CN1333470C - 发光二极管结构 - Google Patents

发光二极管结构 Download PDF

Info

Publication number
CN1333470C
CN1333470C CNB2004100063878A CN200410006387A CN1333470C CN 1333470 C CN1333470 C CN 1333470C CN B2004100063878 A CNB2004100063878 A CN B2004100063878A CN 200410006387 A CN200410006387 A CN 200410006387A CN 1333470 C CN1333470 C CN 1333470C
Authority
CN
China
Prior art keywords
emitting diode
light emitting
layer
contact layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100063878A
Other languages
English (en)
Other versions
CN1661818A (zh
Inventor
黄登凯
李志翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
GUANGJIA PHOTOELECTRIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUANGJIA PHOTOELECTRIC CO Ltd filed Critical GUANGJIA PHOTOELECTRIC CO Ltd
Priority to CNB2004100063878A priority Critical patent/CN1333470C/zh
Publication of CN1661818A publication Critical patent/CN1661818A/zh
Application granted granted Critical
Publication of CN1333470C publication Critical patent/CN1333470C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

本发明是关于一种具有建构式氧化薄膜接触层的发光二极管结构。此发光二极管结构是架构于一基板上,包含一形成于此基板上的缓冲层、一形成于此缓冲层上的下束缚层、一形成于此下束缚层上的发光层、一形成于此发光层上的上束缚层、一形成于此上束缚层上的建构式氧化薄膜接触层,其导电性可为P型、N型或I型,以及第一电极与第二电极(透明电极),其中透明电极形成于建构式氧化薄膜接触层上,作为发光二极管的阳极。第一电极则形成于下束缚层上,并与发光层、上束缚层、接触层及透明电极隔离,作为发光二极管的阴极。

Description

发光二极管结构
技术领域
本发明是关于一种发光二极管结构,尤其是关于一种由III-V族元素(III-V group element)构成,具有建构式氧化薄膜接触层的发光二极管结构。
背景技术
氮化镓(GaN)基外延技术自1993年为日本专家突破后,在全球掀起了氮化镓基蓝光发光二极管产业化的高潮。
已知的氮化镓系发光二极管结构1(如图1所示)是形成于一基材10上,例如Al2O3的基材,其结构从下至上依序为晶核层(nucleation layer)12、用以使后续长晶更加顺利及容易的N型掺杂氮化镓的N型掺杂导电缓冲层(N-type conductive buffer layer)14、下束缚层(confinement layer)16、供做发光用的主动层(active layer)18、上束缚层20、P型氮化镓的接触层22及供做发光二极管1阳极的透明电极24,其中下束缚层16与上束缚层20的掺杂型是相反的,例如当下束缚层16为N型掺杂的氮化镓时,上束缚层20为P型掺杂的氮化镓。透明电极24的材料通常为N型掺杂,如氧化铟锡(Indium tin oxide)、氧化锡镉(Cadmium tin oxide)或极薄的金属。另外,在缓冲层14上与上、下束缚层20,16及主动层18隔离的区域上形成供做发光二极管1阴极的电极26。
图2为图1中发光二极管1的发光区域范围的示意图。于发光二极管1的透明电极24及电极26上施加顺向偏压后,会使得发光二极管1导通,此时电流会自透明电极24流向主动层18。已知P型氮化镓接触层22的载子(carrier)浓度无法太高,且接触电阻高,以致电流散布(currentspreading)效应不佳。而P型透明电极24仅覆盖部份接触层22,由图2中可以看出电流流过的区域仅为与透明电极24宽度相当的区域,也因此造成发光二极管1的发光区域受到限制,无法发挥主动层18的功效,致使发光二极管1的发光效率大为降低。
综上所述,已知的发光二极管结构受限于接触层的物理特性,而使其无法有效的成长高浓度的P型接触层,这使得发光二极管的制造成本提高,同时产品优良率也降低。再者,已知的发光二极管结构无法提供一个高发光效率的二极管,二极管中大部份的主动层区域没有被好好利用。再者,透明电极与接触层两者的掺杂型(导电型)并不同型,故在透明电极与接触层之间可能会产生接合面(junction),而影响发光二极管的操作。
因此,改善接触层的物理特性应可使发光二极管的发光效率获得有效的改善。台湾发明专利第156268号中揭示了一种掺杂的超晶格应变层(strained layer superlattices,SLS)结构作为发光二极管的接触层以提升已知发光二极管的发光效率。台湾发明专利公告第546859号中亦揭示了一种具有数字穿透层的氮化镓系发光二极管,以使氧化铟锡层与P型氮化镓系接触层成为欧姆接触的状态,以降低二者间的电阻。虽然,这些改良或多或少对于发光效率的提升皆有助益,但仍未达到令人满意的结果。
因此,本发明即致力于克服上述的缺点,以有效改善发光二极管的发光效率。
发明内容
本发明的目的,是提供一种具有建构式氧化薄膜接触层(ConstructiveOxide Contact Structure,COCS)的发光二极管结构。
本发明的另一目的,是提供一种能有效降低接触层电阻的发光二极管结构,以有效改善其发光效率。
根据本发明所指出的一种发光二极管结构,是以建构式氧化薄膜接触层结构来作为发光二极管的接触层,使其较易形成高浓度(高导电率)的接触层。当此接触层辅以适当的透明电极,可用以有效的增加发光效率及降低操作电压。
以根据本发明所指出的建构式氧化薄膜接触层结构做为发光二极管的接触层,可不需限制接触层掺杂物的类型,而透明电极更可以与接触层具同一导电型的材料,以消除透明电极与接触层的间所产生的接合面。
此外,以根据本发明所指出的建构式氧化薄膜接触层结构作为发光二极管的接触层,具有与透明电极有较佳的接触特性,透明电极的尺寸可以大致与主动层一致,用以提高电流通过主动层的区域,以提高主动层可发光区域,而使发光效率提高。
根据本发明所指出的发光二极管结构,其构造简述如下:
根据本发明所指出的发光二极管结构是架构于一基板上,包含一缓冲层、一下束缚层、一发光层、一上束缚层、一接触层,及第一电极与第二电极(透明电极)。其中,第一导电型的缓冲层是形成于此基板上,第一导电型的下束缚层则形成于此第一导电型的缓冲层上,其中下束缚层的掺杂物与导电缓冲层的掺杂物为同型,例如同为P型或N型掺杂物。发光层是形成于下束缚层上,而第二导电型的上束缚层则形成于发光层上,其中上束缚层的掺杂物与下束缚层的掺杂物为不同型,例如其一为P型掺杂物,另一则为N型掺杂物。第二导电型半导体化合物材料,形成于上束缚层上供做接触层。此接触层为建构式氧化薄膜接触层,其导电性可为P型、N型或I型。至于透明电极则形成于接触层上,作为发光二极管的阳极。第一电极则形成于下束缚层上,并与发光层、上束缚层、接触层及透明电极隔离,作为发光二极管的阴极。
前述的透明电极与建构式氧化薄膜接触层两者的导电型可以同型或不同型,例如两者同为P型或N型,或其一为P型,另一则为N型。
本发明在此另提出一种具有建构式氧化薄膜接触层,架构于一基板上的发光二极管结构。其是由一形成于此基板上的导电缓冲层,一架构于缓冲层上且夹于上、下束缚层中的发光层,一形成于上束缚层上的建构式氧化薄膜接触层,其导电性可为P型、N型或I型,一形成于建构式氧化薄膜接触层上的导电型薄膜,形成于下束缚层上,并与发光层、上束缚层、接触层及透明电极隔离的第一电极,及形成于导电型薄膜上的第二电极(透明电极)。其中,导电型薄膜系作为电流分散及透光层。上束缚层的掺杂物与下束缚层的掺杂物为不同型,例如其一为P型掺杂物,另一则为N型掺杂物。
前述的透明电极与建构式氧化薄膜接触层两者的导电型可以同型或不同型,例如两者同为P型或N型,或其一为P型,另一则为N型。
本发明将通过参考下列的实施例做进一步的说明,这些实施例并不限制本发明前面所揭示的内容。熟习本发明的技艺者,可做些许的改良与修饰,但仍不脱离本发明的范畴。
附图说明
图1为显示已知含III-V族元素的发光二极管的剖面示意图;
图2为显示图1中发光二极管的发光区域范围的示意图;
图3为根据本发明所指出的发光二极管结构较佳实施例的剖面示意图;
图4为根据本发明所指出的发光二极管结构另一实施例的剖面示意图;
图5为根据本发明所指出的发光二极管电流-电压特性测试的数据分析图。
◆:习知的发光二极管结构;
■:本发明的发光二极管结构。
图6为根据本发明所指出的发光二极管的电流-亮度测试的数据分析图。
◆:习知的发光二极管结构;
■:本发明的发光二极管结构。
图中
1  发光二极管      10基材
12晶核层           14缓冲层
16下束缚层         18主动层
20上束缚层         22接触层
24透明电极         26电极
100发光二极管结构  120基板
122缓冲层          124下束缚层
126发光层          128上束缚层
130接触层          132第一电极
134第二电极        136导电型薄膜
具体实施方式
为使本发明的目的、特征及优点能更轻易地为熟习本发明技艺者了解,现配合附图做进一步详细说明如下:
根据本发明所指出的发光二极管结构,是利用建构式氧化薄膜接触层(Constructive Oxide Contact Structure,COCS)以形成高浓度(高导电率)的接触层,来降低接触层电阻。当此接触层辅以适当的透明电极,可用以有效的增加发光效率及降低操作电压。
此外,由于建构式氧化薄膜接触层具有较本体层(bulk layer)有更高的载子浓度,使得架构于其上的透明电极可以轻易的与之形成欧姆接触(Ohmic contact),不致因载子浓度不够高而形成萧基接触(Schottkycontact),而使得组件的操作电压增加。另外,透明电极可使用与建构式氧化薄膜接触层相同导电型的材料,使得透明电极与接触层之间不易产生接合面(junction),且透明电极与接触层的尺寸较易做成一致。
参阅图3,为根据本发明所指出的发光二极管结构100较佳实施例的剖面示意图。根据本发明所指出的发光二极管结构100首先是提供一基板120,此基板120可以为一绝缘物质,亦可由导电型半导体材料所制备,在此并没有特别的限制,只要是任何已知或未知可供作为发光二极管基板的材料皆可被应用在根据本发明所指出的发光二极管结构中。当其为绝缘物质时,在此可举出的例子,包含氧化铝(Al2O3,sapphire)、氮化铝(AlN)、氮化镓(GaN)、尖晶石(Spinel)、氧化锂镓(LiGaO3)或氧化铝锂(LiAlO3)等,但并不仅限于此。当其为导电型半导体材料时,在此可举出的例子,包含碳化硅(SiC)、氧化锌(ZnO)、硅(Si)、磷化镓(GaP)、砷化镓(GaAs)、硒化锌(ZnSe)、磷化铟(InP)或加入硅杂质导电型氮化镓(GaN)等,但并不仅限于此。
接着,一层第一导电型缓冲层122形成于基板120上,其材料可为AlxInyGa1-x-yN等化合物,其中x≥0;y≥0;0≤x+y<1。在此可以举出的例子,包含氮化铟(InN)、氮化铟镓(InGaN)、氮化铝镓(AlGaN)或氮化镓(GaN)。
形成下束缚层124于第一导电型缓冲层122上,其可由任何已知或未知的含有氮化镓(GaN)的III-V族元素化合物制备,此化合物可由AloInpGa1-o-pN的化学通式表示,其中o≥0;p≥0;0≤o+p<1。例如,第一导电型氮化镓(GaN)。下束缚层124上再形成一发光层126,其亦可由任何已知或未知的含有氮化镓(GaN)的III-V族元素化合物制备,例如氮化铟镓(InGaN)。于此发光层126上再形成一上束缚层128,其亦可由任何已知或未知的含有氮化镓(GaN)的III-V族元素化合物制备,例如第二导电型氮化镓(GaN)或氮化铝镓(AlGaN)。其中,发光层126是由下束缚层124及上束缚层128所包覆。且此三层含有氮化镓(GaN)的III-V族元素化合物的材料选择、成分含量、掺杂物的选用等,可以按实际所需及设计加以调整,前述所举的的例子仅为实例说明,并不限制本发明的权利范围。
接着,再于上束缚层128上形成一接触层130。根据本发明所指出的发光二极管结构100中,其接触层130是由具有极高载子浓度的III-V族元素化合物材料所制成,为一建构式氧化薄膜接触层,其可由四种材料所堆叠而成,分别为P+GaN、Y1InN、Y2Inx1Ga1-x1N及Y3InN,其堆叠次序可依P型、N型掺杂物作随意堆叠变化。其中,0≤X1≤1,Y1、Y2及Y3可为P型或N型掺杂物,故其导电性亦可为P型、N型或I型。此建构式氧化薄膜接触层的厚度范围在0.1~1,000纳米(nano meter,nm)之间。
接着,于下束缚层124上,与发光层126、上束缚层128及接触层130隔离的区域上形成第一电极132,作为发光二极管结构100的阴极,其与下束缚层124有好的欧姆接触,进而有较低的接触电阻。另外,于接触层130上形成一第二电极(透明电极)134,其是由一薄金属材料所制备,做为发光二极管结构100的阳极。
前述第一电极或第二电极为选自由铟(In)、锡(Sn)、锌(Zn)、镍(Ni)、金(Au)、铬(Cr)、钴(Co)、镉(Cd)、铝(Al)、钒(V)、银(Ag)、钛(Ti)、钨(W)、铂(Pt)、钯(Pd)、铑(Rh)、钌(Ru)等金属所形成的一元、二元或二元以上的合金的金属电极,其厚度范围在1~10,000纳米(nm)之间。
根据本发明所指出的发光二极管的另一实施例如图4所示,其结构大致上与图3中的实施例相同,惟其接触层130上再形成一层导电型薄膜136,供作为电流分散及透光用。其可应用于覆晶式发光二极管材料封装上,以有效提高此发光二极管的散热特性及抗静电能力。此导电型薄膜136为由铟(In)、锡(Sn)、锌(Zn)、镍(Ni)、金(Au)、铬(Cr)、钴(Co)、镉(Cd)、铝(Al)、钒(V)、银(Ag)、钛(Ti)、钨(W)、铂(Pt)、钯(Pd)、铑(Rh)或钌(Ru)等金属所形成的一元、二元或二元以上的氧化薄膜或合金的透明氧化导电层,厚度范围在1~1,000纳米之间。此导电型薄膜136亦可由具有高反射率金属所形成的一元、二元或二元以上的合金所制备。其中,此具有高反射率的金属在此可举出的例子,包含铝(Al)、银(Ag)、铂(Pt)、钯(Pd)、铑(Rh)、钌(Ru)、钛(Ti)、金(Au)、镍(Ni)及铜(Cu)等,但并不仅限于此。
此外,由于建构式氧化薄膜接触层具有较本体层(bulk layer)有更高的载子浓度,使得架构于其上的透明电极可以轻易的与的形成欧姆接触(Ohmic contact),不致因载子浓度不够高而形成萧基接触(Schottkycontact),而使得组件的操作电压增加。另外,透明电极可使用与建构式氧化薄膜接触层相同导电型的材料,使得透明电极与接触层的间不易产生接合面(junction),且透明电极与接触层的尺寸较易做成一致。
综上所述,根据本发明所指出的发光二极管结构至少具有以下的特色:
1.以本发明所指出的建构式氧化薄膜接触层作为发光二极管的接触层时,可容易的形成高载子浓度的接触层。
2.本发明所指出的建构式氧化薄膜接触层与透明电极具有较佳的欧姆接触特性,可使发光效率提高,并降低组件的操作电压。
3.透明电极与接触层两者的导电型可以为同型或不同型,当两者为同一导电型时,可进一步消除接合面的问题。
由于发光二极管通常为静电敏感的材料,当将根据本发明所指出的发光二极管结构与已知的结构进行静电测试时,做为接触层的建构式氧化薄膜接触层,可有效提升根据本发明所指出的发光二极管的抗静电放电(Electrostatic Discharge,ESD)能力(表一)。
参阅图5,为根据本发明所指出的发光二极管电流-电压特性测试的数据分析图,由图中可以看出,当于施予相同的电流,根据本发明所指出的发光二极管于低电流的操作下,可比已知的发光二极管获得较低的电压特性。
参阅图6为根据本发明所指出的发光二极管的电流-亮度测试的数据分析图。于施予相同的电流下根据本发明所指出的发光二极管较已知的发光二极管能发出较高的亮度。
综上所述,根据本发明所指出的发光二极管结构,确实能较已知的发光二极管具有较高的发光效率、较低的组件操作电压及较强的抗静电放电能力。
表一根据本发明所指出的发光二极管结构经静电测试后的结果
     人体模式(HBM)                      机械模式(MM)                     测试标准
级数1  0~1999(v)   M0  0~49(v)   M3  200~399(v) 人体模式:MIL-STD-883C Method 3015.7
级数2  2000~3999(v)   M1  50~99(v)   M4  400~799(v) 机械模式:EIAJ-IC-121 Method 20
级数3  4000~15999(v)   M2  100~199(v)   M5  >799(v)
项目  晶粒型式   静电量测试模式  1   2  3  4  5 6  7  8  9  10
1  已知发光二极管结构   人体模式(+)  2000   2500  2000  2500  3000 2500  2500  3000  2500  3000
  人体模式(-)  -250   -1500  -2000  -1750  -200 -1000  -250  -500  -2000  -500
  机械模式(+)  250   100  300  200  100 250  150  100  300  200
  机械模式(-)  -75   -25  -100  -50  -75 -25  -100  -75  -50  -50
2  本发明发光二极管结构   人体模式(+)  4000   5000  4000  5000  7000 6000  4500  5000  4500  5000
  人体模式(-)  -5000   -3000  -4000  -3000  -5000 -3000  -4000  -4500  -5000  -4000
  机械模式(+)  700   500  500  1000  500 700  800  600  750  500
  机械模式(-)  -800   -600  -450  -500  -600 -700  -500  -600  -600  -500

Claims (12)

1.一种发光二极管结构,包括:
一基板;
一形成于该基板上的第一导电型缓冲层;
一形成于该缓冲层上的下束缚层;
一形成于该下束缚层上的发光层;
一形成于该发光层上的上束缚层;
一形成于该上束缚层上的接触层,该接触层的导电性为P型、N型或I型,其是由P+GaN、Y1InN、Y2Inx1Ga1-x1N以及Y3InN四种材料所堆叠而成,其中0≤X1<1,Y1、Y2及Y3为P型或N型掺杂物;
一形成于该下束缚层上,且与该发光层、该上束缚层及该接触层隔离的第一电极;以及
一形成于该接触层上的第二电极。
2.如权利要求1所述的发光二极管结构,其中该接触层的厚度范围在0.1~1,000纳米之间。
3.如权利要求1所述的发光二极管结构,其中该基板是由绝缘透光材料或导电型半导体材料所制备。
4.如权利要求3所述的发光二极管结构,其中该绝缘透光材料是选自由氧化铝、氮化铝、氮化镓、尖晶石、氧化锂镓及氧化铝锂所组成的族群。
5.如权利要求3所述的发光二极管结构,其中该导电型半导体材料是选自由碳化硅、氧化锌、硅、磷化镓、砷化镓、硒化锌、磷化铟及加入硅杂质的导电型氮化镓所组成的族群。
6.如权利要求1所述的发光二极管结构,其中该缓冲层其是由AlxInyGa1-x-yN所制备,其中x≥0;y≥0;0≤x+y<1。
7.如权利要求1所述的发光二极管结构,其中该下束缚层是由含有氮化镓的III-V族元素化合物制备,此化合物可由AloInpGa1-o-pN的化学通式表示,其中o≥0;p≥0;0≤o+p<1。
8.如权利要求1所述的发光二极管结构,其中该第一电极与第二电极是为金属所形成的一元、二元或二元以上的合金的金属电极,该金属选自由铟、锡、锌、镍、金、铬、钴、镉、铝、钒、银、钛、钨、铂、钯、铑及钌所组成的族群。
9.如权利要求8所述的发光二极管结构,其中该第一电极或第二电极的厚度范围在1~10,000纳米之间。
10.如权利要求1所述的发光二极管结构,其中该接触层与该第二电极之间,进一步包括一导电型薄膜,其厚度范围在1~1,000纳米之间。
11.如权利要求10所述的发光二极管结构,其中该导电型薄膜是由金属所形成的一元、二元或二元以上的氧化薄膜或金属合金所制备的透明氧化导电层,其中该金属是选自由铟、锡、锌、镍、金、铬、钴、镉、铝、钒、银、钛、钨、铂、钯、铑及钌所组成的族群。
12.如权利要求10所述的发光二极管结构,其中该导电型薄膜是由具有高反射率金属所形成的一元、二元或二元以上的合金所制备,其中该具有高反射率金属是选自由铝、银、铂、钯、铑、钌、钛、金、镍及铜所组成的族群。
CNB2004100063878A 2004-02-27 2004-02-27 发光二极管结构 Expired - Fee Related CN1333470C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100063878A CN1333470C (zh) 2004-02-27 2004-02-27 发光二极管结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100063878A CN1333470C (zh) 2004-02-27 2004-02-27 发光二极管结构

Publications (2)

Publication Number Publication Date
CN1661818A CN1661818A (zh) 2005-08-31
CN1333470C true CN1333470C (zh) 2007-08-22

Family

ID=35010990

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100063878A Expired - Fee Related CN1333470C (zh) 2004-02-27 2004-02-27 发光二极管结构

Country Status (1)

Country Link
CN (1) CN1333470C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100565254C (zh) * 2003-03-31 2009-12-02 燕山大学 塑料光子晶体光纤的连续制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255025A (zh) * 2010-05-18 2011-11-23 展晶科技(深圳)有限公司 发光二极管
TWI515936B (zh) * 2011-12-15 2016-01-01 友達光電股份有限公司 發光裝置及其製作方法
CN103078050A (zh) 2013-02-01 2013-05-01 映瑞光电科技(上海)有限公司 一种倒装led芯片及其制造方法
US9515226B2 (en) * 2013-07-10 2016-12-06 Yangang Xi Light emitting device and method for making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101142A (ja) * 1998-09-25 2000-04-07 Toshiba Corp 化合物半導体素子
JP2001203385A (ja) * 2000-01-17 2001-07-27 Nichia Chem Ind Ltd 窒化物半導体発光ダイオード
CN1379483A (zh) * 2001-03-28 2002-11-13 先锋株式会社 氮化物半导体器件
US20030127658A1 (en) * 2001-01-19 2003-07-10 Jinn-Kong Sheu Light emitting diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101142A (ja) * 1998-09-25 2000-04-07 Toshiba Corp 化合物半導体素子
JP2001203385A (ja) * 2000-01-17 2001-07-27 Nichia Chem Ind Ltd 窒化物半導体発光ダイオード
US20030127658A1 (en) * 2001-01-19 2003-07-10 Jinn-Kong Sheu Light emitting diode
CN1379483A (zh) * 2001-03-28 2002-11-13 先锋株式会社 氮化物半导体器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100565254C (zh) * 2003-03-31 2009-12-02 燕山大学 塑料光子晶体光纤的连续制造方法

Also Published As

Publication number Publication date
CN1661818A (zh) 2005-08-31

Similar Documents

Publication Publication Date Title
JP3009095B2 (ja) 窒化物半導体発光素子
CN103283045B (zh) 高效发光二极管
US8884505B2 (en) Light emitting device including a plurality of light emitting cells and light emitting device package having the same
CN102088049B (zh) 发光器件和包括发光器件的发光器件封装
KR100286699B1 (ko) 질화갈륨계 3-5족 화합물 반도체 발광디바이스 및 그 제조방법
CN102439741B (zh) 发光二极管装置
US20050205881A1 (en) Nitride semiconductor device
US7652296B2 (en) Light emitting device with high light extraction efficiency
US7148519B2 (en) Structure of GaN light-emitting diode
EP2096684B1 (en) Compound semiconductor light emitting element and method for producing the compound semiconductor light emitting element
EP2763192A1 (en) Nitride semiconductor element and method for producing same
US8008672B2 (en) Light emitting device
KR100706887B1 (ko) 발광 다이오드 칩
WO2001073858A1 (en) Group-iii nitride compound semiconductor device
US9450017B2 (en) Semiconductor light emitting device and method of fabricating the same
US20080042159A1 (en) Transparent Electrode for Semiconductor Light-Emitting Device
US20130134475A1 (en) Semiconductor light emitting device
US8395263B2 (en) Semiconductor light emitting device and method for manufacturing the same
JP3269070B2 (ja) 窒化物半導体発光素子
US20050012113A1 (en) [uv photodetector]
CN102237455B (zh) 发光二极管结构
US20050098801A1 (en) Semiconductor light emitting device
CN100369276C (zh) 发光二极管的结构
CN106025017A (zh) 具有静电保护的发光二极管及其制作方法
CN1333470C (zh) 发光二极管结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161028

Address after: Hsinchu City, Taiwan, China

Patentee after: Jingyuan Optoelectronics Co., Ltd.

Address before: Taichung City, Taiwan, China

Patentee before: Guangjia Photoelectric Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070822

Termination date: 20210227

CF01 Termination of patent right due to non-payment of annual fee