CN1351769A - 用于高分子膜燃料电池的湿润装置 - Google Patents

用于高分子膜燃料电池的湿润装置 Download PDF

Info

Publication number
CN1351769A
CN1351769A CN00807647A CN00807647A CN1351769A CN 1351769 A CN1351769 A CN 1351769A CN 00807647 A CN00807647 A CN 00807647A CN 00807647 A CN00807647 A CN 00807647A CN 1351769 A CN1351769 A CN 1351769A
Authority
CN
China
Prior art keywords
fuel cell
water
heap
moistening
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00807647A
Other languages
English (en)
Other versions
CN1181586C (zh
Inventor
加布里勒·马祖奇利
玛斯莫·布拉姆比拉
加恩·P·弗里巴
安东尼奥·马吉奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niuvera Fuel Cells Europe S P A
De Nora Fuel Cells SpA
Original Assignee
Niuvera Fuel Cells Europe S P A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niuvera Fuel Cells Europe S P A filed Critical Niuvera Fuel Cells Europe S P A
Publication of CN1351769A publication Critical patent/CN1351769A/zh
Application granted granted Critical
Publication of CN1181586C publication Critical patent/CN1181586C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

公开了一种被供以气态反应剂的高分子膜燃料电池堆用的湿润装置。提供给该电池堆的气体事先与一液态水流相混合而送入一充满网状材料的腔室内,网状材料的高度分割的几何形状提供一有利于气体饱和的扩展的交换表面。本装置比已知技术的装置更有效和紧凑。

Description

用于高分子膜燃料电池的湿润装置
本发明涉及一种燃料电池,更准确地说涉及一种使用高分子膜作为电解质的燃料电池。
燃料电池是直流电形式的电能的电化学发电机(electrochemicalgenerator),也就是说,它们将燃料(例如或者含有氢或者含有如甲醇或乙醇这类轻质醇的气态混合物)和氧化剂(例如空气或氧)反应的自由能进行转换而不将它完全降解为热能,因此不受Carnot循环的限制。为了完成所需的化学能对电能的转换,燃料在电池的阳极被氧化,同时释放出电子和H+离子;而氧化剂则在阴极被还原,在那里H+离子被消耗;该发电机的两个极必须由合适的电解质隔离开,以允许H+离子连续从阳极流到阴极,与此同时阻止电子从一极转移到另一极,从而使它们的电位差达到最大。这个电位差事实上表示过程本身的推动力。燃料电池被认为是产生电力的常规系统的优异替代者,尤其是从极其有利的环境影响的观点来看(没有污染排放和噪声),作为唯一的副产品而形成的只有水),它们既用于各种规模的静止电力生产领域(发电站、备用发电机等)同时也用于移动应用领域(电动车应用、汽车能量生产或空间、潜艇及海军应用的辅助能源)。
高分子膜燃料电池比起其它燃料电池将提供更多的优点,这是因为它们的快速起动和迅速达到最优运行条件,高的功率密度,与既缺少运动部件又没有腐蚀现象和严峻的热力循环相联系的内在的可靠性;事实上,在所有已有技术的燃料电池中,聚合物电解质的燃料电池表现出总体上最低的工作温度(通常为70-100℃)。
为此目的使用的高分子电解质是一种离子交换膜,更准确地说是一种阳离子交换膜,这是一种化学上惰性的聚合物主链,部分地以官能团作了改性使其能够进行酸碱水解而导致电荷的分离;这种水解更准确地说包括释放正离子(阳离子)和在聚合物主链上形成固定的负电荷。多孔的电极加在膜的表面上,它允许反应剂在那里穿过并到达膜的界面。在电极及/或在膜一侧的这样的界面上施加催化剂,例如铂黑,它增加了燃料氧化或氧化剂还原的相应的半反应速率。这种安排当在膜的两个表面之间建立起电位梯度且外部的电路同时被闭合时还提供阳离子的连续流动;在这种情况下转移的阳离子是H+离子,如前面所述那样,在把具有较低电化学电位的物质送到阳极和把具有较高电化学电位的物质送到阴极所产生的电位差在外电路闭合时就立即建立起跨越膜的质子传导和跨越该外电路的电子流(即电流)。
质子传导是燃料电池工作的一个主要条件,并且是评估其效率的决定性参数之一。不充分的质子传导在电路与利用所产生的电力输出的外电阻负载接通时就引起燃料电池电极上的电位差的显著下降。这又引起热能反应中能量的加大的降解,因而导致燃料的转化效率的降低。
若干种表现最优质子传导特性的阳离子交换膜在市场上是可以得到的,并广泛用于工业化的燃料电池中,例如美国Dupont de Nemours生产的商标名为Nafion、美国Gore的Gore Select,日本的Asahi ChemicalsAciplex等产品。所有这些膜都由于与它们的工作机理相关联的内在过程限制而受到负面的影响:使得质子传导成为可能的是由于水解作用所建立的电荷分离,因此这些膜只有在具有液态水时才能发挥它们的导电性。虽然水的生成是燃料电池工作的内在后果,但它的程度几乎总是不足以维持膜所需要的水合状态,尤其是工作在足够高的电流密度下。
在高电流密度下的运行涉及在给定的功率输出下降低投资成本,但是也会降低能量效率同时还产生更大量的热。工作在实际使用的电流密度(例如150和1500mA/cm2之间)的燃料电池中所产生的大量的热必须被有效地排出,以允许该系统热力调整,不仅是出于离子交换膜的有限的热稳定性的观点,它们通常不适于工作在100℃以上,而且也是为了尽可能限制产生的水的蒸发和随后因惰性成份和未转换的反应剂从电池内排放而引起的水的排出。此外,由于单个燃料电池的电压对于允许实际应用而言太低,所以这些电池通常是通过双极连接在电气上串联,并按压滤器结构组装而让反应剂并行馈入,如美国专利3,012,086中所说明的。在这样的燃料电池组结构中,即通常所述的堆中,排走热量的问题相对于单个电池的情况更加强化了,因为对于单个电池来说有可能利用通过外壁的热对流。
上面所述由于排出相对于反应所产生的水量来说是过量的水而引起的离子交换膜变得太干,这在燃料电池是在低压下被送入气态反应剂时变得更加突出。在这一技术的开发早期,高分子膜燃料电池工作在相对压力为几巴(从2到10巴,更常见的是从3到5巴)的条件下,这样做尤其是为了要增加燃料的氧化和氧化剂的还原两种半反应的动力学。随着随后技术的发展,在催化剂组成和电极制造方面的改进促使燃料电池的制造者设计出能够在较低压力下有效地工作的电池堆,其目标是让氢和空气工作在接近于大气压力下而同时将足够的效率和电流密度作为最希望得到的目的之一,这是为了在发电系统的整体效率方面得到相应的效果。虽然氢气(不管是纯的还是混合的)通常可以在压力为几个巴下得到,但是大气中的空气含有在电池中用作氧化剂的不到20%的氧和超过80%的惰性组分,对于它的压缩涉及到极其严重的能量消耗。虽然燃料电池用的气体扩散电极和为它所用的催化剂的当前发展水平已经使它们适合于使反应剂工作在基本上是大气压力之下(除了为克服该装置的内部压降而需要的轻微的过压以外,而且这个过压在几十毫巴的范围的),但是在低压下这些膜的快速干燥使得这些工作条件几乎难以持续。事实上,在恒定的克分子流量(flow rate)下,气体的体积流量随着它的绝对压力的增加而按比例减小;这意味着非加压反应剂的供应是和电池内的气体的相当体积的流动相关联的。至于空气,它的未经转化的体积分量即使在最佳情况下也明显地高于80%,但是有时也考虑到燃料,例如在利用从蒸气的重整生成的氢(其惰性分量一般在75-80%的范围内)时,很明显,出口的流量要抽走相当大量的生产的水。
由于上述所有的理由,已有技术的电池堆装有合适的液力回路以克服上述现象;特别是,至少一个液力回路用来通过与循环的流体进行热交换以抽出热量,而第二个回路则用于在燃料电池中所产生的水以外再引入额外数量的水。
对于第一个回路,可以将温控用的流体送入盘旋管的内部,这些管装在双极板中或位于单个电池之间的中间腔内并和它们在电气上连结在一起;这些方案使电池堆的制造复杂化,增加了重量和体积,换句话说,减少了功率密度,这个参数是一个其最大化是高度想要的参数,尤其是在移动应用的场合。
这方面的一个比较不那么复杂的解决方法在国际专利申请WO98/28809中有说明,其中冷却流体是在邻近于电池的活性表面的双极平板的外围部分中循环;不过在这种方式下会得到一横向的温度分布曲线,膜的中心区域工作在比其周围地区更高的温度下,从而建立一热力梯度,这对膜本身的整体性是潜在地很危险的。
至于考虑到第二回路,反应剂的予湿润通常是在燃料电池的阳极和阴极部分的入口处进行的,例如,通过将液态水生成气泡或者通过将水蒸扩散通过辅助电池中合适的膜。
这个第二回路同样也涉及明显地增加了重量、体积和投资成本;另外,要送入该系统的水的量必须严格控制,因为在电池隔室内过量的液体将导致阻碍气态反应剂对电极表面的接触这样的明显后果。唯一可能达到的对提供给上述系统的水量的校正,尽管是间接的,是对水本身温度的作用因而也就是对它的蒸汽压的作用。这又导致需要对燃料电池堆的湿润回路的恒温控制,进一步使结构设计复杂化,
此外,这些方案中没有一个能够使气态反应剂的相对湿度达到接近于100%,而这是在极端的过程条件下所需要的。
为了保证对反应剂流适当的水分供给的更加有利的方案公开在欧洲专利公开NO.316,626中,其中说明了通过对其中注入雾化水来湿润上述流体,例如使用一个超声波气溶发生器。这个方案部分地减轻了需要由一个繁重的辅助热交换回路来冷却电池堆,因为加到那里的一部分水在电池内部汽化,从而带走可观数量的热。但是这个系统受到一个基本缺点的负面影响,这个缺点就是与气溶发生器相关联的构造上的复杂性,这种发生器除了昂贵以外,还消耗相当一部分由燃料电池产生的电力输出。
此外,水在电池中驻留的时间太短,不足以保证在回到辅助回路中去之前同时对膜的湿润和冷却这个电池堆,尤其是在高电流密度和电池堆是由大量的电池构成的情况下。
此外,在把上述的反应剂送到入口管道之前使反应剂湿润或加入雾化水可能会引起部分的水在其中凝结或形成水滴,其后果是向堆中的某些电池(一般是更靠近反应剂入口处的那些电池)送入过量的水而向另外的一些电池(一般是离反应剂入口更远的那些电池)则送入的水量不足。
在共同未决的意大利专利申请MI99A00829中公开了用于燃料电池的冷却和湿润回路的显著改进了的设计,其中使这两种回路大体上合并成单个回路是通过引入一网状导热体并将液态水送入燃料电池内部而实现的;由此上述的水的供应就分布成跨越网状体的整个厚度并在其中部分地蒸发。按照这样的方式,保持在液态下的那部分水用来使膜湿润,而蒸发的那一部分则排出相当于蒸发潜热的那部分热能,从而用作为电池的恒温控制。这一方案提供了极为紧凑的电池堆的设计,它在送入加压的气态反应剂的情况下能够在效率和电流密度方面具有良好的性能。但是当工作在接近大气压力和高电流密度的情况下将引起某些限制。在这种情况下,对水的需求是如此之高以致在电池内部水和气流的直接混合几乎是不实际和不方便的。发生这种情况还因为湿润和冷却回路的归并,虽然在紧凑方面是有利的,却对该系统的水和热的安排减少了一个自由度;也就是说,尽管在通常的电池堆中有可能用两个不同的水流(即与冷却和湿润回路相关联的水流)来作用于它们的温度以满足由最严峻的过程条件所提的要求,而在单独一个归并的回路下必须找到一个折衷。具有单一湿润和冷却回路的堆,尽管适合于在标准的过程参数下以良好的性能运行,却因此需要一个辅助的湿润装置如果它必须工作在接近大气压力的情况下,尤其是在需要高电流密度输出时。这个辅助装置相对于已有技术的装置必须有高得多的效率,因为后者只有在成本、重量和体积方面都要大到不能接受的程度时才允许使堆工作在极端的过程条件下。
同样,对于在压力下的应用,下述的情况也是很普遍的,在这种情况下存在一个用于使气体尤其是空气湿润的辅助系统对于系统的总体效率和紧凑性是极其有益的。一个普通的实例就是那些周围空气的应用,利用常规的压缩机将空气压缩到适中的过压(例如相对压力1巴)。这种压缩导致产生显著的热量,这是由于该系统的内在的不可逆性。经压缩的空气温度可以很容易地超过100-150℃,使得它不适合于直接送入电池中。用来使压缩机下游的空气流和电池入口上游的空气湿润的辅助装置还可以用作空气流本身的调节器;它可以运行而不必考虑热力调节的效率要取决于气体流的实际饱和程度,也就是它的相对湿度。空气和水的混合必须在达到电池入口处之前完成,以便使相对湿度的水平达到接近100℃。
在某些情况下,使用水作为冷却剂可能被认为是太昂贵了;实际上必须使用去离子水或蒸馏水以防止金属堆的腐蚀和避免形成水垢,这将很快的使它们无法使用。这个要求在该回路同时要用来湿润膜时就更为严格,因为外界阳离子的存在将取代膜内部的H+离子,从而将阻止相关的官能团并急剧地降低它的传导率。由于这些和其它原因,通常更希望用空气取代水来冷却这些电池堆;但是,这意味着需要一个合适的湿润装置,它不受已有技术的系统的缺点所影响。
本发明提供一种用于薄膜燃料电池堆的湿润装置,它比已有技术装置更加有效且不太昂贵,并能总体上或部分地提供对燃料电池进行热力调节,或者可以和一个合适的恒温装置相结合,例如,在共同未决的意大利专利申请MI99A000829中所说明的基于直接注入水的冷却系统,或者常规的可以利用除水以外其它液体的冷却系统。
在本发明的一个实施例中,该装置可以归并在一按照常规压滤器设置的燃料电池的堆中。
在本发明的另一个实施例中,该湿润装置可以作为一个独立的装置分别提供,例如为了改进现有的按照已有技术教导制成的电池堆的性能。
在本发明的又一实施例中,该装置能够湿润要被送到燃料电池堆中去的反应剂气态流,且同时对该同一个气态流提供热力调节。
该装置包括一个腔室,完全或部分地填充以网状的具有高表面积的导热材料,送入需要被湿润的气体和一定数量的液态水以便在蒸发和混合以后足以使上述气体达到100%的饱和度。该网状材料最好应该有最小50%的孔隙率,它可以由单独的一个三维元件,或者也可以由不同的元件并置而制成,后者也可以是二维的,例如金属网。
在本发明的一个特定实施例中,可以提供过量的水,使得在饱和之后水的一部分以液体状态进入电池内,在那里蒸发并全部或部分地用于电池的热力调节。
在另一个特定实施例中,需要湿润的气体压力被用来使供气体本身湿润用的水流循环,并用于燃料电池的全部或部分的热力调节而不必依赖辅助的泵。
气体和水的馈送可以通过两个分开的入口提供给腔室,但最好是在气体流中注入水后通过单独一个入口来实现。
在本发明的一具体实施例中,在气体流中注入水还提供对气流进行温控到适当的温度,以使上述气流适合于送入燃料电池中。腔室可以按任意方向取向,但优选是能得到总体上是垂直流这样的方式。在这种情况下,该腔室优选地从下部送入气和水并从上部排出。网状材料在需要润湿的气体流中实现水的雾化,这个气流起着载体的作用并建立起紊流运动以有利于两种流体的密切混合。为了增加混合物在出口处的绝对湿度,此网状元件最好经过予热,例如,在50℃和水在工作压力下的蒸发温度之间的温度下。网状元件优选地利用燃料电池所产生的热来加温,更加优选地是热从电池到网状元件的传送主要是以传导方式进行。
该腔室可以具有和要被馈送经湿润的气体的燃料电池相同的几何形状,而且优选可以插入形成燃料电池堆的同一个压滤器装置中。在这种情况下的液力连接是完全和压滤器几何形状归并在一起的,然后被馈送到湿润装置并在其中被水所饱和的气体,可以按照已有技术的教导通过合适的通道运送到电池中。
在另一个实施例中,该腔室可以分别地提供并通过外壁和电池堆相接触以允许热的传递,而在腔室和堆之间的液力连接是在外部和分开的。
图1表示一按压滤器配置组装的膜燃料电池堆的总体示意图。
图2表示一按照本发明的湿润装置。
图3表示一按压滤器几何结构组装的膜燃料电池堆的示意图,其中归并有本发明的湿润装置。
图4表示一燃料电池密封衬垫的设计。
图5表示一网状元件可能的设计,该元件同时用于散布流体和在燃料电池堆内部的双极平板和电极之间的连接,也用作为本发明的湿润装置的填充材料。
参见图1,代表压滤器配置中模块组装件的重复单元的每个单元电池(1),包括,由内向外:一离子交换膜(2),一对多孔电极(3),在膜(2)和每个电极(3)之间的界面处形成的一对催化剂层(4),一对导电的网状元件(5),用于外围密封的一对衬垫(6),一对限定单元电池(1)的边界的双极平板(7)。网状元件(5)的最低孔隙率为50%,它起着在电气上连接双极平板(7)和电极(3)的作用,还起着散布气态反应剂的作用。当液态水加到气态反应剂中时,前者被细微地散布到网状元件(5)的整个厚度中,而它的蒸发在由双极平板(7)和电极(3)所界定的腔室的整个体积中也因此而变得更容易。在把上述部件堆叠起来之后,在双极平板(7)和衬垫(6)的周围区域上的合适的小孔就形成了两个上部导管(8),在图中只表示了其中之一,它们可被用来馈送反应剂;还形成了两个下部导管(9),图中只表示了其中之一,它们可被用来排放产生出来的水、惰性成份和废料。换一种方式,下部导管(9)可被用作为送入导管而上部导管(8)作为排放导管。也可以将两种反应剂中的一种通过上部导管(8)之一送入,用相对的下部导管(9)作为排放通道,而另一种反应剂则送入另一个下部导管(9),用相应的上部导管(8)作排放之用。
在按压滤器配置堆叠的各单元电池(1)的组件之外侧,提供两个端板(10),其中之一安装有供液力连接到导管(8)和(9)上的装备,在图中未示出,两块端板都具有合适的孔用于供夹紧整个堆用的连结杆,在图中也未示出。由于电池(1)是模块组件中的重复单元,所以对可以按图1所示的压滤器配置组装的电池数量没有限制。
参见图2,其表示一湿润装置(11)的示意图,它以一对导热的平板(7′)为界,并具有导热的填充元件(5′)和衬垫(6′)。这个装置可以从外部归并到如图1所示的堆上,或者任何一种设计的堆上,或者可以作为一个一体化元件插到任何压滤器堆配置中,它的一个具体实例如图3所示。
参见图3,这个堆包括与图1的堆中相同的元件,除此之外,一个相当于图2所示的湿润装置被插入端板(10)之一和第一个单元电池(1)之间,其界限为金属平板(7′)和堆的第一双极平板(7),并具有导热的填充元件(5′)和衬垫(6′)。作为湿润装置(11)的金属平板(7′),可以利用将燃料电池(1)分界的同一块双极平板(7)。同样也可以利用在燃料电池(1)中所用的网状元件(5)作为湿润装置(11)中的网状元件(5′)。进一步还可以利用在燃料电池(1)中所用的同一个衬垫(6)作为湿润装置(11)用的衬垫(6′)。根据这样一个事实,即电池(1)是模块系统的一个重复单元,因此,对于可以安装在如图3所示的压滤器装置中的电池数量是没有限制的,这同样适用于湿润装置(11);连接成串联或并联的多个装置(11)可以引入到堆的一端或者两端,如果选择的导热元件(5′)允许在整个电池组件中所必需的电气连续性,则甚至可以插入任何一对电池(1)之间。在这种情况下,湿润装置(11)可以或者由两块金属板(7′)或者由两块双极平板(7)来分界,它们的结构功能是等价的。
参考图4,示出了用于燃料电池堆的衬垫(6)的可能性结构,它包括一个上部孔(12),通过按压滤器配置并置,形成了上部导管(8);还包括一个下部孔(13),通过按压滤器配置并置,形成了下部导管(9),还包括用于网状材料(5)的外壳(14),以及任选的一个或多个注水用的通道(15)。
参见图5,这里表示一个导热网状元件(5)的特定实施例,它由可变形的金属材料制成,在特定情况下,这是一种海绵状金属。
本发明将利用几个实例来作更好的说明,它们并不用于限制本发明。
                        例1
由30个燃料电池构成的一个堆按照图1的方案制成,配备有以下部件:
—由Dupont de Nemours商品化的离子交换膜(2)Nafion115
—由E-Tek公司商品化的电极(3),其商标名称为ELAT,其有效
  表面为200cm2,并利用支持在活性碳上的铂微粒制成的催化剂
  层(4)被活化。
—网状元件(5),由图5所示的海绵状镍制成,其孔隙尺寸在
  1至3mm之间。
—按照图4结构的衬垫(6)。
—由2mm厚的不锈钢片制成的双极平板(7)
—铝端板(10),电气上连接到外部电池的双极平板(7)上,并
备有电流收集插座连接到可变电阻负载上。
这个堆通过在一个端板(10)上的合适装备连接到提供气态反应剂用的管线上,并连接到一个外部回路,其中有利用热交换器恒温在予定温度下的去除矿物质的水在循环。利用这些连接,该电池堆在其负极(阳极)被送入绝对压力3巴的加压纯氢,而在正极(阴极)送入合成空气,它来自气瓶并经减压到绝对压力3巴,两者都要通过下导管(9),它是由按压滤器结构并置下部孔(13)和双极平板(7)中相应的孔而得到的。一股去除矿物质的水流(其流量按照需要被调节)按照系统的运行指示而从相应的回路送到注入通道(15)。该堆没有提供辅助冷却,除了由注入通道(15)的水的蒸发所实现的冷却之外。
该堆在电流密度为700mA/cm2下工作了12小时,调节电池温度到75℃,并监控单个电池的电压。水的流量被人工调节而使单个电池的电压达到最大。在这种人工调节之后,检测到堆的所有电池上的电压在680到700mV之间,并且是随时间稳定的。
同一个堆工作在以接近于大气压力(80毫巴的相对压强)下送入气态反应剂。初始的电池电压检测到540到620mV之间,并有随时间降低的趋势,其下降率随堆中不同电池而不同。该测试在30分钟后停止,这时某些电池的电压下降到300mV以下。
重复后面这个测试,先将空气送入图2的湿润装置中,然后再送入水,其温度接近于堆的温度。该装置的外壁直接和堆的端板(10)接触,以允许热交换。其结果是,湿润装置的工作温度接近于堆的温度。该堆以相对压力80毫巴送入反应剂并连续工作12小时,其电流密度为700mA/cm2,温度则调节到75℃。在这些条件下,单个电池的电压保持稳定在620到640mV之间。
                         例2
按照图3的方案制造了一有30个燃料电池的堆,它配备有下列部件:
—由Dupont de Nemours商品化的离子交换膜(2)Nafion115
—由E-Tek公司商品化的电极(3),其商标名称为ELAT,有效表
   面为200cm2,由支持在活性碳上的铂微粒制成的催化剂层(4)
   所活化。
—网状元件(5),由如图5所示的海绵状镍所制成,其孔隙尺寸为1
   到3mm之间。
—按照图4的方案的衬垫(6)。
—双极平板(7),由2mm厚的不锈钢片制成。
—两个湿润装置(11),每一个连接到两种反应剂中之一的入口,包
   括一金属板(7′)和由镍铬海绵体制成的网状元件(5′),如图
   5所示,其孔的尺寸在1到3mm之间。
—铝端板(10),每一个都和外部电池的双极平板(7)在电气上相
   连接,并备有连接到可变电阻负载上的电流收集插座。
这个堆经过在一个端板(10)上的合适的装备连接到提供气态反应剂用的管线上,它的压力部分地被用来冲击从外部贮罐来的水流,以使其水量超过相对于饱和所需的量;由此而与水混合的气态反应剂流横穿相对湿润装置(11),并在那里实现饱和。这两股饱和的气态反应剂流和过量的水一起被送进单个电池的相关腔室内。利用这种配置,该堆在负极(阳极)上被送入3巴绝对压力的纯氢,并在正极(阴极)上送入从压缩机来的温度为160℃绝对压力为3巴的空气,这两者都通过下部导管(9),它是由按压滤器结构将下部孔(13)和双极板(7)中相对应的孔并置而得到的。注入到压缩空气中的水流实现了将压缩空气冷却到75℃。除了由和饱和的气态反应剂一起提供给单个电池的过量的水因蒸发而实现的冷却外,这个堆没有被提供辅助的冷却。
这个堆在电流密度为700mA/cm2下工作了12小时,设定的电池温度为75℃,并监视单个电池的电压。水的流量由人工调节以使单个电池的电压达到最大,在这一人工调节后,检测到的电压在堆的所有电池上是在690到700mV之间,并且随时间是稳定的。
同样的测试在反应剂的压力为300毫巴相对值时被重复,这时其过压仍足以从外部贮罐中吸出水分。在这种条件下,电池电压在电流密度为700mA/cm2的情况下全部是在660到675mV之间,并保持了8小时。
                         例3
按照图3的方案制造了一有20个燃料电池的堆,它配备下列部件:
—由Dupont de Nemours商品化的离子交换膜(2)Nafion115
—由E-Tek公司商品化的电极(3),其商标名称为ELAT,其有效
    表面为200cm2,由支持在活性碳上的铂微粒制成的催化剂层(4)
    所活化。
—网状元件(5),由海绵状镍制成,其孔隙尺寸在1到3mm之间。
—衬垫(6),它具有孔以送入反应剂和排放产生的水和废料。
—由铝合金压铸而成的双极平板(7),其厚度为5mm并容纳了不锈
    钢的盘旋管以用于温控流体的循环。
—湿润装置(11),连接到空气馈送点,包括金属板(7′)和网状
    元件(5′),后者由海绵状镍铬制成,如图5所示,并具有1
    到3mm的孔隙。
—铝端板(10),一块板在电气上连接到外部电池之一的双极平板(7)
    上,另一块连接到湿润装置的板(7′)上,并具有连接到可变
    电阻负载上的电流收集插座。
该堆通过提供在端板(10)之一上的适当的装备连接到气态反应剂供应源上;在空气一侧,入口流的压力被部分地用于从外部的水罐涌起(surge)一定量的润湿所需用水;这样与水相混合的空气流经过温润装置(11)并在那里发生饱和然后进入燃料电池。在燃料腔室内设有提供湿润系统。
这个堆还连接到一个冷却回路,该回路具有一热交换器,其中有去除矿物质的水在循环并且该水被送入容纳在双极平板(7)中的盘旋管,它们相互通过一合适的导管而互相串联连接。
利用所述装置,该堆在其负极(阳极)上通过上部导管(8)送入相对压力为300毫巴的纯氢而在其正极(阴极)上送入同样压力的空气。送到盘旋管的水流则允许将双极平板(7)的温度调节在70℃。
该堆在电流密度为700mA/cm2下工作了12小时,在这期间所有的电池都表现出稳定的电压其值在630到650mV之间。
虽然本发明已参照特定的实施例作了说明,但后者并不想要限定本发明,它的范围是在所附的权利要求中限定的。
在说明书的整个说明和权利要求书中,词“包括”(comprise)及该词的变形例如“comprising”和“comprises”,并不是想要排除其它的添加物、部件、整体或步骤。

Claims (17)

1.一种用于湿润在至少被送入一种气态反应剂的高分子膜燃料电池堆中的反应剂的装置,包括至少一个第一外壁和一个第二外壁以限定一腔室,其中包含一网状材料并被送入至少一种气态反应剂和水。
2.如权利要求1的装置,其中所述网状材料具有至少为50%的孔隙率。
3.如权利要求1或2的装置,其中所述网状材料是导热的。
4.如权利要求1到3中任何一项的装置,其中所述网状材料是海绵状金属。
5.如权利要求1到4中任何一项的装置,其中相对于为了使上述至少一种气态反应剂达到饱和所需的量而言为过量的水被送入上述的腔室内,而且所述过量的水在高分子膜燃料电池中至少部分地蒸发,从而排放至少一部分在其中产生的热。
6.如权利要求1到5中任何一项的装置,其中所述水是从由上述至少一种气态反应剂加压的贮罐中提供的。
7.如前述任一权利要求的装置,其中所述至少一种气态反应剂是空气。
8.如权利要求7的装置,其中所述空气在送入上述腔室中时其温度超过100℃,并在进入燃料电池之前在该腔室内与所述水相接触而冷却到低于100℃的温度。
9.如前述任一权利要求的装置,其中所述至少一种气态反应剂和所述水大体上是垂直流动的。
10.如权利要求9的装置,其中所述气态反应剂和水的所说垂直流动其方向是朝上的。
11.一种按照压滤器结构设置的元件堆,其中该元件包括至少一个高分子膜燃料电池和至少一个权利要求1到6中任何一项所述的湿润装置。
12.如权利要求11的元件堆,其中所述至少一个湿润装置被加热到在50℃和上述至少一个燃料电池的温度之间的温度。
13.一种按照压滤器结构设置的高分子膜燃料电池堆,具有多个外壁,包括至少一个配置在该电池堆外边的如权利要求1到6中任何一项所述的湿润装置。
14.如权利要求13的燃料电池堆,其中所述第一个外壁和该电池堆的一个外壁相接触。
15.如权利要求14的燃料电池堆,其中所述网状材料因至少一部分由上述燃料池内所产生的热的转移而被加热到50℃和燃料电池的温度之间的温度。
16.如权利要求15的燃料电池堆,其中所述转移是由热传导产生的。
17.一种按照权利要求1的湿润高分子膜燃料电池堆中反应剂用的装置,基本上如此前参照任何一个实例或附图所描述。
CNB008076472A 1999-05-18 2000-05-17 用于高分子膜燃料电池的湿润装置 Expired - Fee Related CN1181586C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT1999MI001090A ITMI991090A1 (it) 1999-05-18 1999-05-18 Dispositivo di umidificazione per celle a combustibile a membrana polimerica
ITMI99A001090 1999-05-18

Publications (2)

Publication Number Publication Date
CN1351769A true CN1351769A (zh) 2002-05-29
CN1181586C CN1181586C (zh) 2004-12-22

Family

ID=11382990

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008076472A Expired - Fee Related CN1181586C (zh) 1999-05-18 2000-05-17 用于高分子膜燃料电池的湿润装置

Country Status (14)

Country Link
US (1) US6737183B1 (zh)
EP (1) EP1181730B1 (zh)
JP (1) JP2003500802A (zh)
KR (1) KR20020062681A (zh)
CN (1) CN1181586C (zh)
AT (1) ATE405962T1 (zh)
AU (1) AU5213700A (zh)
BR (1) BR0010626A (zh)
CA (1) CA2368949A1 (zh)
DE (1) DE60039982D1 (zh)
ES (1) ES2311458T3 (zh)
IT (1) ITMI991090A1 (zh)
TW (1) TW456065B (zh)
WO (1) WO2000070698A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1314256B1 (it) 1999-12-03 2002-12-06 Nora Fuel Cells S P A De Batteria di celle a combustibile a membrana polimerica.
US6531238B1 (en) * 2000-09-26 2003-03-11 Reliant Energy Power Systems, Inc. Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly
US20030190226A1 (en) * 2002-04-03 2003-10-09 3M Innovative Properties Company Apparatus and method for singulating porous fuel cell layers using adhesive tape pick head
US20030188616A1 (en) * 2002-04-03 2003-10-09 Behymer Lance E. Compliant cutting die apparatus for cutting fuel cell material layers
US6740131B2 (en) * 2002-04-03 2004-05-25 3M Innovative Properties Company Apparatus for automatically fabricating fuel cell
US6868890B2 (en) * 2002-04-03 2005-03-22 3M Innovative Properties Company Method and apparatus for peeling a thin film from a liner
US7432009B2 (en) * 2002-04-03 2008-10-07 3M Innovative Properties Company Lamination apparatus and methods
US20030190517A1 (en) * 2002-04-08 2003-10-09 John Elter Fuel cell
ITMI20021338A1 (it) 2002-06-17 2003-12-17 Nuvera Fuel Cells Europ Srl Generatore elettrochimico a membrana con iniezione diretta di acqua liquida nei agenti gassosi
US7195690B2 (en) * 2003-05-28 2007-03-27 3M Innovative Properties Company Roll-good fuel cell fabrication processes, equipment, and articles produced from same
ITMI20031881A1 (it) * 2003-10-01 2005-04-02 Nuvera Fuel Cells Europ Srl Separatore bipolare per batteria di celle a combustibile.
US7585355B2 (en) * 2004-02-10 2009-09-08 Mitsubishi Denki Kabushiki Kaisha Temperature/humidity exchanger
JP4312624B2 (ja) * 2004-02-13 2009-08-12 三菱電機株式会社 温度湿度交換器
JP2006216281A (ja) * 2005-02-01 2006-08-17 Toyota Motor Corp 燃料電池及び燃料電池の製造方法
US20060204824A1 (en) * 2005-03-08 2006-09-14 Hydrogenics Corporation System and method for collecting current in an electrochemical cell stack
JP5008265B2 (ja) * 2005-03-11 2012-08-22 株式会社エクォス・リサーチ セパレータユニット及び燃料電池スタック
KR100821770B1 (ko) 2006-09-28 2008-04-14 현대자동차주식회사 연료전지용 하이브리드 가습 장치
US7914944B2 (en) * 2006-12-07 2011-03-29 Canon Kabushiki Kaisha Atmosphere open type fuel cell
DE102007060428B3 (de) 2007-12-14 2009-05-07 Airbus Deutschland Gmbh Verdampfungsgekühltes Brennstoffzellensystem und Verfahren zum Betreiben eines verdampfungsgekühlten Brennstoffzellensystems sowie seine Verwendung in einem Luftfahrzeug
US8889314B2 (en) * 2009-01-13 2014-11-18 GM Global Technology Operations LLC Bipolar plate for a fuel cell stack
ITTO20091026A1 (it) 2009-12-22 2011-06-23 Electro Power Systems Spa Gestione del funzionamento di un generatore elettrico di back-up a celle a combustibile pem impilate
WO2011150458A1 (en) * 2010-06-01 2011-12-08 The University Of Queensland A fuel cell stack
DE112011104990T5 (de) * 2011-03-01 2013-11-28 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem
DE102012218303A1 (de) * 2011-10-08 2013-04-11 Volkswagen Ag Verfahren zur Herstellung einer Befeuchtungseinrichtung zur Befeuchtung von Prozessgasen sowie Befeuchtungseinrichtung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1270878B (it) * 1993-04-30 1997-05-13 Permelec Spa Nora Migliorata cella elettrochimica utilizzante membrane a scambio ionico e piatti bipolari metallici
US6183623B1 (en) * 1993-07-13 2001-02-06 Lynntech, Inc. Electrochemical conversion of anhydrous hydrogen halide to halogen gas using an ionically conducting membrane
US5635039A (en) * 1993-07-13 1997-06-03 Lynntech, Inc. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
JP3632228B2 (ja) * 1994-11-09 2005-03-23 トヨタ自動車株式会社 燃料電池の加湿装置および加湿制御装置並びに加湿装置の製造方法
US6149810A (en) * 1994-11-23 2000-11-21 Lynntech, Inc. Membrane with supported internal passages
JP3364028B2 (ja) * 1994-12-13 2003-01-08 三菱重工業株式会社 固体高分子電解質膜燃料電池本体
JP3203150B2 (ja) * 1995-05-18 2001-08-27 三洋電機株式会社 固体高分子型燃料電池及び固体高分子型燃料電池システム
IT1284072B1 (it) * 1996-06-26 1998-05-08 De Nora Spa Cella elettrochimica a membrana provvista di elettrodi a diffusione gassosa contattati da portacorrente metallici lisci e porosi a
US6146780A (en) * 1997-01-24 2000-11-14 Lynntech, Inc. Bipolar separator plates for electrochemical cell stacks
JP2001519080A (ja) 1997-04-10 2001-10-16 マグネート−モートア、ゲゼルシャフト、フュール、マグネートモートリシェ、テヒニク、ミット、ベシュレンクテル、ハフツング ポリマー電解質燃料電池の冷却および増湿
DE19743067C2 (de) * 1997-09-30 1999-07-29 Ballard Power Systems Strömungsmodul mit Strömungskammern für drei oder vier Fluide
JPH11111311A (ja) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd 固体高分子型燃料電池

Also Published As

Publication number Publication date
BR0010626A (pt) 2002-02-19
WO2000070698A1 (en) 2000-11-23
EP1181730A1 (en) 2002-02-27
ES2311458T3 (es) 2009-02-16
ATE405962T1 (de) 2008-09-15
JP2003500802A (ja) 2003-01-07
CA2368949A1 (en) 2000-11-23
CN1181586C (zh) 2004-12-22
ITMI991090A1 (it) 2000-11-18
US6737183B1 (en) 2004-05-18
KR20020062681A (ko) 2002-07-29
EP1181730B1 (en) 2008-08-20
AU5213700A (en) 2000-12-05
TW456065B (en) 2001-09-21
DE60039982D1 (de) 2008-10-02

Similar Documents

Publication Publication Date Title
CN1181586C (zh) 用于高分子膜燃料电池的湿润装置
CN1185741C (zh) 带有基于直接注入液态水的冷却系统的燃料电池
CN100336261C (zh) 燃料电池组
CN1536703A (zh) 高分子电解质型燃料电池
CN1753225A (zh) 重整器及具有该重整器的燃料电池系统
CN1436378A (zh) 催化加湿器和加热器,主要用于燃料电池的氧化剂流的加湿
CN1604372A (zh) 液体燃料混合装置及采用它的直接液体给料燃料电池
CN1503999A (zh) 燃料电池堆及其工作方法
CN1551396A (zh) 燃料电池及其操作方法
CN1612390A (zh) 燃料电池及燃料电池用隔板
CN111082097B (zh) 一种燃料电池系统
CN1612389A (zh) 燃料电池
CN1815788A (zh) 一种运行稳定性较高的燃料电池
CN1790794A (zh) 带有空气温度调节与湿度稳定装置的燃料电池
CN2768217Y (zh) 一种具有防回火功能的燃料电池
CN1734817A (zh) 燃料电池系统
CN1684294A (zh) 一种具有高功率密度自散热及自增湿型燃料电池堆
CN2763989Y (zh) 一种可提高运行稳定性的燃料电池
CN2796120Y (zh) 一种运行稳定性较高的燃料电池
CN2718794Y (zh) 一种可提高氢气利用率的燃料电池
CN2758990Y (zh) 带有空气温度调节与湿度稳定装置的燃料电池
CN1773760A (zh) 可使进入反应的氢气或空气温度与湿度稳定的燃料电池
CN2739805Y (zh) 可使进入反应的氢气或空气温度与湿度稳定的燃料电池
CN1734815A (zh) 一种可提高氢气利用率的燃料电池
CN1774830A (zh) 高分子电解质型燃料电池及其运转方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee