CN1385147A - 纳米炉甘石及其制备方法和用途 - Google Patents

纳米炉甘石及其制备方法和用途 Download PDF

Info

Publication number
CN1385147A
CN1385147A CN02115940A CN02115940A CN1385147A CN 1385147 A CN1385147 A CN 1385147A CN 02115940 A CN02115940 A CN 02115940A CN 02115940 A CN02115940 A CN 02115940A CN 1385147 A CN1385147 A CN 1385147A
Authority
CN
China
Prior art keywords
calamina
powdered
remain
calamine
high energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN02115940A
Other languages
English (en)
Inventor
杨祥良
徐辉碧
谢长生
周小顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANO PHARMACEUTICAL INDUSTRY Co Ltd HUAZHONG SCIENCE & TECHNOLOGY UNIV WU
Huazhong University of Science and Technology
Original Assignee
NANO PHARMACEUTICAL INDUSTRY Co Ltd HUAZHONG SCIENCE & TECHNOLOGY UNIV WU
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANO PHARMACEUTICAL INDUSTRY Co Ltd HUAZHONG SCIENCE & TECHNOLOGY UNIV WU, Huazhong University of Science and Technology filed Critical NANO PHARMACEUTICAL INDUSTRY Co Ltd HUAZHONG SCIENCE & TECHNOLOGY UNIV WU
Priority to CN02115940A priority Critical patent/CN1385147A/zh
Publication of CN1385147A publication Critical patent/CN1385147A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种纳米炉甘石及其制备方法和用途。应用纳米技术制备易于人体吸收的纳米炉甘石。将炉甘石原料粉末置于高能球磨机的罐中,使球粉比保持在40∶1~10∶1的比例,罐内为真空或惰性气体气氛,控制高能球磨机的转速和时间,调节注入到高能球磨机的双层外套的液氮量,使球磨罐内温度保持在-50℃~100℃之间。最佳温度范围为-30℃~50℃。也可使用气流粉碎机来制备。本发明的纳米炉甘石极易于吸收,药效实验证明可明显提高药效;炉甘石经纳米化后其抑菌作用显著增强,对金黄色葡萄球菌、艾希氏大肠杆菌和铜绿假单孢杆菌三种细菌的抑制作用与未纳米化的炉甘石比较具有高度显著性差异(P<0.01)。

Description

纳米炉甘石及其制备方法和用途
技术领域
本发明涉及一种中药炉甘石,具体地说是一种利用纳米技术制备的中药炉甘石,其药效可以得到大幅度提高;本发明还涉及该中药的制备方法和用途。
背景技术
炉甘石为碳酸盐类矿物方解石族菱锌矿,主要成分为碳酸锌(ZnCO3)。性味甘温,入肝脾肺经,解毒明目退翳,收湿止痒敛疮。中药用于目赤肿痛、眼线赤烂,翳膜胬肉、溃疡不敛、脓水淋漓、湿疮、皮肤瘙痒。炉甘石洗剂对皮肤有收敛、消炎、止痒的作用,特别用于湿疹、瘙痒症、脓疱疹等,疗效更佳,是治皮肤湿痒之要药。
现代化学证实,锌是人体不可缺少的营养素,国内外的研究证明锌缺乏可能引起许多严重眼病。锌缺乏时,还会导致创面愈合迟缓,严重时会影响生长和贫血;创伤面由于潮湿糜烂渗液利于细菌生长繁殖,感染团不易得到控制。炉甘石煅制后,可生成ZnO,制成极细粉外用,ZnO能部分吸收创面分泌液、收敛并使粘膜创面形成薄膜作用,创面渗液停止,干燥结痂,感染很快得到控制,既防止外来刺激,又能抑制细菌繁殖,同时锌被吸收,促进了创面愈合,对炎症部位的组织有较好的复生作用。适用于慢性溃疡、皮肤湿疹等症。炉甘石细粉与其他药物配伍应用,治疗结膜炎、角膜炎、泪囊炎等,疗效确切。但现有的粉未状炉甘石颗粒较粗,抑菌作用不很理想,其药效有待进一步提高。
发明内容
本发明的目的在于提供一种抑菌作用更强的粉末状炉甘石,该炉甘石的药效显著提高;本发明还提供了纳米炉甘石的制备方法及其用途。
为了实现上述发明目的,本发明的粉末状炉甘石的粒径尺度为1~300纳米。
制备上述炉甘石的方法为:将炉甘石原料粉末置于高能球磨机的球磨罐中,使球粉比保持在40∶1~10∶1的比例,罐内为真空或惰性气体气氛,控制高能球磨机的转速和转动时间,调节注入到高能球磨机双层外套的液氮量,控制球磨罐内温度,使之保持在-50℃~100℃之间。
制备上述炉甘石的另一种方法为:将炉甘石原料粉末置于气流粉碎机中,在惰性气体气氛中粉碎,调节注入到气流粉碎机中的液氮量,使罐内温度保持在-50℃~100℃之间。
上述纳米炉甘石的新的用途是用于抑制金黄色葡萄球菌、艾希氏大肠杆菌、铜绿假单孢杆菌。
纳米化技术加工后的中药,纳米中药的量子尺寸效应和表面效应将导致药物的物理性质、生物活性发生重要的变化,提高生物利用度,容易透皮吸收。炉甘石纳米化以后,其药理作用因为尺寸变小,比表面积大,使得表面原子孔为不饱和,同时其表面缺陷可成为光电子和空穴分离的有效位置,是具有高光催化活性,其杀菌能力、吸收创面渗出液能力大大增强;同时由于纳米粒的粘附性及小的粒径,有利于局部用药时滞留性的增加,也有利于药物与细胞壁的接触时间与接触面积,容易透皮吸收,直接进入体液细胞,提高药物吸收的生物利用度,解决了矿物药长久以来的生物利用度较低的问题。
为探讨炉甘石纳米化前后的抑菌作用及其抑菌强度的差异,发明人委托武汉大学药学院进行了纳米炉甘石的体外抑菌试验。该研究采用国际标准金黄色葡萄球菌、艾希氏大肠杆菌、铜绿假单孢杆菌对炉甘石、100nm炉甘石、250nm炉甘石进行抑菌试验,以了解炉甘石和纳米炉甘石在抗菌强度上的差异性,为纳米炉甘石的在体药效实验和临床研究提供依据,也提供了本发明技术效果的试验数据。一、试验材料及方法1、受试药物
炉甘石、100nm炉甘石、250nm炉甘石,后二种炉甘石由申请人按照本发明提供的制备方法制备。2、菌种及来源
国际标准金黄色葡萄球菌(ATCC25932,以下简称“金葡菌”)、国际标准艾希氏大肠杆菌(ATCC25922)、国际标准铜绿假单孢杆菌(ATCC27853,以下简称“绿脓杆菌”)由武汉大学中南医院检验科细菌室提供。3、抑菌方法(平皿打孔法)
先将无菌平皿内加入20ml Muller-Hinton琼脂培养基,待凝固后,将制备成1.5×108/ml的细菌涂布于Muller-Hinton琼脂培养基表面,放置片刻后打孔(4mm),将受试药物置入孔内,35℃孵育24h后观察抑菌结果(以上过程均为无菌操作),药物出现抑菌圈,测量抑菌圈直径,抑菌圈的大小可以说明药物对试验菌种抑制作用的强弱。
以上方法对不同的受试药物,不同的剂量,不同菌种均采用平行皿,并重复3次试验,计算均值,t检验。二、结果1、炉甘石纳米化前后的抑菌作用
将炉甘石、100nm炉甘石、250nm炉甘石10mg分别置入金葡菌、大肠杆菌、绿脓杆菌的培养皿中,观察各培养皿中投药周围的抑菌圈,并测量其抑菌圈直径和照相记录。其结果见表一。
表1结果表明,炉甘石对金葡菌有抑菌作用,对大肠杆菌和绿脓杆菌无抑菌作用;100nm、250nm炉甘石对金葡菌、大肠杆菌、绿脓杆菌的抑菌作用比炉甘石强,抑菌圈直径范围明显增大,统计学处理具有高度显著性差异(P<0.01),对三种细菌的抑制作用,以金葡菌最强,大肠杆菌次之,绿脓杆菌较弱;100nm与250nm炉甘石的抑菌作用强度经统计处理无差异。
表1  炉甘石纳米化前后的抑菌作用(x±SD  n=6)
                           抑菌圈直径(mm)
药物     剂量(mg)
                   金葡菌       大肠杆菌      绿脓杆菌
炉甘石    10       14.7±2.2    0.0±0.0      0.0±0.0100nm炉甘石   10       21.6±1.0*  14.8±1.1*   8.3±1.5*250nm炉甘石   10       19.8±1.6*  14.7±2.6*   8.0±1.3*
与炉甘石比较*P<0.012、纳米炉甘石不同剂量的抑菌作用
为观察纳米炉甘石抑菌作用的量效关系,将100nm、250nm炉甘石5mg、10mg、15mg分别置入金葡菌、大肠杆菌、绿脓杆菌的培养基中,观察100nm、250nm炉甘石不同剂量的抑菌作用,并测量抑菌圈直径和照相。表2结果显示,100nm、250nm炉甘石,不同剂量间其抑菌强度无差异,无明显量效关系。
表2  纳米炉甘石不同剂量的抑菌作用(x±SD n=6)
                                抑菌圈直径(mm)药物        剂量(mg)
                     金葡菌       大肠杆菌     绿脓杆菌100nm炉甘石    5         18.3±1.3    14.0±3.4    8.0±1.5
           10        19.1±1.3    14.6±1.0    8.3±1.0
           15        19.3±1.1    14.5±1.0    8.3±1.0250nm炉甘石    5         18.5±1.7    10.2±1.8    5.5±1.0
           10        18.7±2.0    11.0±2.3    5.5±1.0
           15        18.6±2.0    11.9±3.0    5.8±1.3三、结论
本试验采用国际标准金黄色葡萄球菌、艾希氏大肠杆菌、铜绿假单孢杆菌对炉甘石纳米化前后进行了体外抑菌试验研究。试验结果表明:①炉甘石对金黄色葡萄球菌有抑制作用,对艾希氏大肠杆菌和铜绿假单孢杆菌无抑菌作用;②100nm、250nm炉甘石对上述三种细菌均有抑制作用,并以金黄色葡萄球菌抑制作用最强,艾希氏大肠杆菌抑菌次之,铜绿假单孢杆菌抑菌较弱;③炉甘石经纳米化后其抑菌作用显著增强,对上述三种细菌的抑制作用与未纳米化的炉甘石比较具有高度显著性差异(P<0.01);④纳米炉甘石的抑菌作用无明显量效关系,100nm与250nm炉甘石之间的抑菌亦无明显差异。
附图说明
图1为纳米炉甘石的透射电子显微镜观察结果。
具体实施方式
实施例1:
将0.5kg的原料炉甘石粉末置于高能球磨机的球磨罐中,装入玛瑙磨球,使磨球与炉甘石粉末的重量比为15∶1,并向罐内充入氮气,控制高能球磨机的转速,使其达到380rpm(转/分),调节注入到双层外套液氮的量来控制球磨罐的温度,使温度保持在20℃,高能球磨机转动20小时即可获得粒径小于100nm的炉甘石。透射电子显微镜的观察结果见图一。
上述制备方法中使用的高能球磨机具有双层外套结构,双层外套上设有液氮注入口与排出口,该设备配置有相应的液氮循环装置和温度检测装置。该高能球磨机还可用于制备其它纳米中药。
实施例2:
将0.4kg的原料炉甘石粉末置于高能球磨机的球磨罐中,装入氧化铝磨球,使磨球与炉甘石粉末的重量比为25∶1,并向罐内充入氮气,控制高能球磨机的转速,使其达到380rpm(转/分),调节注入到双层外套液氮的量来控制球磨罐的温度,使温度保持在20℃,高能球磨机转动25小时即可获得粒径小于60nm的炉甘石。
实施例3:
用气流粉碎机替换实施例1中的高能球磨机。先对原料炉甘石实施预磨,使其粒径小于50μm。将预磨粉料置于气流粉碎机中,启动高压氮气气源,使工作压力维持在1MPa,同时向粉碎室注入液氮,使罐内温度维持在~20℃。通过分级处理获得粒径小于100nm的炉甘石。实施例4:
将纳米炉甘石与适宜的辅料制成均一或混悬的透明或半透明的半固体制剂,可以制备凝胶剂。水性凝胶的基质一般由西黄耆胶或明胶、淀粉、卡波沫等加水、甘油或丙二醇等制成。处方:纳米炉甘石10.0g;卡波沫10.0g;PEG-4000 80.00g;甘油100g;苯扎溴铵10ml。
在使用纳米炉甘石制作各类药用制剂时可采用固体分散或现有的其它分散方法将其分散到辅料中。

Claims (7)

1.一种作为中药的粉末状炉甘石,其特征在于,炉甘石的粒径尺度为1~300纳米。
2.一种作为中药的粉末状炉甘石,其特征在于,炉甘石的粒径尺度为80~120纳米。
3.一种制备如权利要求1或2所述的粉末状炉甘石的方法,这种方法是:将炉甘石原料粉末置于高能球磨机的球磨罐中,使球粉比保持在40∶1~10∶1的比例,罐内为真空或惰性气体气氛,控制高能球磨机的转速和转动时间,其特征在于:调节注入到高能球磨机的双层外套的液氮量,控制球磨罐内温度,使之保持在-50℃~100℃之间。
4.根据权利要求3所述的制备粉未状炉甘石的方法,其特征在于,控制球磨罐内温度,使之保持在-30℃~50℃之间。
5.一种制备如权利要求1或2所述的粉末状炉甘石的方法,这种方法是将炉甘石原料粉末置于气流粉碎机中,在惰性气体气氛里粉碎,其特征在于:调节注入到气流粉碎机中的液氮量,控制球磨罐内温度,使之保持在-50℃~100℃之间。
 6.根据权利要求5所述的制备粉未状炉甘石的方法,其特征在于,控制气流粉碎机内温度,使之保持在-30℃~50℃之间。
7.一种如权利要求1或2所述的粉末状炉甘石的用途,其特征在于,所述粉末状炉甘石用于抑制金黄色葡萄球菌、艾希氏大肠杆菌或铜绿假单孢杆菌。
CN02115940A 2002-06-06 2002-06-06 纳米炉甘石及其制备方法和用途 Pending CN1385147A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN02115940A CN1385147A (zh) 2002-06-06 2002-06-06 纳米炉甘石及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN02115940A CN1385147A (zh) 2002-06-06 2002-06-06 纳米炉甘石及其制备方法和用途

Publications (1)

Publication Number Publication Date
CN1385147A true CN1385147A (zh) 2002-12-18

Family

ID=4743962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02115940A Pending CN1385147A (zh) 2002-06-06 2002-06-06 纳米炉甘石及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN1385147A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101053668B (zh) * 2007-05-18 2010-05-19 河南省科学院同位素研究所有限责任公司 纳米炉甘石复合水凝胶创伤敷料的制备方法
CN108210455A (zh) * 2016-12-19 2018-06-29 湖南尔康湘药制药有限公司 一种碳酸锌纳米胶束制剂及制备方法
CN113318264A (zh) * 2021-05-28 2021-08-31 瑞聚再生(厦门)医学科技有限公司 一种可降解聚氨酯生物材料及其制备方法和应用
CN114045035A (zh) * 2021-12-31 2022-02-15 广东粤港澳大湾区国家纳米科技创新研究院 纳米炉甘石抗菌硅橡胶及其制备方法和在抗菌医疗器械中的应用
CN115211494A (zh) * 2022-07-20 2022-10-21 广东粤港澳大湾区国家纳米科技创新研究院 抗菌组合物、抗菌饲料组合物及其制备方法和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101053668B (zh) * 2007-05-18 2010-05-19 河南省科学院同位素研究所有限责任公司 纳米炉甘石复合水凝胶创伤敷料的制备方法
CN108210455A (zh) * 2016-12-19 2018-06-29 湖南尔康湘药制药有限公司 一种碳酸锌纳米胶束制剂及制备方法
CN113318264A (zh) * 2021-05-28 2021-08-31 瑞聚再生(厦门)医学科技有限公司 一种可降解聚氨酯生物材料及其制备方法和应用
CN114045035A (zh) * 2021-12-31 2022-02-15 广东粤港澳大湾区国家纳米科技创新研究院 纳米炉甘石抗菌硅橡胶及其制备方法和在抗菌医疗器械中的应用
CN115211494A (zh) * 2022-07-20 2022-10-21 广东粤港澳大湾区国家纳米科技创新研究院 抗菌组合物、抗菌饲料组合物及其制备方法和应用

Similar Documents

Publication Publication Date Title
Alomary et al. Proanthocyanin‐capped biogenic TiO2 nanoparticles with enhanced penetration, antibacterial and ROS mediated inhibition of bacteria proliferation and biofilm formation: a comparative approach
CN113599506B (zh) 一种铂纳米酶/葡萄糖氧化酶@透明质酸复合抗菌材料及其制备和应用
CN113499474B (zh) Zif-67修饰的中空二氧化钒壳核结构微纳米复合物及其制备方法和应用
Meng et al. pH-responsive curcumin-based nanoscale ZIF-8 combining chemophotodynamic therapy for excellent antibacterial activity
CN107398562B (zh) 黄腐酸纳米银凝胶的制备方法
CN101927030A (zh) 含纳米银、锌、铋的生物敷料的制备方法
CN110721318A (zh) 一种双硫仑纳米颗粒及其制备方法和用途
EP2968643B1 (en) Clay composites and their applications
CN1385147A (zh) 纳米炉甘石及其制备方法和用途
Xu et al. Antibacterial black phosphorus nanosheets for biomedical applications
Holubnycha et al. Effect of ultrasound treatment on chitosan-silver nanoparticles antimicrobial activity
KR102360781B1 (ko) 염증완화용 하이드로콜로이드 패치
Karthikeyan et al. Hybrid nanoparticles from chitosan and nickel for enhanced biocidal activities
Długosz et al. Cu2O nanoparticles deposited on Y2O3 and CuO: synthesis and antimicrobial properties
CN114180621A (zh) 一种原子分散的钒掺杂二氧化钛及其制备方法和用途
Jawad et al. Antibacterial and antibiofilm activities of amikacin-conjugated gold nanoparticles: A promising formulation for contact lens preservation
CN107568265B (zh) 一种塑料用银-稀土复合抗菌剂
Aly et al. Chemical, microbial and biological studies on fresh mango juice in presence of nanoparticles of zirconium molybdate embedded chitosan and alginate
Ma et al. Antibacterial Activity of Cu 2+-ZnO-modified 13X Zeolite against E. coli and S. aureus
CN100502890C (zh) 含有纳米银的阿莫西林抗菌剂及其制备方法
CN115105629B (zh) 一种抗菌水凝胶及其制备方法和应用
CN109432450B (zh) 一种超分子纳米化学动力药物及其在肿瘤治疗方面的应用
Rafique et al. Green-microfluidics synthesis of thermally stable silver–chitosan composites for antibacterial activity
CN101904986B (zh) 复方芦荟抑菌中药膜及其制备方法
CN112915204A (zh) 一种抗绿脓杆菌的靶向杀菌剂及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication