CN1359515A - 传动装置轴承平移模式的活动阻尼 - Google Patents

传动装置轴承平移模式的活动阻尼 Download PDF

Info

Publication number
CN1359515A
CN1359515A CN00809831A CN00809831A CN1359515A CN 1359515 A CN1359515 A CN 1359515A CN 00809831 A CN00809831 A CN 00809831A CN 00809831 A CN00809831 A CN 00809831A CN 1359515 A CN1359515 A CN 1359515A
Authority
CN
China
Prior art keywords
bearing
signal
contiguous probe
gearing
bearing assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00809831A
Other languages
English (en)
Inventor
D·S·奥尔索普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Publication of CN1359515A publication Critical patent/CN1359515A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • G11B21/10Track finding or aligning by moving the head ; Provisions for maintaining alignment of the head relative to the track during transducing operation, i.e. track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/02Cabinets; Cases; Stands; Disposition of apparatus therein or thereon
    • G11B33/08Insulation or absorption of undesired vibrations or sounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B25/00Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus
    • G11B25/04Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card
    • G11B25/043Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card using rotating discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/54Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head into or out of its operative position or across tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/54Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head into or out of its operative position or across tracks
    • G11B5/55Track change, selection or acquisition by displacement of the head
    • G11B5/5521Track change, selection or acquisition by displacement of the head across disk tracks
    • G11B5/5582Track change, selection or acquisition by displacement of the head across disk tracks system adaptation for working during or after external perturbation, e.g. in the presence of a mechanical oscillation caused by a shock
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers

Landscapes

  • Moving Of Heads (AREA)
  • Control Of Position Or Direction (AREA)
  • Moving Of The Head To Find And Align With The Track (AREA)
  • Control Of Linear Motors (AREA)
  • Moving Of Head For Track Selection And Changing (AREA)

Abstract

本发明揭示了一种通过检测和补偿磁盘驱动器传动装置(110)中的平移振动模式来提高磁盘驱动器(100)的操作性能的装置。传动装置(110)通过夹头轴承组件(112)来支撑邻近记录磁盘(106)的磁头(120)以固定轴(132)为枢轴而旋转,且夹头轴承组件具有一对滚珠轴承组件(140)。邻近探头(130)检测由于(例如)搜索操作期间磁头(120)的突然加速和减速或外部施加的机械震动引起的传动组件(110)相对于轴(132)的平移运动。邻近探头的输出用来生成馈送进入传动装置控制伺服电路(176)的轴承平移信号,以修改施加到传动装置电机(114)的电流量,以补偿磁道跟踪和搜索操作期间的平移振动。

Description

传动装置轴承平移模式的活动阻尼
发明领域
本发明总的涉及磁性数据存储装置领域,尤其(但不仅限于)涉及通过检测和取消由传动装置轴承变形引起的传动装置转换运动来提高磁盘驱动器的操作性能。
背景技术
磁盘驱动器在现代计算机系统和网络中用作主要的数据存储装置。一种典型的磁盘驱动器包括一个或多个固定的磁性存储盘,它们围绕一个主轴电机的旋转中心轴旋转,形成磁盘堆(disc stack)。一排读/写传感磁头由传动装置支撑在该磁盘堆附近,以便在磁盘的磁道与一台安装有磁盘驱动器的主机之间传递数据。
传统的传动装置使用音圈电机,来确定磁头相对于磁盘表面的位置。这些磁头经由弯曲部分安装在多个臂的末端,这些臂从传动装置主体径向向外伸出。该传动装置主体围绕一个轴旋转,该轴安装到很靠近磁盘外端的磁盘驱动器外壳。枢轴与主轴电机及磁盘的旋转轴平行,以便使磁头在平行于磁盘表面的平面中运动。
传动装置音圈电机包括安装在磁头臂对面的传动装置主体侧边上的线圈,以便使它处于磁性电路的磁场中。该磁性电路包括一个或多个永久磁铁和透磁极片。当电流通过线圈时,便建立一个电磁场,该电磁场与磁路产生的磁场相互作用,使线圈按照众所周知的洛仑兹(Lorentz)关系运动。当线圈运动时,传动装置主体围绕枢轴旋转,磁头移过磁盘表面。
如在授权Duffy等人、并受让于本发明授让人的美国5,262,907中所揭示的那样,对磁头位置的控制通常是通过一种闭环伺服系统来实现的。一种典型的伺服系统通过生成一种位置误差信号(PES),利用(磁盘驱动器制造过程中写入磁盘内的)伺服信息来检测和控制磁头的位置。该位置误差信号代表磁头相对于所选磁道的位置。通过比较脉冲信号的相对信号强度,由伺服系统生成PES。这些脉冲信号是从磁盘表面上的伺服信息中被精确定位的磁化伺服场生成的。
伺服系统主要以两种可选模式中的一种模式进行操作:搜索和磁道跟踪。通过磁头离开初始磁道和朝向目标磁道的初始加速并且随后进行减速,搜索操作使得可以将所选磁头从一个初始磁道移到相关磁盘表面上的一个目标磁道。使用一种速度控制方法,由此来反复估计(根据所测量的位置)磁头的速度,并将该速度与确定搜索所要求的速度轨道速度曲线作比较。根据所估计的速度与所需速度之间的差来纠正搜索期间施加到线圈上的电流大小。
当磁头达到离开目标磁道一段预定的距离(例如,一个磁道间隔远)时,伺服系统跃入设置模式(settling mode),其中,磁头被置于目标磁道上。此后,伺服系统进入操作的磁道跟踪模式,在此模式中,使磁头跟踪目标磁道,直到执行下一项搜索操作。
因此,磁盘驱动器设计通常采用具有速度曲线的近似时间最佳控制,在搜索期间控制所选择的磁头,使用具有相对缓慢积分(slow integration)的状态估计器控制器,将磁头设置在目标磁道上,并使用具有相对较快积分(fastintegration)的相同状态估计器控制器来进行磁道跟踪。
通常,磁盘驱动器设计者使用滚珠轴承夹头,使传动组件轴颈围绕支点旋转。当磁头从一个磁道径向移到另一个磁道时,这些轴承组件绕支点相对于传动臂作非常快速的反复运动。搜索和磁道跟踪操作的精确性取决于传动装置轴承组件的性能。随着现代磁盘驱动器存储容量的不断增加,传动臂围绕轴承组件旋转所需的精确度也增加了。
不管对运动的精确性有多大的要求,滚珠轴承组件都具有机械限制,这些限制会对其在当今高性能磁盘驱动器中的使用产生不利的影响。尤其是,传统的滚珠轴承组件易受金属磨损、谐振与摩擦增大,以及润滑剂汽化。这些限制都增加了旋转期间由滚珠轴承组件所表现出来的寄生运动(extraneousmotion)。
与这些机械限制相呼应,滚珠轴承组件还在X-Y平面(即,使各个组件与组件旋转轴垂直方向相交的平面)中有一个不需要的平移(translation)自由度。该平移主要是由滚珠轴承在轴承组件的内、外路线内的偏移引起的。滚珠轴承的偏移是由搜索或磁道跟踪操作期间施加到传动装置的侧向力引起的。偏移期间,滚珠轴承对横向施加的力表现出一种“像弹簧一样”的回应。所产生的轴承平移的自然频率取决于传动臂的质量和轴承组件的弹性硬度。这种振动模式经常被称作是“轴承平移模式(bearing translation mode)”。
人们已经建议采用各种解决方法来限制磁盘驱动器传动装置轴承中出现振动平移模式。例如,使传动臂增加质量趋向于减小轴承平移模式的频率。授权给Sleger的美国专利4,812,935通过使用质量阻尼器,给出轴承平移模式的的限制原理。但是,使传动臂增加质量会有减缓搜索操作和限制伺服带宽的不必要的副作用。如授权给Misso并转让给本发明授让人的美国专利5,983,485中所给出的原理那样,其他所提议的解决方法包括通过在轴承组件内使用弹性部件来吸收振动能量。虽然吸收部件可以减少平移振动,但是,安装这些部件所需的额外空间在现代光盘驱动器中是受到抑制的。
考虑到现有技术解决方法所具有的缺点,人们一直迫切希望,开发一种小型装置,用于限制出现轴承平移,同时改善传动装置运动的总体性能。
发明概述
本发明提供了一种通过检测驱动器轴承组件内的振动平移模式来提高磁盘驱动器的操作性能的装置和方法。
如当前的较佳实施例所示例的那样,磁盘驱动器包括支撑旋转磁盘和旋转传动装置的基座。传动装置支撑靠近磁盘记录表面的磁头,并由传动电机控制围绕轴承组件旋转。伺服控制电路将电流施加到传动电机,以便根据从磁盘记录表面获得的伺服信号来为磁头定位。
靠近传动装置的地方,或者在夹头轴承组件内,有一个邻近探头(例如,电容探头),用来检测轴承组件内的平移所引起的传动装置的额外运动。轴承平移信号可以代表由施加到传动电机的电流所引起的轴承组件内的偏转。此外,轴承平移信号可以代表外部施加到磁盘驱动器的震动。
邻近探头通过监视传动装置相对于磁盘驱动器中固定部件的位置,来测量轴承平移。邻近探头输出一个轴承平移信号,该信号代表轴承平移的方向和大小。轴承平移信号用来为由轴承平移引起的干扰而补偿传动装置电机的伺服控制。
