanning electron microscope result.
Wherein, 18a, 18b, 18c represent BiotIII205, BiotIII-I, Bt22 respectively.
Specific embodiments of the present invention:
Below narrate embodiments of the invention.Should be noted that embodiments of the invention have only illustration for the present invention, and effect without limits.
What need particularly point out is, although detailedly in an embodiment described two kinds of gene combination and expression in Bt, yet this does not mean that the assortment of genes of the present invention is only limited to transform and produce with the Bt bacterial strain and has the Bt engineering bacteria that above-mentioned insect is had resistance.
Therefore, use cry1B described in the invention and cry3 gene to make up, to improve virulence and resistance to insect, and expansion desinsection scope, use wide host expresses carrier described in the invention, import in any microorganism, plant or its tissue or the cell with any method that those of ordinary skills were had, and the microorganism with any anti-insect activity, the plant that obtain therefrom, and such plant offspring's seed, hybridization and transformation offspring, include within interest field of the presently claimed invention.
The clone of cry3Aa gene in embodiment 1, the Bt22 bacterial strain
According to Narva (Narva, K.E. etc., EP0462721 A2,1991,8) etc. method is extracted plasmid DNA from the Bt22 bacterial strain, with HindIII enzyme complete digestion plasmid DNA, carries out Southern hybridization, probe is obtained by cry3Aa gene specific primer amplified plasmid dna, is 1.38kb (qualification result is seen Fig. 2).Primer is:
5’CGAACAATCGAAGTGAACATGATAC
3’CATCTGTTGTTTCTGGAGGCAAT
Carry out mark with 32P; Hybridizing method is undertaken by " molecular cloning experiment guide ", obtains the results of hybridization (see figure 1).Discovery has hybridization signal at 3kb, from gel, reclaim the plasmid DNA HindIII endonuclease bamhi of 3.0kb, be connected with pBluescript SK (+) behind the purifying, transformed into escherichia coli JM107, carry out PCR with the cry3A gene-specific primer and detect, screen positive recombinant plasmid pBY33 (Fig. 3, Fig. 5).Recombinant plasmid contains the big fragment of cry3A gene of 3.0kb.It is carried out subclone obtain pBY33-5, pBY33-6, three kinds of recombinant plasmids of pBY-16, contain 0.72,1.6 respectively, the exogenous genetic fragment (the subclone schema is seen Fig. 4) of 0.675kb.Determined dna sequence is finished by the logical bio-engineering corporation of Beijing six directions.This gene is by the international called after cry3Aa7 of NK of Bt δNei Dusu gene.
Clone cry1Ba gene in embodiment 2, the Bt17 bacterial strain
Cry1Ba gene in the Bt17 bacterial strain is identified nuclear and location, and the result shows that this gene is positioned on the big plasmid, and qualification result is seen Fig. 2, and the Southern results of hybridization is seen Fig. 6.Extract Bt17 bacterial strain plasmid DNA, carry out partially digested with Sau3A I enzyme, from gel, reclaim the 2-7kb dna fragmentation, be connected with pBluescript SK (+) carrier behind the purifying through BamHI digestion, alkaline phosphatase treatment, behind the transformed into escherichia coli JM107, to carrying out pcr amplification, screen positive transformant (Bt17 plasmid DNA library construction is seen Fig. 7,8) with cry1Ba gene-specific primer Sun1Ba5/3.5 ' and 3 ' end primer is respectively:
Forward primer (Forward primer) TCCTGCAGTTGACTTCAAATAGG;
Reverse primer (Reverse primer) CAGTCGACTCATCCGATAAACACGCCAC '.
Screening obtains recombinant plasmid pHT3-66, and this plasmid contains cry1Ba full length gene dna fragmentation (the results are shown in Figure 9,10).Carry out dna sequence analysis, the result shows that this gene contains 3687bp, is made up of 1229 amino acid, and molecular weight is 139.5kDa.Because of different with known cry1Ba1 gene, its amino acids coding has also become arginine at the 1055th bit base, and promptly aminoacid sequence and known there are differences in the Bt17 bacterial strain.This gene is by the international called after cry1Ba3 of NK of Bt δNei Dusu gene.This gene order is referring to SEQ ID NO 2.
The structure of embodiment 3, shuttle vectors
The plasmid pHT315 (6.5kb) that will contain the Bt replicon cuts with AatII, mends into flush end with the Klenow enzyme; With StuI and StiI double digestion plasmid pUCP19, what obtain 1.2kb contains pseudomonas replicon plasmid DNA fragment, mend flat with the big fragment of Klenow, these two kinds of DNA are connected, transformed into escherichia coli JM107, the recombinant plasmid of screening 7.7kb is cut evaluation through enzyme and is obtained pGM1105 (7.7kb) (analytical results is seen Figure 11,12,13).It is transformed Pseudomonas fluorescens P303 bacterial strain (having Rifampin Rif and nalidixic acid Nad resistance) respectively and Bt wild strain Bt17, Bt22, Btk do not have crystal mutant strain BE20 (method for transformation such as Lereclus, Lereclus, D. etc., FEMS Microbiology Letters, 1989,60:211-217).
The pseudomonas method for transformation is: 28 ℃, 220r/pm, and LB culture medium culturing bacterial strain spends the night, and carries out 1% inoculation next day, and culture condition is constant.Treat O.D
600Be, get cultured pseudomonas bacterium liquid and carry out ice bath that 4 ℃ are descended centrifugal collection thalline, add the 0.1M MgCl of 1/2 volume at 0.5 o'clock
2Ice bath 5min, centrifugal collection thalline adds the 0.05MCaCl of 1/2 volume
2Ice bath 30min, centrifugal collection thalline adds the above-mentioned CaCl of 1/10 volume
2Standby.Remaining part is the same with intestinal bacteria.
Above-mentioned two kinds of bacterium all can grow positive transformant, extract all kinds of transformant plasmids and carry out restriction analysis, prove that this carrier of pGM1105 can shuttle back and forth in three kinds of bacteriums and genetic stability, and stability is greater than 90%.
The structure of embodiment 4, expression vector
Cry3Aa7 gene (3.0kb) is cloned on the HindIII site of pGM1105, transformed into escherichia coli JM107 filters out the recombinant plasmid pLF31105 (10.7kb) (seeing Figure 14) that contains the cry3Aa gene; Behind its transformed into escherichia coli SCS110 bacterial strain, extract plasmid, these plasmids are transformed Pseudomonas fluorescens P303 bacterial strain and Bt wild strain Bt17 (containing the cry1Ba3 gene) (Analysis and Identification the results are shown in Figure 15,16) respectively; Carry out Protein Detection respectively, SDS-PAGE analysis revealed cry3A gene is equal energy normal expression 67kDa albumen in P303 and Bt17, and its importing does not influence the albumen of cry1Ba3 genetic expression 140kDa among the Bt17.The cry3A gene imports Bt17 and obtains transformant, through various Molecular Detection, proves to transform successfully, with this transformant called after engineering bacteria BiotIII-I (analysis of protein the results are shown in Figure 17).
The cultivation of embodiment 5, engineering bacteria, observation and detection
Adopt GT substratum, 1/2LB substratum and ZShi substratum (develop voluntarily in this laboratory), cultivate the BiotIII-I engineering bacteria respectively, scanning electron microscope and observation by light microscope result, in BiotIII-I, exist square and two kinds of crystal of the bipyramid bodily form (seeing Figure 18), prove the coexpression of two kinds of genes.
The test insect:
Lepidoptera pest-small cabbage moth (Plutella xylostella) second instar larvae;
Coleopteran pest-elm fleautiauxia armata (Pyrrhalta aenescens) two~four-age larva;
Coleopteran pest-colorado potato bug (Leplinotarsa decernlineata) two~four-age larva.
The desinsection bioassay method:
Small cabbage moth: leaf dipping method behind the employing cabbage leaves weighing, 96 hours investigation results;
Elm fleautiauxia armata: adopt fresh elm blade leaf dipping method, 96 hours investigation results;
Colorado potato bug: adopt the foliage-spray method, 96 hours investigation results.
(1) engineering bacteria is to the small cabbage moth desinsection result (referring to table 1) of different population:
The extension rate that the engineering bacteria BiotIII-I of bivalent gene combination is different is suitable with starting strain Bt17 to the toxic effect of small cabbage moth, and for example, 180 times of dilute samples, BiotIII-I corrected mortality (CM) are that 92.56%, 540 times of CM is 84.62%; And the Bt small cabbage moth population from Hainan still had stronger toxic effect, 180 times of CM are 57.82%, and produce the bacterial strain BtC005 that uses 180 times of CM of this resistant population are had only 36%.
(2) engineering bacteria is to elm fleautiauxia armata desinsection result (referring to table 2, table 3):
Find these in the test agent from table 2, engineering bacteria BiotIII-I, Bt22, Bt17 insecticidal effect CM are respectively 63.33%, 43.33%, 36.67%.The engineering bacteria BiotIII-I virulence of bivalent gene combination is the strongest, is better than two kinds of starting strain Bt22 and Bt17.
According to table 3 result, two kinds of gene expression products of cry1Ba and cry3A (protein concentration is respectively 0.5mg/mL) are during according to the mixed proportioning of 50: 50 and 40: 60, the insecticidal toxicity maximum, and CM is respectively 68.75% and 72.73%; Prove this two kinds of proteic obvious synergy.
Table 1, engineering bacteria are to different population small cabbage moth desinsection measurement result
Beijing examination worm (sensitivity) Hainan examination worm (resistance) sample
48 hours 96 hours 48 hours 96 hours
Proofread and correct the dead dead dead dead total dead borer population of the dead borer population of the total borer population of the dead borer population of the dead borer population of borer population of proofreading and correct of proofreading and correct of proofreading and correct
530535540
<210> 55
<211> 1916
<212> DNA
<213> Arabidopsis (Arabidopsis thaliana)
<400> 55
gtcgacccac gcgtccgcaa cagaaaccac aacaaaaact ttgagtcctc ttcttctcta 60
tacacaaaca tgaacacttt tacctcaaac tcttcggatc tcactaccac tgcaaccgaa 120
acatcgtcct ttagcacctt gtatctcctc tcaacacttc aagcttttgt ggctataacc 180
ttagtgatgc tactcaagaa attgatgacg gatcccaaca aaaagaaacc gtatctgcca 240
ccgggtccca caggatggcc gatcattgga atgattccga cgatgctaaa gagccggccc 300
gttttccggt ggctccacag catcatgaag cagctcaata ctgagatagc atgcgtgaag 360
ttaggaaaca ctcatgtgat caccgtcacg tgccctaaga tagcacgtga gatactcaag 420
caacaagacg ctctcttcgc gtcgaggcct ttaacttacg ctcagaagat cctctctaac 480
ggctacaaaa cctgcgtgat cactcccttt ggtgaccaat tcaagaaaat gaggaaagtt 540
gtgatgacgg aactcgtatg tccagcgaga cacaggtggc tccaccagaa gagatcagaa 600
gaaaacgatc atttaaccgc ttgggtatac aacatggtta agaactcggg ctctgtcgat 660
ttccggttca tgactaggca ttactgtgga aatgcaatca agaagcttat gttcgggacg 720
agaacgttct ctaagaacac tgcacctgac ggtggaccca ccgtagaaga tgtagagcac 780
atggaagcaa tgtttgaagc attagggttt accttcgctt tttgcatctc tgattatctg 840
ccgatgctca ctggacttga tcttaacggt cacgagaaga ttatgagaga atcaagtgcg 900
attatggaca agtatcatga cccaatcatc gacgagagga tcaagatgtg gagagaagga 960
aagagaactc aaatcgaaga ttttcttgat attttcatct ctatcaaaga cgaacaaggc 1020
aacccattgc ttaccgccga tgaaatcaaa cccaccatta aggagcttgt aatggcggcg 1080
ccagacaatc catcaaacgc cgtggaatgg gccatggcgg agatggtgaa caaaccggag 1140
attctccgta aagcaatgga agagatcgac agagtcgtcg ggaaagagag actcgttcaa 1200
gaatccgaca tcccaaaact aaactacgtc aaagctatcc tccgcgaagc tttccgtctc 1260
catcccgtcg ccgccttcaa cctcccccac gtggcacttt ctgacacaac cgtcgccgga 1320
tatcacatcc ctaaaggaag tcaagtcctt cttagccgat atgggctggg ccgtaaccca 1380
aaagtttggg ccgacccact ttgctttaaa ccggagagac atctcaacga atgctccgaa 1440
gttactttga ccgagaacga tctccggttt atctcgttca gtaccgggaa aagaggttgt 1500
gcggctccgg cgctaggaac ggcgttgacc acgatgatgc tcgcgagact tcttcaaggt 1560
ttcacttgga agctacctga gaatgagaca cgtgtcgagc tgatggagtc tagtcacgat 1620
atgtttctgg ctaaaccgtt ggttatggtc ggtgacctta gattgccgga gcatctctac 1680
ccgacggtga agtgagatga gacgacgccg tatatatttt atgaaactac ttttatataa 1740
tcgcccaacc aagtttggtc aattccggtt accagaagat aattggtcaa attgtgaaca 1800
aacttgtgtg ttggtttctt ggttcttttt gggacacttg aattgtgtct cctttacctc 1860
ttcttttgtt gttttcaata aaaactttta ttaccatttc aaaaaaaaaa aaaaaa 1916
<210> 56
<211> 1974
<212> DNA
<213> Arabidopsis (Arabidopsis thaliana)
<400> 56
atgaacactt ttacctcaaa ctcttcggat ctcactacca ctgcaaccga aacatcgtcc 60
tttagcacct tgtatctcct ctcaacactt caagcttttg tggctataac cttagtgatg 120
ctactcaaga aattgatgac ggatcccaac aaaaagaaac cgtatctgcc accgggtccc 180
acaggatggc cgatcattgg aatgattccg acgatgctaa agagccggcc cgttttccgg 240
tggctccaca gcatcatgaa gcagctcaat actgagatag catgcgtgaa gttaggaaac 300
actcatgtga tcaccgtcac gtgccctaag atagcacgtg agatactcaa gcaacaagac 360
gctctcttcg cgtcgaggcc tttaacttac gctcagaaga tcctctctaa cggctacaaa 420
acctgcgtga tcactccctt tggtgaccaa ttcaagaaaa tgaggaaagt tgtgatgacg 480
gaactcgtat gtccagcgag acacaggtgg ctccaccaga agagatcaga agaaaacgat 540
catttaaccg cttgggtata caacatggtt aagaactcgg gctctgtcga tttccggttc 600
atgactaggc attactgtgg aaatgcaatc aagaagctta tgttcgggac gagaacgttc 660
tctaagaaca ctgcacctga cggtggaccc accgtagaag atgtagagca catggaagca 720
atgtttgaag cattagggtt taccttcgct ttttgcatct ctgattatct gccgatgctc 780
actggacttg atcttaacgg tcacgagaag attatgagag aatcaagtgc gattatggac 840
aagtatcatg acccaatcat cgacgagagg atcaagatgt ggagagaagg aaagagaact 900
caaatcgaag attttcttga tattttcatc tctatcaaag acgaacaagg caacccattg 960
cttaccgccg atgaaatcaa acccaccatt aaggtattta tcacgttcct ttcatataag 1020
gtttcgatcg taaaaatatc aaaagaacaa tttttgttaa attttatttg agaaagcatg 1080
catatcaaat ttatttacac atactaacat tttgattcat aaaacattta taaaagaaga 1140
aagaaacatt ttgtggtaaa agttgattag ttacaatatt tgtttttttt ttgctaaaca 1200
tgggctactt ttttgtttgt ctcttttgat tactttggtc aaagacagat gcatgcaact 1260
taattgtatt tatttttatg ttatacaaaa attaaagatc caaaattaat aaaagctggt 1320
atatatgttt ataatgaata ggagcttgta atggcggcgc cagacaatcc atcaaacgcc 1380
gtggaatggg ccatggcgga gatggtgaac aaaccggaga ttctccgtaa agcaatggaa 1440
gagatcgaca gagtcgtcgg gaaagagaga ctcgttcaag aatccgacat cccaaaacta 1500
aactacgtca aagctatcct ccgcgaagct ttccgtctcc atcccgtcgc cgccttcaac 1560
ctcccccacg tggcactttc tgacacaacc gtcgccggat atcacatccc taaaggaagt 1620
caagtccttc ttagccgata tgggctgggc cgtaacccaa aagtttgggc cgacccactt 1680
tgctttaaac cggagagaca tctcaacgaa tgctccgaag ttactttgac cgagaacgat 1740
ctccggttta tctcgttcag taccgggaaa agaggttgtg cggctccggc gctaggaacg 1800
gcgttgacca cgatgatgct cgcgagactt cttcaaggtt tcacttggaa gctacctgag 1860
aatgagacac gtgtcgagct gatggagtct agtcacgata tgtttctggc taaaccgttg 1920
gttatggtcg gtgaccttag attgccggag catctctacc cgacggtgaa gtga 1974
<210> 57
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer T7
<400> 57
aatacgactc actatag 17
<210> 58
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer EST3
<400> 58
gctaggatcc atgttgtata cccaag 26
<210> 59
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer EST6
<400> 59
cgggcccgtt ttccggtggc 20
<210> 60
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer EST7A
<400> 60
ggtcaccaaa gggagtgatc acgc 24
<210> 61
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer 5 * natural * righteousness
<400> 61
atcgtcagtc gaccatatga acacttttac ctcaaactct tcgg 44
<210> 62
<211> 68
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer 5 * cow * righteousness
<400> 62
atcgtcagtc gaccatatgg ctctgttatt agcagttttt acatcgtcct ttagcacctt 60
gtatctcc 68
<210> 63
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer 3 * end * Antisense
<400> 63
actgctagaa ttcgacgtca ttacttcacc gtcgggtaga gatgc 45
<210> 64
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer CYP79B2.2
<400> 64
ggaattcatg aacactttta cctca 25
<210> 65
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer B2SB
<400> 65
ttgtctagat cacttcaccg tcgggta 27
<210> 66
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer B2AF
<400> 66
ggcctcgaga tgaacacttt tacctca 27
<210> 67
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer B2AB
<400> 67
ttggaattcc ttcaccgtcg ggtagag 27
<210> 68
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer XbaI
<400> 68
gtaccatcta gattcatgtt tgtgtataga g 31
<210> 69
<211> 2361
<212> DNA
<213> Arabidopsis (Arabidopsis thaliana)
<400> 69
gaattcattg atctggtctt gctaaaaact ttaaaattga tgagttcaac atcttcaaat 60
gcatgataac gggtccaacg gaaattgact tttttttcat gctcctgata tataataata 120
tctaacgatt acgggttcca ctaattgtca ttactcatta acattcctat ttaaaagttg 180
tgatagtttt agggttttac gtagtcgtgt catatagcga ttaactacgt acttgtagat 240
ttatcaatta cttctgttgt ttacgagaac ctaaaaaaaa gaagcagatg cctagtttat 300
agagcacgtg tactgtcttg aaaacttagg taggttggta aggttaccaa aagaccttaa 360
aggaatataa agttactaat taacttaagt aaagttggta ttgcttatat attgcaaagt 420
attacaaacc aatcccctct gtatattgtt ttaaaccata gattttttta caattaagtt 480
tatgatcaat caattatttc accatttcta ttaaattatg taaaaagaaa aggatatata 540
tatatatata taattaaata agaataaatc aaaataccga aattttttat tatccattct 600
ttgtggacat cgcccctaat atataaaaaa aaaaaacttt cgtataactg atttatattt 660
ttttgtaaaa acttaaagga agcctaagaa atatcttgtg atatttttga caaaatgtgg 720
tatatatctt tttataatat catttataaa gaaaatattg attacatggt gaaaaacatt 780
ttgctagcga tcaacaaaat taaataggca catgttaact gatctcatac gaccttgaaa 840
ttttaatctt tgtgtcgaga gaccgatctt tatgcaaatt atgaaactac acatggttta 900
tgcacggaag atcacattgc atgtatacca tattataaac caaaaatgat caagaagaag 960
gcgaaaacat ttgggtaaat tttaaatttc gatcatgcga ttttttagct catcatcaac 1020
agacaagaaa ctatcttttg tactgtaaat actaaataca aaataaaatc ttcatcattt 1080
tttgcatgtg tcaaataaat tacgcgaact tttttttttt atcgactatt aatagagaaa 1140
cctgttttat ttgccttgat ttggaaaaat ggagaaattg acttaagact tagtctcggt 1200
cacatcggca acaacggagc ttaaacggcg tccgcaacat ggaaactcaa gccacgaatc 1260
tgatatattg actatagaag tagtaagtaa ctttgactcg tcccacatca gtttcaattt 1320
ccacgagggt atttggcagg tgaactctct acgtacccaa aacataatgg ctattttatt 1380
tcataactga tatttagcaa ttaattattc gtccttttta aaccaatttc tatagttggg 1440
aaaataatca atttttacac tttcaatgta tacgttacag attttttttt attagtcatg 1500
cacatatttt caatttttac actttcaatg taaacaatcg attcttaatt gttaaaaata 1560
ggtttacgta aggaattaaa gatttgttta aaatatgttc cggccggtct aataatttac 1620
ttgacgttaa tttcttaaac acttttagat aggaggcttt gtttatccca aatgattttg 1680
taccactgcg acaatactag ctagacataa aatgttaata aatttttatt aagtaatata 1740
atcgaagtat tagatcaatg tagtagacag ttaggttaac taaaacaaga gtaaacactt 1800
ttttttttct tttcaggata ggtaaaacaa atttcacact attttgcgta tttccttaaa 1860
tttgttgttc gttttctcag caaagatgaa tattttgttt catagtaatt cacaagtata 1920
aactcgccag aactcctcaa acagtgaaat ataatatagc ttttaactgt ttttcggctg 1980
gaccgggttt ttaagtgcat atataacacg aggaattttg gcaggtcacc aacaaaactt 2040
ttaaaaatat taaaaattcc catcaagaat agaaattaat aaacaatgat atctctaata 2100
atatagatat tttgaaacgt taggaataat cgtaataatg ttcaacgttg gtggtggtac 2160
tcaagatgga ccctccctcc cacattttcc tcactccttc gtaagtcctt tccacgcata 2220
agggtattat agtcatttca cataaactaa cgactactag acttgtatat aaataggaag 2280
gtgaagctct ctctttatcc atgcagagac aacagaaacc acaacaaaaa ctttgagtcc 2340
tcttcttctc tatacacaaa c 2361
<210> 70
<211> 540
<212> PRT
<213> turnip (Brassica napus)
<400> 70
Met Asn Thr Phe Thr Ser Asn Ser Ser Asp Leu Thr Ser Thr Thr Thr
151015
Gln Thr Ser Pro Phe Ser Asn Met Tyr Leu Leu Thr Thr Leu Gln Ala
...
Table 2, engineering bacteria lead % Jiao Zheng Si Wang to Yu fleautiauxia armata desinsection Zuo Yong result (96 Xiao Shi) Yang Pin processing Chong negative total columns Si and lead % 1/2B Pei Yang base 2 35 00 0B22 10X 2 30 13 4333 433B17 10X 2 30 11 3,667 366 BiotIII-I 10X 2 27 19 6,333 633
Table 3 engineering bacteria is to elm fleautiauxia armata insecticidal synergistic exercising result (96 hours)
Sample | Handle | Dead borer population | Borer population alive | Corrected mortality (%) |
????CK | ????1 | ????1 | ????16 | ????2.94 |
????2 | ????0 | ????17 | ||
????0∶100 | ????1 | ????5 | ????10 | ????37.93 |
????2 | ????6 | ????8 | ||
????20∶80 | ????1 | ????9 | ????8 | ????52.94 |
????2 | ????9 | ????8 | ||
????40∶60 | ????1 | ????8 | ????8 | ????53.13 |
????2 | ????9 | ????7 | ||
????50∶50 | ????1 | ????8 | ????7 | ????68.75 |
????2 | ????14 | ????3 | ||
????60∶40 | ????1 | ????13 | ????4 | ????72.73 |
????2 | ????11 | ????5 | ||
????80∶20 | ????1 | ????12 | ????5 | ????67.65 |
????2 | ????11 | ????6 | ||
????100∶0 | ????1 | ????5 | ????12 | ????55.88 |
????2 | ????14 | ????3 |
Sample ligand compared with the beginning concentration: cry3Aa7 albumen (Bt22) content and cry1Ba3 albumen (Bt17) content are 0.5mg/mL
(3) engineering bacteria is to colorado potato bug desinsection result (referring to table 4):
The result shows that Bt17 (cry1Ba) bacterial strain has mesogenic to colorado potato bug; Bt22 (cry3Aa) and foreign project bacterium Bt2321 have high virulence, reach 93.97% and 91.38% respectively; The engineering bacteria BiotIII-I virulence of bivalent gene combination is the strongest, and prevention effect reaches 99.15%, and is suitable with chemical pesticide.Prove absolutely that bivalent gene has remarkable role in synergy.
Table 4 engineering bacteria is processed the multiple Zong borer population survival of Chong borer population control Xiao to colorado potato bug desinsection measurement result (96 Xiao Shi investigation result) Yang Pin and is led % variance analysis Bt2321 1X 3 636 51 91.38 BCbBt22 1X 3 730 42 93.97 BbBt17 1X 3 692 260 59.26 DdBiotIII-I 1X 3 631 5 99.15 Aa
Appendix: The invention relates to DNA sequences and protein sequences (1) SEQ ID NO 1 (cry3Aa7 nucleotide sequence, wherein the underlined part of the coding region of 1932bp): AAGCTTAATT AAAGATAATA TCTTTGAATT GTAACGCCCC TCAAAAGTAA GAACTACAAA 60 AAAAGAATAC GTTATATAGA AATATGTTTG AACCTTCTTC AGATTACAAA TATATTCGGA 120 CGGACTCTAC CTCAAATGCT TATCTAACTA TAGAATGACA TACAAGCACA ACCTTGAAAA 180 TTTGAAAATA TAACTACCAA TGAACTTGTT CATGTGAATT ATCGCTGTAT TTAATTTTCT 240 CAATTCAATA TATAATATGC CAATACATTG TTACAAGTAG AAATTAAGAC ACCCTTGATA 300 GCCTTACTAT ACCTAACATG ATGTAGTATT AAATGAATAT GTAAATATAT TTATGATAAG 360 AAGCGACTTA TTTATAATCA TTACATATTT TTCTATTGGA ATGATTAAGA TTCCAATAGA 420 ATAGTGTATA AATTATTTAT CTTGAAAGGA GGGATGCCTA AAAACGAAGA ACATTAAAAA 480 CATATATTTG CACCGTCTAA TGGATTTATG AAAAATCATT TTATCAGTTT GAAAATTATG 540 TATTATGATA AGAAAGGGAG GAAGAAAAAT GAATCCGAAC AATCGAAGTG AACATGATAC
600 AATAAAAACT ACTGAAAATA ATGAGGTGCC AACTAACCAT GTTCAATATC CTTTAGCGGA
660 AACTCCAAAT CCAACACTAG AAGATTTAAA TTATAAAGAG TTTTTAAGAA TGACTGCAGA
720 TAATAATACG GAAGCACTAG ATAGCTCTAC AACAAAAGAT GTCATTCAAA AAGGCATTTC
780 CGTAGTAGGT GATCTCCTAG GCGTAGTAGG TTTCCCGTTT GGTGGAGCGC TTGTTTCGTT
840 TTATACAAAC TTTTTAAATA CTATTTGGCC AAGTGAAGAC CCGTGGAAGG CTTTTATGGA
900 ACAAGTAGAA GCATTGATGG ATCAGAAAAT AGCTGATTAT GCAAAAAATA AAGCTCTTGC
960 AGAGTTACAG GGCCTTCAAA ATAATGTCGA AGATTATGTG AGTGCATTGA GTTCATGGCA
1020 AAAAAATCCT GTGAGTTCAC GAAATCCACA TAGCCAGGGG CGGATAAGAG AGCTGTTTTC
1080 TCAAGCAGAA AGTCATTTTC GTAATTCAAT GCCTTCGTTT GCAATTTCTG GATACGAGGT
1140 TCTATTTCTA ACAACATATG CACAAGCTGC CAACACACAT TTATTTTTAC TAAAAGACGC
1200 TCAAATTTAT GGAGAAGAAT GGGGATACGA AAAAGAAGAT ATTGCTGAAT TTTATAAAAG
1260 ACAACTAAAA CTTACGCAAG AATATACTGA CCATTGTGTC AAATGGTATA ATGTTGGATT
1320 AGATAAATTA AGAGGTTCAT CTTATGAATC TTGGGTAAAC TTTAACCGTT ATCGCAGAGA
1380 GATGACATTA ACAGTATTAG ATTTAATTGC ACTATTTCCA TTGTATGATG TTCGGCTATA
1440 CCCAAAAGAA GTTAAAACCG AATTAACAAG AGACGTTTTA ACAGATCCAA TTGTCGGAGT
1500 CAACAACCTT AGGGGCTATG GAACAACCTT CTCTAATATA GAAAATTATA TTCGAAAACC
1560 ACATCTATTT GACTATCTGC ATAGAATTCA ATTTCACACG CGGTTCCAAC CAGGATATTA
1620 TGGAAATGAC TCTTTCAATT ATTGGTCCGG TAATTATGTT TCAACTAGAC CAAGCATAGG
1680 ATCAAATGAT ATAATCACAT CTCCATTCTA TGGAAATAAA TCCAGTGAAC CTGTACAAAA
1740 TTTAGAATTT AATGGAGAAA AAGTCTATAG AGCCGTAGCA AATACAAATC TTGCGGTCTG
1800 GCCGTCCGCT GTATATTCAG GTGTTACAAA AGTGGAATTT AGCCAATATA ATGATCAAAC
1860 AGATGAAGCA AGTACACAAA CGTACGACTC AAAAAGAAAT GTTGGCGCGG TCAGCTGGGA
1920 TTCTATCGAT CAATTGCCTC CAGAAACAAC AGATGAACCT CTAGAAAAGG GATATAGCCA
1980 TCAACTCAAT TATGTAATGT GCTTTTTAAT GCAGGGTAGT AGAGGAACAA TCCCAGTGTT
2040 AACTTGGACA CATAAAAGTG TAGACTTTTT TAACATGATT GATTCGAAAA AAATTACACA
2100 ACTTCCGTTA GTAAAGGCAT ATAAGTTACA ATCTGGTGCT TCCGTTGTCG CAGGTCCTAG
2160 GTTTACAGGA GGAGATATCA TTCAATGCAC AGAAAATGGA AGTGCGGCAA CTATTTACGT
2220 TACACCGGAT GTGTCGTACT CTCAAAAATA TCGAGCTAGA ATTCATTATG CTTCTACATC
2280 TCAGATAACA TTTACACTCA GTTTAGACGG GGCACCATTT AATCAATACT ATTTCGATAA
2340 AACGATAAAT AAAGGAGACA CATTAACGTA TAATTCATTT AATTTAGCAA GTTTCAGCAC
2400 ACCATTCGAA TTATCAGGGA ATAACTTACA AATAGGCGTC ACAGGATTAA GTGCTGGAGA
2460 TAAAGTTTAT ATAGACAAAA TTGAATTTAT TCCAGTGAAT TAAATTAACT AGAAAGTAAA 2520
GAAGTAGTGA CCATCTATGA TAGTAAGCAA AGGATAAAAA AATGAGTTCA TAAAATGAAT 2580
AACATAGTGT TCTTCAACTT TCGCTTTTTG AAGGTAGATG AAGAACACTA TTTTTATTTT 2640
CAAAATGAAG GAAGTTTTAA ATATGTAATC ATTTAAAGGG AACAATGAAA GTAGGAAATA 2700
AGTCATTATC TATAACAAAA TAACATTTTT ATATAGCCAG AAATGAATTA TAATATTAAT 2760
CTTTTCTAAA TTGACGTTTT TCTAAACGTT CTATAGCTTC AAGACGCTTA GAATCATCAA 2820
TATTTGTATA CAGAGCTGTT GTTTCCATCG AGTTATGTCC CATTTGATTC GCTAATAGAA 2880
CAAGATCTTT ATTTTCGTTA TAATGATTGG TTGCATAAGT ATGGCGTAAT TTATGAGGGC 2940
TTTTCTTTTC ATCAAAAGCC CTCGTGTATT TCTCTGTAAG CTT 2983
(2) SEQ ID NO 2 (cry1Ba3 nucleotide sequence and its encoded amino acid sequence of the protein)
1 TTGACTTCAAATAGGAAAAATGAGAATGAAATTATAAATGCTGTATCGAATCATTCCGCA 60
1 L T S N R K N E N E I I N A V S N H S A 20
61 CAAATGGATC TATTACCAGATGCTCGTATTGAGGATAGCTTGTGTATAGCCGAGGGGAAC 120
21 Q M D L L P D A R I E D S L C I A E G N 40
121 AATATCGATC CATTTGTTAGCGCATCAACAGTCCAAACGGGTATTAACATAGCTGGTAGA 180
41 N I D P F V S A S T V Q T G I N I A G R 60
181 ATACTAGGCG TATTGGGCGTACCGTTTGCTGGACAACTAGCTAGTTTTTATAGTTTTCTT 240
61 I L G V L G V P F A G Q L A S F Y S F L 80
241 GTTGGTGAAT TATGGCCCCGCGGCAGAGATCAGTGGGAAATTTTCCTAGAACATGTCGAA 300
81 V G E L W P R G R D Q W E I F L E H V E 100
301 CAACTTATAA ATCAACAAATAACAGAAAATGCTAGGAATACGGCTCTTGCTCGATTACAA 360
101 Q L I N Q Q I T E N A R N T A L A R L Q 120
361 GGTTTAGGAG ATTCCTTCAGAGCCTATCAACAGTCACTTGAAGATTGGCTAGAAAACCGT 420
121 G L G D S F R A Y Q Q S L E D W L E N R 140
421 GATGATGCAA GAACGAGAAGTGTTCTTTATACCCAATATATAGCTTTAGAACTTGATTTT 480
141 D D A R T R S V L Y T Q Y I A L E L D F 160
481 CTTAATGCGA TGCCGCTTTTCGCAATTAGAAACCAAGAAGTTCCATTATTGATGGTATAT 540
161 L N A M P L F A I R N Q E V P L L M V Y 180
541 GCTCAAGCTG CAAATTTACACCTATTATTATTGAGAGATGCCTCTCTTTTTGGTAGTGAA 600
181 A Q A A N L H L L L L R D A S L F G S E 200
601 TTTGGGCTTA CATCGCAGGAAATTCAACGCTATTATGAGCGCCAAGTGGAACGAACGAGA 660
201 F G L T S Q E I Q R Y Y E R Q V E R T R 220
661 GATTATTCCG ACTATTGCGTAGAATGGTATAATACAGGTCTAAATAGCTTGAGAGGGACA 720
221 D Y S D Y C V E W Y N T G L N S L R G T 240
721 AATGCCGCAA GTTGGGTACGGTATAATCAATTCCGTAGAGATCTAACGTTAGGAGTATTA 780
241 N A A S W V R Y N Q F R R D L T L G V L 260
781 GATCTAGTGG CACTATTCCCAAGCTATGACACTCGCACTTATCCAATAAATACGAGTGCT 840
261 D L V A L F P S Y D T R T Y P I N T S A 280
841 CAGTTAACAA GAGAAGTTTATACAGACGCAATTGGAGCAACAGGGGTAAATATGGCAAGT 900
281 Q L T R E V Y T D A I G A T G V N M A S 300
901 ATGAATTGGT ATAATAATAATGCACCTTCGTTCTCTGCCATAGAGGCTGCGGCTATCCGA 960
301 M N W Y N N N A P S F S A I E A A A I R 320
961 AGCCCGCATC TACTTGATTTTCTAGAACAACTTACAATTTTTAGCGCTTCATCACGATGG 1020
321 S P H L L D F L E Q L T I F S A S S R W 340
1021 AGTAATACTAGGCATATGACTTATTGGCGGGGGCGCACGATTCAATCTCGGCCAATAGGA 1080
341 S N T R H M T Y W R G R T I Q S R P I G 360
1081 GGCGGATTAAATACCTCAACGCATGGGGCTACCAATACTTCTATTAATCCTGTAACATTA 1140
361 G G L N T S T H G A T N T S I N P V T L 380
1141 CGGTTCGCATCTCGAGACGTTTATAGGACTGAATCATATGCAGGAGTGCTTCTATGGGGA 1200
381 R F A S R D V Y R T E S Y A G V L L W G 400
1201 ATTTACCTTGAACCTATTCATGGTGTCCCTACTGTTAGGTTTAATTTTACGAACCCTCAG 1260
401 I Y L E P I H G V P T V R F N F T N P Q 420
1261 AATATTTCTGATAGAGGTACCGCTAACTATAGTCAACCTTATGAGTCACCTGGGCTTCAA 1320
421 N I S D R G T A N Y S Q P Y E S P G L Q 440
1321 TTAAAAGATTCAGAAACTGAATTACCACCAGAAACAACAGAACGACCAAATTATGAATCT 1380
441 L K D S E T E L P P E T T E R P N Y E S 460
1381 TACAGTCACAGGTTATCTCATATAGGTATAATTTTACAATCCAGGGTGAATGTACCGGTA 1440
461 Y S H R L S H I G I I L Q S R V N V P V 480
1441 TATTCTTGGACGCATCGTAGTGCAGATCGTACGAATACGATTGGACCAAATAGAATCACC 1500
481 Y S W T H R S A D R T N T I G P N R I T 500
1501 CAAATCCCAATGGTAAAAGCATCCGAACTTCCTCAAGGTACCACTGTTGTTAGAGGACCA 1560
501 Q I P M V K A S E L P Q G T T V V R G P 520
1561 GGATTTACTGGTGGGGATATTCTTCGAAGAACGAATACTGGTGGATTTGGACCGATAAGA 1620
521 G F T G G D I L R R T N T G G F G P I R 540
1621 GTAACTGTTAACGGACCATTAACACAAAGATATCGTATAGGATTCCGCTATGCTTCAACT 1680
541 V T V N G P L T Q R Y R I G F R Y A S T 560
1681 GTAGATTTTGATTTCTTTGTATCACGTGGAGGTACTACTGTAAATAATTTTAGATTCCTA 1740
561 V D F D F F V S R G G T T V N N F R F L 580
1741 CGTACAATGAACAGTGGAGACGAACTAAAATACGGAAATTTTGTGAGACGTGCTTTTACT 1800
581 R T M N S G D E L K Y G N F V R R A F T 600
1801 ACACCTTTTACTTTTACACAAATTCAAGATATAATTCGAACGTCTATTCAAGGCCTTAGT 1860
601 T P F T F T Q I Q D I I R T S I Q G L S 620
1861 GGAAATGGGGAAGTGTATATAGATAAAATTGAAATTATTCCAGTTACTGCAACCTTCGAA 1920
621 G N G E V Y I D K I E I I P V T A T F E 640
1921 GCAGAATATGATTTAGAAAGAGCGCAAGAGGCGGTGAATGCTCTGTTTACTAATACGAAT 1980
641 A E Y D L E R A Q E A V N A L F T N T N 660
1981 CCAAGAAGATTGAAAACAGATGTGACAGATTATCATATTGATCAAGTATCCAATTTAGTG 2040
661 P R R L K T D V T D Y H I D Q V S N L V 680
2041 GCGTGTTTATCGGATGAATTCTGCTTGGATGAAAAGAGAGAATTACTTGAGAAAGTGAAA 2100
681 A C L S D E F C L D E K R E L L E K V K 700
2101 TATGCGAAACGACTCAGTGATGAAAGAAACTTACTCCAAGATCCAAACTTCACATCCATC 2160
701 Y A K R L S D E R N L L Q D P N F T S I 720
2161 AATAAGCAACCAGACTTCATATCTACTAATGAGCAATCGAATTTCACATCTATCCATGAA 2220
721 N K Q P D F I S T N E Q S N F T S I H E 740
2221 CAATCTGAACATGGATGGTGGGGAAGTGAGAACATTACCATCCAGGAAGGAAATGACGTA 2280
741 Q S E H G W W G S E N I T I Q E G N D V 760
2281 TTTAAAGAGAATTACGTCACACTACCGGGTACTTTTAATGAGTGTTATCCGACGTATTTA 2340
761 F K E N Y V T L P G T F N E C Y P T Y L 780
2341 TATCAAAAAATAGGGGAGTCGGAATTAAAAGCTTATACTCGCTACCAATTAAGAGGTTAT 2400
781 Y Q K I G E S E L K A Y T R Y Q L R G Y 800
2401 ATTGAAGATAGTCAAGATTTAGAGATATATTTGATTCGTTATAATGCGAAACATGAAACA 2460
801 I E D S Q D L E I Y L I R Y N A K H E T 820
2461 TTGGATGTTCCAGGTACCGAGTCCCTATGGCCGCTTTCAGTTGAAAGCCCAATCGGAAGG 2520
821 L D V P G T E S L W P L S V E S P I G R 840
2521 TGCGGAGAACCGAATCGATGCGCACCACATTTTGAATGGAATCCTGATCTAGATTGTTCC 2580
841 C G E P N R C A P H F E W N P D L D C S 860
2581 TGCAGAGATGGAGAAAAATGTGCGCATCATTCCCATCATTTCTCTTTGGATATTGATGTT 2640
861 C R D G E K C A H H S H H F S L D I D V 880
2641 GGATGCACAGACTTGCATGAGAATCTAGGCGTGTGGGTGGTATTCAAGATTAAGACGCAG 2700
881 G C T D L H E N L G V W V V F K I K T Q 900
2701 GAAGGTCATGCAAGACTAGGGAATCTGGAATTTATTGAAGAGAAACCATTATTAGGAGAA 2760
901 E G H A R L G N L E F I E E K P L L G E 920
2761 GCACTGTCTCGTGTGAAGAGGGCAGAGAAAAAATGGAGAGACAAACGTGAAAAACTACAA 2820
921 A L S R V K R A E K K W R D K R E K L Q 940
2821 TTGGAAACAAAACGAGTATATACAGAGGCAAAAGAAGCTGTGGATGCTTTATTCGTAGAT 2880
941 L E T K R V Y T E A K E A V D A L F V D 960
2881 TCTCAATATGATAGATTACAAGCGGATACAAACATCGGCATGATTCATGCGGCAGATAAA 2940
961 S Q Y D R L Q A D T N I G M I H A A D K 980
2941 CTTGTTCATCGAATTCGAGAGGCGTATCTTTCAGAATTACCTGTTATCCCAGGTGTAAAT 3000
981 L V H R I R E A Y L S E L P V I P G V N 1000
3001 GCGGAAATTTTTGAAGAATTAGAAGGTCACATTATCACTGCAATCTCCTTATACGATGCG 3060
1001 A E I F E E L E G H I I T A I S L Y D A 1020
3061 AGAAATGTCGTTAAAAATGGTGATTTTAATAATGGATTAACATGTTGGAATGTAAAAGGG 3120
1021 R N V V K N G D F N N G L T C W N V K G 1040
3121 CATGTAGATGTACAACAGAGCCATCATCGTTCTGACCTTGTTATCCCAGAATGGGAAGCA 3180
1041 H V D V Q Q S H H R S D L V I P E W E A 1060
3181 GAAGTGTCACAAGCAGTTCGCGTCTGTCCGGGGTGTGGCTATATCCTTCGTGTCACAGCG 3240
1061 E V S Q A V R V C P G C G Y I L R V T A 1080
3241 TACAAAGAGGGATATGGAGAGGGCTGCGTAACGATCCATGAAATCGAGAACAATACAGAC 3300
1081 Y K E G Y G E G C V T I H E I E N N T D 1100
3301 GAACTAAAATTTAAAAACCGTGAAGAAGAGGAAGTGTATCCAACGGATACAGGAACGTGT 3360
1101 E L K F K N R E E E E V Y P T D T G T C 1120
3361 AATGATTATACTGCACACCAAGGTACAGCTGGATGCGCAGATGCATGTAATTCCCGTAAT 3420
1121 N D Y T A H Q G T A G C A D A C N S R N 1140
3421 GCTGGATATGAGGATGCATATGAAGTTGATACTACAGCATCTGTTAATTACAAACCGACT 3480
1141 A G Y E D A Y E V D T T A S V N Y K P T 1160
3481 TATGAAGAAGAAACGTATACAGATGTAAGAAGAGATAATCATTGTGAATATGACAGAGGG 3540
1161 Y E E E T Y T D V R R D N H C E Y D R G 1180
3541 TATGTCAATTATCCACCAGTACCAGCTGGTTATGTGACAAAAGAATTAGAATACTTCCCA 3600
1181 Y V N Y P P V P A G Y V T K E L E Y F P 1200
3601 GAAACAGATACAGTATGGATTGAGATTGGAGAAACGGAAGGAAAGTTTATTGTAGATAGC 3660
1201 E T D T V W I E I G E T E G K F I V D S 1220
3661 GTGGAATTACTCCTCATGGAAGAATAG 3687
1221 V E L L L M E E * 1240
...
Claims (15)
1. the gene order of a Bt gene cry1Ba3 is characterized in that this sequence has the nucleotide sequence shown in SEQ ID NO 2, and coding has the protein of the aminoacid sequence shown in SEQ ID NO 2, and insect is had toxicity;
2. the gene order of claim 1, wherein said gene order comprises the partial sequence of this gene order;
3. the gene order of claim 1, wherein said gene order comprises the homologous sequence of this gene order;
4. the gene order of claim 1, wherein said insect is lepidopteran and coleopteron;
5. one kind has active proteinic aminoacid sequence to insect, it is characterized in that this proteinic aminoacid sequence is coded by the gene order of claim 1, has the aminoacid sequence shown in SEQ ID NO 2, and insect is had toxicity;
6. the aminoacid sequence of claim 5, wherein said aminoacid sequence comprises the partial sequence of this aminoacid sequence;
7. the aminoacid sequence of claim 5, wherein said aminoacid sequence comprises the homologous sequence of this aminoacid sequence;
8. the aminoacid sequence of claim 5, wherein said insect is lepidopteran and coleopteron;
9. the Genetic carrier that can shuttle back and forth between bacillus thuringiensis-intestinal bacteria-pseudomonas is characterized in that this shuttle expression carrier is to duplicate sub constructed by one from bacillus thuringiensis-colibacillary shuttle vectors and the plasmid DNA from pseudomonas;
10. expression vector, this expression vector of its feature is constructed by the hereditary shuttle vectors of claim 9 and the gene order shown in SEQID NO 1;
11. one kind transforms the method that the Bt cell obtains engineering bacteria, it is characterized in that this method application rights requires 10 expression vector;
12. the combination of gene cry1Ba and cry3Aa7 is characterized in that this combination can be applicable to transform microorganism and plant, makes it to show the toxicity to relevant insect, and overcomes or delay insect to engineering bacteria and the drug-fast generation of transgenic plant;
13. the combination of protein C ry1Ba and Cry3Aa7 is characterized in that this combination can be applicable to transform microorganism and plant, makes it to show the toxicity to relevant insect, and overcomes or delay insect to engineering bacteria and the drug-fast generation of transgenic plant;
14. a broad sense expression vector pGM1105 is characterized in that this carrier is according to claim 1,5,9,10,11 and make up, and can be used in multiple host living beings (cell);
15. an expression vector pLF31105 is characterized in that this carrier carries the gene order shown in SEQ ID NO 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB011241640A CN1181203C (en) | 2001-08-20 | 2001-08-20 | Bt gene with high toxicity to Lepidoptera and Coleoptera insects, expression vector and engineering bacteria |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB011241640A CN1181203C (en) | 2001-08-20 | 2001-08-20 | Bt gene with high toxicity to Lepidoptera and Coleoptera insects, expression vector and engineering bacteria |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1401773A true CN1401773A (en) | 2003-03-12 |
CN1181203C CN1181203C (en) | 2004-12-22 |
Family
ID=4665550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB011241640A Expired - Fee Related CN1181203C (en) | 2001-08-20 | 2001-08-20 | Bt gene with high toxicity to Lepidoptera and Coleoptera insects, expression vector and engineering bacteria |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1181203C (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101497658B (en) * | 2009-03-05 | 2010-12-08 | 四川农业大学 | Novel Bt protein Cry4Cc1, coding gene thereof and use |
CN102329760A (en) * | 2011-10-19 | 2012-01-25 | 青岛农业大学 | New bacterial strain of Bacillus thuringiensis for killing grub pest and pest killing protein thereof |
CN102459316A (en) * | 2009-06-16 | 2012-05-16 | 陶氏益农公司 | Dig-5 insecticidal cry toxins |
CN102459315A (en) * | 2009-04-17 | 2012-05-16 | 陶氏益农公司 | Dig-3 insecticidal cry toxins |
CN101812467B (en) * | 2009-12-03 | 2012-05-23 | 中国农业科学院植物保护研究所 | Recombined Bt genes mvip3Aa11, mcry2Ab4, assortment of genes and application thereof |
CN103145814A (en) * | 2013-02-25 | 2013-06-12 | 北京大北农科技集团股份有限公司 | Insecticidal protein, and coding gene and use thereof |
CN103154247A (en) * | 2010-08-19 | 2013-06-12 | 先锋国际良种公司 | Novel bacillus thuringiensis gene with lepidopteran activity |
CN103201388A (en) * | 2010-08-19 | 2013-07-10 | 先锋国际良种公司 | Novel bacillus thuringiensis gene with lepidopteran activity against insect pests |
CN109055413A (en) * | 2018-07-30 | 2018-12-21 | 江苏医药职业学院 | A kind of shuttle vector and its construction method and application |
CN116649372A (en) * | 2023-07-26 | 2023-08-29 | 中国农业科学院植物保护研究所 | Microbial composition and application thereof in prevention and control of coleopteran pests |
-
2001
- 2001-08-20 CN CNB011241640A patent/CN1181203C/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101497658B (en) * | 2009-03-05 | 2010-12-08 | 四川农业大学 | Novel Bt protein Cry4Cc1, coding gene thereof and use |
CN102459315B (en) * | 2009-04-17 | 2016-03-02 | 陶氏益农公司 | DIG-3 insecticidal cry toxins |
CN102459315A (en) * | 2009-04-17 | 2012-05-16 | 陶氏益农公司 | Dig-3 insecticidal cry toxins |
CN102459316A (en) * | 2009-06-16 | 2012-05-16 | 陶氏益农公司 | Dig-5 insecticidal cry toxins |
CN101812467B (en) * | 2009-12-03 | 2012-05-23 | 中国农业科学院植物保护研究所 | Recombined Bt genes mvip3Aa11, mcry2Ab4, assortment of genes and application thereof |
CN103154247A (en) * | 2010-08-19 | 2013-06-12 | 先锋国际良种公司 | Novel bacillus thuringiensis gene with lepidopteran activity |
CN103201388A (en) * | 2010-08-19 | 2013-07-10 | 先锋国际良种公司 | Novel bacillus thuringiensis gene with lepidopteran activity against insect pests |
CN102329760A (en) * | 2011-10-19 | 2012-01-25 | 青岛农业大学 | New bacterial strain of Bacillus thuringiensis for killing grub pest and pest killing protein thereof |
CN103145814A (en) * | 2013-02-25 | 2013-06-12 | 北京大北农科技集团股份有限公司 | Insecticidal protein, and coding gene and use thereof |
CN103145814B (en) * | 2013-02-25 | 2014-07-09 | 北京大北农科技集团股份有限公司 | Insecticidal protein, and coding gene and use thereof |
CN109055413A (en) * | 2018-07-30 | 2018-12-21 | 江苏医药职业学院 | A kind of shuttle vector and its construction method and application |
CN109055413B (en) * | 2018-07-30 | 2021-07-02 | 江苏医药职业学院 | Shuttle plasmid vector and construction method and application thereof |
CN116649372A (en) * | 2023-07-26 | 2023-08-29 | 中国农业科学院植物保护研究所 | Microbial composition and application thereof in prevention and control of coleopteran pests |
CN116649372B (en) * | 2023-07-26 | 2023-10-27 | 中国农业科学院植物保护研究所 | Microbial composition and application thereof in prevention and control of coleopteran pests |
Also Published As
Publication number | Publication date |
---|---|
CN1181203C (en) | 2004-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103421816B (en) | Killing gene and purposes thereof | |
CN111606984B (en) | Plant insect-resistant protein and coding gene and application thereof | |
CN1401773A (en) | Bt gene with high toxicity to Lepidoptera and Coleoptera insects, expression vector and engineering bacteria | |
CN1997737A (en) | Compositions and methods for control of insect infestations in plants | |
CN101113424A (en) | Coleoptera pest efficient Bacillus thuringiensis cry8G gene, protein and uses thereof | |
CN106928329B (en) | Novel insecticidal protein and nucleotide sequence thereof | |
CN114478735A (en) | Aphid high-lethal gene and application thereof in aphid prevention and treatment | |
CN1401772A (en) | Bacillus thuringiensis cryl gene, gene combination and expression vector | |
BR102014003618A2 (en) | PEST CONTROL METHODS | |
CN117946251A (en) | Preparation method and application of recombinant humanized III type collagen | |
CN1940072A (en) | Antiglyphosate gene and its use | |
WO2016184397A1 (en) | Application of insecticidal protein | |
CN1810976A (en) | Pesticidal gene and its use | |
CN103739683B (en) | Insecticidal protein, and encoding gene and use thereof | |
CN1908011A (en) | Plant inverse-resistant zinc finger protein, coding gene and application thereof | |
CN1782080A (en) | Bacillus pumilus expression system | |
CN1888071A (en) | Chuancao-II Laomangmai wheat pest-resisting gene genetically modifying technology | |
CN106701790A (en) | Insecticidal protein-encoding nucleotide sequence and application thereof | |
CN1472222A (en) | DREB transcription factor of corn and its encoding genes and use | |
CN110951730B (en) | dsRNA of cryptopteris viridis V-ATPase-A gene, artificial feed and application thereof | |
CN103525836B (en) | A kind of Bt Cry71Aa1 operon gene and proteins encoded thereof and application | |
BR102013018337B1 (en) | INSECTICIDE PROTEIN, INSECTICIDE GENE, EXPRESSION CASSETTE, RECOMBINANT VECTOR, TRANSGENIC MICRO-ORGANISM, HETEROZYGOTIC INSECTICIDE PROTEIN, AND METHODS: FOR THE PRODUCTION OF INSECTICIDE PROTEINS, TO EXTEND THE SCOPE OF TARGET INSECTS, FOR THE PRODUCTION OF INSECT-RESISTANT PLANTS, TO PROTECT PLANTS DAMAGES CAUSED BY INSECT PESTS AND TO CONTROL INSECT PESTS | |
CN101413007B (en) | Bacillus thuringiensis cry8 I genes and protein effective for Coleopteran pests, and uses thereof | |
CN100347305C (en) | Method for improving drought resistance of wheat | |
CN103103204A (en) | Bt cry54Ab1 operon gene, protein encoded by gene and application of gene or protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20041222 Termination date: 20200820 |
|
CF01 | Termination of patent right due to non-payment of annual fee |