通过阅读以下详细的描述和有关附图,构成本发明特征的这些和其他特点与优点将一目了然。
附图简述
图1是根据本发明较佳实施例构成的磁盘驱动器的顶部平面图。
图2是根据本发明较佳实施例构成的轴承组件的侧向截面图。
图3是根据典型的轴承位移来自电容探头的输出信号的图。
图4是图2所示轴承组件的顶部截面图。
图5是图1中磁盘驱动器的功能方框图。
图6是图5中伺服电路和探头部件的功能方框图。
图7是根据轴承位置信号和轴承速度信号执行速度受控搜索操作的功能方框图。
图8是根据轴承位置信号和轴承速度信号执行位置受控搜索操作的功能方框图。
图9是图7所示速度受控搜索操作的过程流程图。
图10是图8所示位置受控搜索操作的过程流程图。
图11是根据本发明另一较佳实施例构成的磁盘驱动器的顶部平面图。
详细描述
为了对本发明各种当前较佳实施例进行详细描述,首先参考图1,该图示出用于存储计算机数据的磁盘驱动器100的顶部平面图。磁盘驱动器100包括磁头-磁盘组件(HDA)101和支撑磁盘驱动器100所使用的控制电子部件的印刷配线组件(PWA)。PWA安装在HDA 101的底侧,因此在图1中是是看不到的。
HDA 101包括基座102,该基座支撑用于使多个磁盘106以恒定高速度旋转的主轴电机104。虽然未示出,但读者将会理解,利用按传统方式在制造期间写到磁盘驱动器100上的伺服数据,将磁道限定在每个磁盘表面上。磁盘夹108将磁盘106和位于邻近磁盘(图1中看不见)之间的一系列隔板固定于主轴电机104上。顶盖(未示出)与基座102配对,以便为HDA 101提供包含的环境。
旋转传动装置110围绕由基座102支撑的夹头轴承组件112(下文中称之为“轴承组件112”)进行旋转。E块115包括传动装置110的中心部分,并用作安装多个传动臂116。多个传动臂116从E块115伸出并支撑弯曲部分组件118。这些弯曲部分组件又支撑磁盘106的表面上的多个对应的磁头120。通过将受控电流施加到音圈电机(VCM)114的传动装置线圈113上,来使传动装置110旋转。
当磁盘驱动器不处于使用状态并包括限制止推装置(未单独示出)以限制传动装置110的径向范围(行程)时,插销/止推组件122在磁盘106的内径处将磁头固定在构造的登陆区(texturized landing zones)(未示出)上。软电路组件124和前置放大器/驱动器(前置放大器)126用于在传动装置110与磁盘驱动器PWA之间的电通信。
现在参考图2,图中示出轴承组件112的侧面截面图和邻近探头130的较佳实施例。如下面所讨论的那样,邻近探头130用来检测轴承平移。轴承组件112包括固定轴132,该固定轴由顶盖134和基座102牢固地支撑。固定轴132通过固定螺母136固定在基座102上。在制造结束时,顶部螺钉138将固定轴132固定到顶盖134上。固定轴132呈环形,具有外径、内径和高度(未单独示出)。
轴承组件112还包括多个滚珠轴承/轴承套组件(下文中称作“轴承140”),它们固定在固定轴132的外圆周上。图2示出围绕固定轴132的轴承140的较佳结构,并包括大体位于固定轴132顶部和底部的两套轴承140。其他结构包括(但不局限于)围绕固定轴杆32的外圆周上放置另外的各套轴承140。读者将会理解,轴承140包括各种已知的部件,包括内轴承套圈、外轴承套圈、滚珠轴承和润滑剂(未单独示出)。
继续参见图2和轴承组件112,外轴套142连接到轴承140,使得外轴套142可以围绕固定轴132自由旋转,而保持有限的垂直运动。外轴套142一般是圆柱形的,并有内、外圆周(未单独示出)。有许多众所周知的装置用于连接轴承组件的活动部件和固定部件。外轴套经常用足够强的压缩力来保持在适当的位置上,该压缩力是由预载外轴套产生的。其他众所周知的装置包括使用固定环或经斜削的内、外轴承套圈。
外轴套142的外圆周以传统的方式牢固地固定于E块115上。本领域中的普通技术人员知道,有许多非专用装置用来将E块115装到外轴套142上。许多设计使用横向嵌入(laterally engaging)的固定螺钉,用来将E块固定到轴承组件上。另外一些设计则采用强粘合剂或压力配件。
继续参考图2,图中示出轴承组件112内的邻近探头130的一种较佳形式。在图2所示的实施例中,邻近探头130固定在固定轴132的外圆周上。如图所示,邻近探头130位于外轴套142与固定轴132之间的轴承140所提供的空间内。一组信号线144在邻近探头130与PWA(未用数字示出)之间建立电连接。信号线144通过固定轴132中的小孔,并经过固定轴132的环形中心。
在一个较佳实施例中,邻近探头130是一个电容探头,它输出代表电容相应变化的模拟电压信号。电容的变化由邻近探头130相对于外轴套142的相对位移所产生。合适的邻近探头130可从美国马萨诸塞州Ayer的Capacitec公司购得,其型号为HPB-40。
通过电容进行邻近测量的原理是根据对一对铁磁金属板之间所呈现的电容变化进行检测。平行金属板电容器的电容可以利用以下公式来确定: C = ϵ 0 · A d - - - - - - ( 1 )
其中,ε0代表自由空间的电容率常数,A代表两个平行金属板的面积,d代表平行金属板之间的间距,而C代表平行金属板电容器所呈现的电容。
公式(1)给出的电容与平行金属板之间的距离成反比。邻近探头130通过测量邻近探头130与外轴套142之间的电容,来检测外轴套142附近相对于固定轴132的变化。邻近探头130输出轴承平移信号(BT信号),该信号的大小和极性代表所测电容的变化。
现在参考图3,图中示出轴承偏转(曲线146)和BT信号输出(曲线148)与流逝时间横轴147和公共纵轴149之间的关系。
在正常的状态下,轴承组件112是不偏转的,邻近探头130输出的BT信号幅度将是一个标称基线值,例如零(注意,时间开始处曲线146和148各自的值)。如果轴承偏转加大了外轴套142与邻近探头130之间的距离,则邻近探头130输出一个BT信号,该信号为负极性并具有与增加的距离(分别参见曲线146和148的前半部分)成正比的幅度。另一方面,当偏转使外轴套142接近邻近探头130时,电容增大,邻近探头130输出BT信号,该信号具有正极性和与减小的距离(分别参见曲线146和148的后半部分)成正比的幅度。
现在参考图4,图中示出轴承组件112和邻近探头130的顶部截面图。所绘出的截面与邻近探头130的位移齐平。如图4中所描绘的那样,轴承140包括在固定轴132外圆周周围隔开的多个单独的滚珠轴承(用151表示)。
由于邻近探头130测量沿垂直于其正面的方向上接近程度的变化(如x轴150所示),因此,由邻近探头130记录的偏转量随旋转传动装置110的角位置而变化。换言之,在旋转传动装置110旋转时期,邻近探头130只记录代表总轴承偏转的二维矢量的一个分量。
将电流施加到音圈电机113会产生一个合力,该合力在轴承组件112处实现并大体垂直于传动装置110的中心线。中心线轴152代表旋转传动装置110处于这样一个位置上,即,在该位置上,中心线轴152与被定义成垂直于x轴150的y轴154重叠。在中心线152所表示的位置上,矢量V1所表示的偏移完全包括x轴坐标。这样,邻近探头130记录了整个偏移矢量V1
相反,中心线156给出传动装置在其角旋转极限(行程)时的位置。角度α代表旋转传动装置110的总行程的一半。在大多数应用中,总传动装置行程的一半大约是15°。当旋转传动装置110处于由中心线156代表的位置上时,矢量V2所代表的偏移垂直于中心线156的方向,并具有x轴分量和y轴分量。由于邻近探头130只记录偏移矢量V2的x轴分量,因此,没有检测到可以对y轴分量作出贡献的偏移矢量V2的那一部分。
由于邻近探头只测量单向的轴承偏转,因此,当旋转传动装置110旋转离开中心线152时,有一些与邻近探头130有关的误差。可以通过确定邻近探头130没有检测到的轴承偏转量,来预计预期的最大误差。这个误差可以通过以下一系列公式用数学方法表达: F - Fx F = E - - - - - - ( 2 )
其中,F是代表总偏转Fx的矢量,Fx是代表矢量F的x轴分量的矢量;其中,E代表与只检测总偏转的x轴分量相关的百分比误差。用基本的三角学特性,可将其表示为:
Fx=F(cosα)                                     (3)
其中,α代表旋转传动装置110的总行程的一半。将公式(3)代入公式(2),得到以下公式: F - F ( cos α ) F = E - - - - - - ( 4 )
约减公式(4),得到下面的公式:
1-cosα=E                                       (5)
用旋转传动装置110总角行程的一半来代替α,并求解E,可得到邻近探头130测量中最大预期误差。在典型的磁盘驱动器中,用15°来代替α可得到3.4%的百分比误差。换言之,实际轴承偏转与邻近探头130记录的轴承偏转之间的最大差为3.4%。这个有限的误差一般在大多数应用中将会被接受。
但是,在本发明的一些实施例中,当测量轴承偏转时,需要考虑旋转传动装置的角位置。可以将一纠正因素应用于BT信号,该信号考虑旋转传动装置110相对于邻近探头130的角位置。用位于磁盘106上的伺服数据,从磁头120的径向位置,可以容易地确定旋转传动装置110的角位置。
现在参考图5,图中示出图1中的磁盘驱动器100的相关部分的概括功能方框图,包括位于前述磁盘驱动器PWA上的电路。所示的磁盘驱动器100与一台主机设备160耦合,磁盘驱动器100与该主机设备相关联。例如,主机设备160可以包括一台个人计算机(PC)。
控制处理器162按照存储在动态随机存取存储器(DRAM)164和按块擦除存储器166的编程和参数值来提供对磁盘驱动器100的操作的最高层次的控制。接口电路168包括用于临时缓存被传送数据的数据缓存器(未单独示出),以及指导数据传送操作期间读/写通道170和前置放大器126的操作的顺序控制器(“定序器”,也未单独示出)。如图1所示,前置放大器126最好安装在传动装置110上。
提供的主轴电路172用于通过主轴电机104的后电动力(bemf)交换来控制磁盘106的旋转。伺服电路176控制所选磁头120相对于磁盘106的位置。
图6给出图5中的伺服电路176以及下文中将描述的邻近探头电路的方框图。在磁盘驱动器操作期间,将存储在磁盘106上的伺服信息提供到自动增益控制(AGC)块178,由它将输入信号幅度调节成适合电路其余部分的范围。解调器(demod)180规定伺服信息(包括模-数(A/D)转换)的条件,并将其提供给数字信号处理器(DSP)182。
响应于该伺服信息,由控制处理器162提供命令(图5),编程存储在DSP存储器(MEM)184中,DSP 182将电流命令信号输出到线圈驱动器电路186,该电路接着将电流1C施加到音圈113,以便确定所选磁头120相对于相应磁盘106上的磁道的位置。这样,参照图5和图6,主要(primary)伺服路径(或环)由磁头120、前置放大器126、AGC 178、解调器180、DSP 182、线圈驱动器186和音圈113建立了起来。
此外,图6示出邻近探头130连接到放大器(amp)188,它根据邻近探头130与外轴套142之间的所测接近度的变化来输出BT(轴承平移)信号。BT信号通过模-数(A/D)转换器190转换成数字形式。代表平移轴承位置(并相应地以XB表示)的数字信号被提供给DSP 182和微分器192。
XB信号由微分器192微分,并由超前-滞后(lead-lag)滤波器194滤波,以向DSP 182提供轴承速度信号VB。因此,由邻近探头130、放大器188、A/D190、微分器192和滤波器194建立起第二条轴承速度路径。例如,至少放大器188有时会被称作为“邻近探头电路”,因为它被用于检测与邻近探头130输出的轴承平移电压相关的轴承平移。但是,读者将会理解,采用其他的电路结构也可以通过使用邻近探头130来检测轴承平移,因而图6中的电路只是示意性的,而并不局限于以下权利要求书的范围。
现在参考图7,图中示出代表执行速度受控搜索DSP 182编程的功能方框图。首先,图7示出代表磁盘驱动器100的电部分和机械部分的设备方框196,磁盘驱动器包括VCM 114、磁头120和前置放大器126。观察器198给出设备196操作的一种数学模型,输出路径200、202和204上的磁头位置、速度和位移(XE、VE和WE)的估计。位移代表趋向于将磁头120移动离开磁道的力,例如,来自由磁盘106的旋转建立起来的气流的空气阻力效应,以及来自软电路124的弹性力。位移通常是取决于位置的。
搜索期间,将要去的磁道数目在路径206上输入到仿形器(profiler)208。如上所述,要去的磁道是保留在搜索中的物理距离,并且是根据磁头120的位置与目标磁道的位置之间的差来确定的。作为响应,仿形器通过(例如)插补技术或从存储在查找表格中的值,在路径210上输出适当的命令速度。轴承速度信号VB沿信号路径212输出到求和结(summing junction)214。命令速度、所估计的速度VE与轴承速度信号VB之间的差是利用求和结214来确定的。读者将会理解,轴承平移速度VB信号的极性取决于平移是增加还是减小了外轴套142与邻近探头130之间的距离。来自求和块214的这个差称作“速度误差”,并被提供给具有增益KAL的增益方框216,以执行加速限制功能,然后通过限波滤波器218。同时,目标磁道位置在输入路径220上被提供到位移预测框222,由它预测位移量,该位移量在求和结224处与所估计的位移相加。路径226上的输出在求和结228处与来自限波滤波器218的输出相加,而且也在第二求和结230处相加(将在下文中简述)。
求和结228处的输出被提供至具有增益KT的增益块232,用于补偿VCM 114的非直线扭矩特征。该输出在求和结234处与路径236上的电流零信号相加,用于使电流无效(null out)。路径238上产生的信号包括电流命令信号,将该信号提供至设备196,以调节所选磁头120的位置。
作为响应,设备在路径240上提供了一个感应输出;伺服数据被提供至解调(demod)块242,电流量被提供至求和结244。解调之后,伺服数据利用线性化块246而线性化,以便在路径248上提供位置取样XSAMP,它在求和结250处与位置估计XE求差,从而在路径252上提供观察误差OERR。在求和块250处参加求的和的还有由A/D 190沿信号路径254输出的轴承位置信号XB。按这种方式,观察器198的操作名义上维持设备300的操作,同时考虑XB信号。本领域中的谱他技术人员将会理解,虽然在求和块250处“参加了求和”,但是,轴承位置信号XB信号的极性随具体的轴承偏转而发生变化。
输入到求和结244处的电流用于饱和补偿,并与来自路径256的饱和零输入相应地相加。增益块258应用饱和增益KSAT,输出与来自路径230的偏差和相减。有限响应滤波器(FIR)块260限波滤波器218的输出提供所需的时延,以便观察器198根据线圈是否处于饱和状态,从FIR 260或饱和环接收切换的输入。
因此,当在搜索期间使施加到VCM线圈113的具有较大的变化而使磁头120便迅速加速和减速时,向DSP 182提供XB信号和VB信号能够使伺服电路176补偿所产生的轴承平移。
现在回到图8,图中示出在位置受控操作或磁道跟踪操作期间DSP 182的编程功能方框图。设备块262代表磁盘驱动器100所选的电机方面。例如,设备262一般包括由伺服电路176建立的主要环的各个部分(见图6)。设备块262将在路径264上接收电流命令(ICMD)信号作为输入,并作为响应,在路径266上输出位置误差信号(PES),该信号表示所选磁头120中的位置误差。
图8还示出观察器(OBS)块268,它通常提供设备262的数学模型,并分别在路径270、272和274上定期输出对磁头位置(XE)、速度(VE)和偏移(WE)(类似于图8中的观察器198)的估计。和以前一样,偏移将被理解为代表趋向于将磁头从一个所选位置移开的力,例如,由软电路124(图1)施加的弹性力,以及由磁盘106旋转所建立的气流引起的空气阻力效应。
路径270上的XE在求和结276处与参考位置(代表所需的磁头位置)相加,并与沿信号路径254由A/D 190输出的轴承位置信号XB相加。路径278上求和结276的输出施加到具有增益KX的位置增益块280。在求和结282处,Ve信号与沿信号路径212由超前-滞后滤波器194输出的轴承速度信号VB相加。求和结282的输出施加到具有增益KV的速度增益块284。位置增益块与速度增益块280、284的输出分别通过路径288、290传送到求和结286。输出(沿路径292)在求和结294处与来自路径274的WE相加,在路径402上生成ICMD信号。
路径292上的输出接着施加到增益方框296并被馈送到观察器268。应当注意,求和结276、282、286和294各输入的标记通常是任意分配的,并可随各个信号的极性作相应的变化来进行修改。而且,读者将会理解,轴承位置XB信号和轴承速度VB信号的极性随具体的平移模式而变化。
因此,在磁盘驱动器操作期间,轴承位置信号XB和轴承速度VB信号是在稳定状态的基础上生成的,并提供至伺服电路176,以使轴承平移在磁道跟踪期间磁盘驱动器100的影响为最小。
为了进一步说明邻近探头130和伺服电路176的相关操作,图9和图10分别示出搜索和磁道跟踪最佳程序。
现在回到图9,图中示出搜索最佳程序300。在步骤302,搜索佳程序300首先开始搜索程序。在步骤30中,仿形器(profiler)208从要去磁道信号206计算参考速度。一旦搜索运行,步骤306就示出,邻近探头130记录轴承组件112内的平移,并输出轴承平移BT信号,该信号表示轴承平移的方向和幅度。在步骤308中,BT信号通过A/D 190发送出去,以产生轴承位置XB信号,然后,该信号沿信号路径254发送到DSP 182,以及微分器192。
接着,在步骤310中,XB信号对时间取微分,并由出去-滞后滤波器194滤波,以产生沿信号路径212输出到DSP 182的轴承速度VB。轴承速度VB信号和轴承位置XB信号用来在步骤312中出现轴承平移而补偿参考速度。更具体地说,轴承速度VB信号与来自观察器198的Ve输出求和,并与来自仿形器208被更新的参考速度求和。轴承位置XB与来自设备196的位置输出求和,并发送到观察器198。这样,轴承位置信号XB通过改变观察器198的Ve输出来影响参考速度。
一旦已为轴承平移而补偿了参考速度,就在步骤314中计算经纠正的命令电流。在步骤316中,将经纠正的命令电流施加到音圈电机114的音圈113。读者将会理解,搜索最佳程序300在稳定状态基础上进行操作,并通过减少出现轴承平移时将磁头设置在特定磁道上所需的时间量来减少搜索时间。
现在回到图10,图中示出磁道跟踪最佳程序320。磁道跟踪最佳程序320在步骤322首先开始磁道跟踪操作。如上所述,在将磁头120放置到磁盘106所选磁道上之后,使用磁道跟踪操作。该磁道跟踪操作通过利用观察器268估计位置(Xe)、速度(Ve)和偏移(We),在步骤324开始。在步骤326,邻近探头130测量轴承平移,并输出轴承平移BT信号。尽管邻近探头130是用于测量当前较佳实施例中的轴承平移的,但读者将会理解,还存在和可以考虑采用其他适用于本较佳程序的方法和装置来测量轴承平移。接下来,在步骤328,邻近探头电路(放大器188,A/D 190)计算轴承位置信号XB。轴承位置信号XB沿信号路径254传送到DSP 182,也被传送到微分器192。在步骤330,XB信号对时间取微分,得到轴承速度信号VB。轴承速度信号VB沿信号路径212输出到DSP 182。
磁道跟踪最佳程序320在步骤332继续进行,其中,从观察器268输出的位置估计信号Xe与轴承位置信号XB求和,产生经补偿的位置信号。同样,在步骤334,速度估计信号Ve与轴承速度信号VB求和,产生经补偿的速度信号。在步骤336中,经补偿的位置与经补偿的速度信号用来计算经校正的命令电流。最后,在步骤338中,将经校正的命令电流施加到音圈电机114的音圈113。
通常,在磁道跟踪操作时期,磁头速度保持相对较低的速度。这样,施加到音圈电机114的命令电流量也将会相对较低。所以,与将命令电流施加到音圈电机114相比,在磁道跟踪操作期间发生轴承平移更可能是对磁盘驱动器100施加的外部机械震动引起的。对稳定状态操作执行磁道跟踪最佳程序320,以便能够执行磁道跟踪操作,它对于外部施加的机械震动更具有抵抗力。
在本发明的一个较佳实施例中,邻近探头130在轴承组件112的固定轴132附近(见图2和图4)。但是,邻近探头130相对于轴承组件112还可以有另一种结构,这同样属于本发明范围。例如,图11是磁盘驱动器100的顶视图,它示出本发明又一个实施例,其中,邻近探头130是位于轴承组件112外部的。邻近探头130安装在安装支架340上,该安装支架牢固地固定在基座102上。
为了确保当旋转传动装置110掠过多个角位置时对轴承平移进行适当测量,在离邻近探头130最近的E块115的边上有一个圆形表面342。当旋转传动装置110围绕固定轴132旋转时,圆形表面342与邻近探头130保持恒定的接近度。这样,圆形表面342与邻近探头130之间的接近度的任何变化都对轴承平移有贡献。图11中所示另一实施例所有其他方面包括邻近探头130操作和伺服电路176的相互关系,与本发明第一个实施例中所揭示的各个方面都相同。
从前面的讨论中,读者已清楚地理解,本发明针对的是提高磁盘驱动器中伺服控制的邻近探头130和相关方法。如当前较佳实施例所例示的那样,磁盘驱动器100包括支撑邻近旋转磁盘106的磁头120的旋转传动装置110,以及处于音圈电机114的磁场中的传动装置线圈113。
轴承组件112用来使传动装置110围绕枢轴旋转,邻近探头130靠近轴承组件112,通常包括固定轴132、多个轴承140和外轴套142。邻近探头130用来记录外轴套142相对于磁盘驱动器100的固定部件(即固定轴132或基座102)的位置的变化。根据外轴套142位置的变化,邻近探头130输出代表平移方向和幅度的模拟轴承平移信号BT
邻近探头130包括邻近探头电路,该电路生成轴承位置信号XB和轴承速度信号VB,用于提高伺服电路176的性能。伺服电路176向传动装置线圈施加电流,以根据由磁头感测的伺服信息以及XB和VB信号确定磁头相对于磁盘记录表面的位置。
在权利要求书中,根据前面讨论的内容,术语“电路”和“块”应当被理解为既可以硬件又可以软件形式来实现。短语“主机设备”应当被理解为描述与所要求保护的磁盘驱动器(例如,(但不局限于)上述个人计算机)进行通信的任何设备。虽然上述步骤是按特定顺序来描述的,但是,这种顺序并不是对权利要求范围的限制。
十分清楚,本发明能够很好地实现本发明的目的,并实现最终目标,具有各种优点。尽管出于揭示本发明而描述了一些当前较佳实施例,但对本领域中的普通技术人员来说,还可以有各种各样的变异形式,这些变异形式同样落在权利要求书所限定的本发明的范围内。

Claims (9)

1.一种磁盘驱动器,其特征在于,它包括:
可记录磁盘,其上径向限定了多个磁道;
旋转传动装置,它具有支撑与所述磁盘相邻的磁头的E块;
轴承组件,它具有一个固定轴和轴颈(journaled)围绕所述轴的轴承套筒,其中,所述轴承套筒被牢固地固定于E块上,使得所述传动装置围绕所述轴承组件旋转;
邻近所述E块的邻近探头,它生成轴承转换信号,所述转换信号代表相对于邻近探头的E块附近的变化;
与所述传动装置耦合的传动装置电机;以及
伺服控制电路,它向所述传动装置电机施加电流,以便根据磁头读取存储在所述磁盘上的伺服数据时所生成的伺服信号来为磁头定位,其中,伺服电路根据所述轴承转换信号而进一步调节施加到所述传动装置电机上的电流。
2.如权利要求1所述的磁盘驱动器,其特征在于,所述邻近探头位于所述轴承组件内部所述固定轴杆附近。
3.如权利要求1所述的磁盘驱动器,其特征在于,所述邻近探头固定于所述传动装置外部的安装支架上;其中,所述E块有一个检测面,当无轴承转换时,它在所述传动装置旋转期间,在所述E块与所述邻近探头之间具有恒定的接近度。
4.如权利要求1所述的磁盘驱动器,其特征在于,所述邻近探头包括一个电容探头。
5.如权利要求1所述的磁盘驱动器,其特征在于,当所述旋转传动装置的角位置在操作期间发生变化时,所述轴承转换信号是根据与测量所述轴承转换有关的误差来确定的。
6.在具有其上限定了多个磁道的可旋转磁盘的磁盘驱动器中一种用于控制磁头相对于所述磁盘的位置的方法,其中,旋转传动装置支撑靠近磁盘的磁头,传动装置电机使所述传动装置旋转,轴承组件具有一个固定轴,旋转传动装置轴颈围绕所述固定轴,靠近所述轴承组件的邻近探头生成代表所述轴承组件附近变化的轴承转换信号,,其特征在于,所述方法包括以下步骤:
(a)生成表示施加到所述传动装置电机的电流的基本电流(base current)命令信号,以便按与磁盘所要求的关系使所述磁头定位;
(b)使用所述邻近探头来生成轴承转换信号,所述信号具有一个代表在所述轴承组件内转换的数量和方向;
(c)将所述基本电流命令信号与所述轴承转换信号组合起来,以生成经修改的电流命令信号;以及,
(d)响应于所述经修改的电流命令信号,将电流施加到所述传动装置,以便相对于所述磁盘对所述磁头定位。
7.如权利要求6所述的方法,其特征在于,所述方法包括一个预先步骤,即,将所述邻近探头固定于所述轴承组件内部的固定轴上。
8.如权利要求6所述的方法,其特征在于,所述方法包括缘故预先步骤,即,将所述邻近探头固定于所述轴承组件外部的安装支架上。
9.如权利要求6所述的方法,其特征在于,所述邻近探头包括一个电容探头。
CN00809831A 1999-06-30 2000-06-30 传动装置轴承平移模式的活动阻尼 Pending CN1359515A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14161499P 1999-06-30 1999-06-30
US60/141,614 1999-06-30

Publications (1)

Publication Number Publication Date
CN1359515A true CN1359515A (zh) 2002-07-17

Family

ID=22496443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00809831A Pending CN1359515A (zh) 1999-06-30 2000-06-30 传动装置轴承平移模式的活动阻尼

Country Status (7)

Country Link
US (1) US6304409B1 (zh)
JP (1) JP2003503806A (zh)
KR (1) KR20020020758A (zh)
CN (1) CN1359515A (zh)
DE (1) DE10084778T1 (zh)
GB (1) GB2366904B (zh)
WO (1) WO2001001393A2 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031827A2 (en) * 2000-10-13 2002-04-18 Seagate Technology Llc Suspension sense capability for windage control
US7692394B2 (en) * 2000-11-27 2010-04-06 Seagate Technology Llc Power supply output control apparatus and method
JP3877133B2 (ja) * 2001-02-16 2007-02-07 富士通株式会社 信号再生方法及び記憶装置
US6574070B2 (en) * 2001-08-09 2003-06-03 Seagate Technology Llc Model reference generator for a disc drive
JP2003173639A (ja) * 2001-11-30 2003-06-20 Toshiba Corp 記録再生装置
DE102005051893A1 (de) * 2005-10-29 2007-05-03 Dr. Johannes Heidenhain Gmbh Positioniergerät
US8302456B2 (en) 2006-02-23 2012-11-06 Asylum Research Corporation Active damping of high speed scanning probe microscope components
US8284523B2 (en) * 2011-02-10 2012-10-09 Intri-Plex Technologies, Inc. Pivot attach method for disk drive actuator using taper lock shims
US8780479B1 (en) * 2013-05-17 2014-07-15 Western Digital Technologies, Inc. Disk drive executing jerk seeks to rotate pivot ball bearings relative to races
US9383388B2 (en) 2014-04-21 2016-07-05 Oxford Instruments Asylum Research, Inc Automated atomic force microscope and the operation thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832897A (en) * 1973-04-02 1974-09-03 C Schenck Stationary device sensitive to torque in rotating shafts
US4080636A (en) 1976-03-19 1978-03-21 Ampex Corporation System for damping vibrations in a deflectable transducer
US4477755A (en) 1982-06-28 1984-10-16 Storage Technology Corporation Method of suppressing seek-excited vibration in a disk drive or similar servo system
US4605977A (en) 1983-12-14 1986-08-12 Sperry Corporation Air bearing head displacement sensor and positioner
US4933792A (en) 1985-10-16 1990-06-12 Hewlett-Packard Company Apparatus and method for damping head positioners for high performance disc drivers
US4812935A (en) 1985-10-16 1989-03-14 Hewlett-Packard Company Apparatus for damping head positioners for disc drives
EP0264535A3 (en) * 1986-10-24 1990-09-05 Hewlett-Packard Company Shock and vibration disturbance compensation system for disc drives
US5459383A (en) 1991-02-07 1995-10-17 Quantum Corporation Robust active damping control system
US5426545A (en) 1991-05-09 1995-06-20 Sidman; Michael D. Active disturbance compensation system for disk drives
DE69226519T2 (de) * 1991-12-23 1999-02-04 Atochem North America Elf Beschleunigungsmesser mit mehreren schwingungstypen
US5333138A (en) * 1992-03-11 1994-07-26 Ministor Peripherals International Limited Apparatus and method for preventing data corruption in disk drives from mechanical shock during write operations
US5296790A (en) 1992-05-08 1994-03-22 Ampex Systems Corporation Motor driven damping arrangement and method
JP2516311B2 (ja) * 1993-04-27 1996-07-24 インターナショナル・ビジネス・マシーンズ・コーポレイション 磁気ディスク装置のサ―ボトラック書込み方法及び装置
US5491598A (en) 1994-05-06 1996-02-13 Seagate Technology, Inc. Rotary actuator vibration damper
US5663847A (en) 1995-03-27 1997-09-02 Abramovitch; Daniel Y. Rejection of disturbances on a disk drive by use of an accelerometer
WO1996036968A1 (en) * 1995-05-19 1996-11-21 Rubber-Tech, Inc. Disk drive assembly with vibration dampening characteristics
US5666242A (en) 1995-11-21 1997-09-09 Western Digital Corporation Disk drive having elastomeric interface in pivot bearing assembly
US6163441A (en) * 1998-02-24 2000-12-19 Seagate Technology Llc Resonance dampening actuator bearing assembly

Also Published As

Publication number Publication date
GB0129829D0 (en) 2002-01-30
JP2003503806A (ja) 2003-01-28
KR20020020758A (ko) 2002-03-15
WO2001001393A2 (en) 2001-01-04
GB2366904B (en) 2003-08-06
DE10084778T1 (de) 2002-08-29
GB2366904A (en) 2002-03-20
US6304409B1 (en) 2001-10-16
WO2001001393A3 (en) 2001-05-25

Similar Documents

Publication Publication Date Title
CN1253855C (zh) 致动器、磁盘驱动系统和补偿盘颤动诱发的磁道对准不良的方法
US9437230B2 (en) And method of operation of micro-milliactuators and micro-microactuators
CN1144219C (zh) 盘驱动器及用于盘驱动器的磁头位置控制方法
KR100465392B1 (ko) 저장 장치용 암 조립체, 저장 장치 및 밀리액추에이터 제어 방법
CN1451162A (zh) 磁盘驱动器微传动器协助的寻道及磁滞修正的方法和设备
CN1304531A (zh) 采用速度感应线圈检测旋转振动
CN1299505A (zh) 使盘片驱动伺服系统的稳定时间最小的方法
CN1815563A (zh) 低频扰动补偿控制装置以及使用其的盘驱动器
CN1359515A (zh) 传动装置轴承平移模式的活动阻尼
US6697225B2 (en) Damper for attenuating hard disk drive suspension vibration
CN101676995A (zh) 具有旋转振动补偿的磁记录盘驱动器
CN1144218C (zh) 双线圈旋转致动器和磁存储系统,及其操作方法
US20020167762A1 (en) Pivot bearing assembly for compensating for disk drive actuator tilt
US7504795B2 (en) Head position control method, head position control device, and disk device
CN1637863A (zh) 使用次级致动器补偿初级致动器的共振和干扰的技术
US20150194171A1 (en) Low translational load suspension assembly
US6760180B2 (en) Servo track writer and driving method therefor
CN1335991A (zh) 用于磁盘驱动器中离散时间伺服控制器的闭环定标
US6963466B2 (en) Radial dependent low frequency repeatable run out compensation apparatus and method
CN1470056A (zh) 用于偏差控制的悬浮传感器的能力
Lee et al. Active high-frequency vibration rejection in hard disk drives
CN1383562A (zh) 用于采用浮动读写头的盘片装置的传感系统
CN1108462C (zh) 用于改善伺服控制的活动磁性轴承系统
CN1035457C (zh) 磁盘驱动器伺服系统
Jiang et al. A passive damper for the vibration modes of the head actuator in hard disk drives

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication