CN1331642C - Single eye visual sensor for welding robot and its hand-eye relation quick marking method - Google Patents
Single eye visual sensor for welding robot and its hand-eye relation quick marking method Download PDFInfo
- Publication number
- CN1331642C CN1331642C CNB2004100528574A CN200410052857A CN1331642C CN 1331642 C CN1331642 C CN 1331642C CN B2004100528574 A CNB2004100528574 A CN B2004100528574A CN 200410052857 A CN200410052857 A CN 200410052857A CN 1331642 C CN1331642 C CN 1331642C
- Authority
- CN
- China
- Prior art keywords
- coordinate
- welding robot
- robot
- video camera
- eye
- Prior art date
Links
- 238000003466 welding Methods 0.000 title claims abstract description 58
- 230000000007 visual effect Effects 0.000 title abstract description 7
- 239000011521 glasses Substances 0.000 claims description 6
- 238000006243 chemical reactions Methods 0.000 abstract description 2
- 238000005520 cutting process Methods 0.000 abstract description 2
- 238000001914 filtration Methods 0.000 abstract 4
- 230000003287 optical Effects 0.000 description 7
- 238000000034 methods Methods 0.000 description 6
- 238000005516 engineering processes Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000004364 calculation methods Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010891 electric arc Methods 0.000 description 2
- 239000011159 matrix materials Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 281000076649 British American Tobacco companies 0.000 description 1
- 230000000052 comparative effects Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional methods Methods 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagrams Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000001131 transforming Effects 0.000 description 1
Abstract
Description
Technical field
The present invention relates to a kind of welding robot vision sensor and scaling method thereof, specifically is that a kind of welding robot monocular vision sensor and hand-eye thereof concern quick calibrating method.Be used to weld the cutting field.
Background technology
At present, the sensing mode that is applied on the welding robot is varied, among these method for sensing, since the visual sensing mode have contain much information, noncontact, fast, high accuracy and automaticity advantages of higher, be subjected to liking of numerous Welders author, become the research focus of robot welding sensor aspect at present.The visual sensing technology on welding robot, use more be carry out that the weld seam vision is followed the tracks of and welding process Based Intelligent Control such as penetration control aspect research.At present both at home and abroad the research comparative maturity is the visual sensing mode that adopts laser or structured light, and this sensing mode need add specific light source, weak point such as exist that information content is abundant inadequately, function singleness, volume are bigger.And carry out route guidance when control for welding robot, and usually adopt hand-eye visual configuration mode, at this moment hand-the eye for welding robot concerns that demarcation is a key link.
Through the prior art literature search is analyzed, people such as discovery Sun Zhen state are in " optical technology " (2001, Vol27, No.3:252-254,259) " research of novel intelligent spherical tank welding robot vision sensor " delivered on, the document has been developed a kind of novel vision sensor for realizing the autokinetic movement and the soldering joint automatic tracking of intelligent spherical tank welding robot.This sensor is a core with the high-resolution linear array CCD chip, is made up of optical systems such as light source, optical filter, lens and CCD drive circuit, photoelectric signal processing circuit etc., and wherein the photoelectricity treatment circuit is all realized by hardware.The interference of arc light when whole visual sensing system can be avoided welding, detect seam track line deviation signal in real time, exactly, but need add specific light source, complex structure, and optical filter is fixed on the video camera front end and can not moves, and can't satisfy under the natural daylight condition and use.
Also find in the retrieval, people such as Wang Min are at " Central China University of Science and Technology's journal " 2001, Vol29, NO.3:45-47) " the Robot Hand-eye vision calibration method of space object location " delivered on, the document has proposed a kind of robot-eye vision calibration new method that is used for the space object location, adopt a constant transformation matrix to describe end effector coordinate system and robot coordinate system's corresponding relation, and supposition is in calibration process, object to the distance of video camera remains unchanged, with the problem reduction of three-dimensional localization is that two-dimensional problems are handled, and has greatly reduced amount of calculation.This method has accurate positioning, reliability advantages of higher, needs mobile robot's end effector but also exist in calibration process, the weak point of carrying out repeatedly capture and repeatedly demarcating.In production application, can not satisfy the requirement of easy quick demarcation.
Summary of the invention
The objective of the invention is at above shortcomings in the prior art and defective, provide a kind of welding robot monocular vision sensor and hand-eye thereof to concern quick calibrating method, multipurpose, the profile that has achieved the welding robot vision sensor be small and exquisite, simplified the amount of calculation and the complexity of demarcating greatly, have higher precision, satisfy the production real work needs of welding robot fully.
The present invention is achieved by the following technical solutions, and welding robot monocular vision sensor comprises: miniature CCD video camera, dim light and filter system, motor driven systems and mounting bracket.Its annexation is: miniature CCD video camera, dim light and filter system and motor driven systems all are arranged on the mounting bracket, and wherein the miniature CCD video camera mainly is responsible for the collection to welding scene and welded piece and weld pool image; Motor driven systems comprises drive motors and deceleration device, and wherein drive motors is connected with speed brake setting, is exported by reduction unit output shaft.By the Electric Machine Control interface circuit, can adopt the general purpose I/O in the robot controller that motor is controlled, realize function by the direct drive motors of welding robot controller.Thereby both can be when welding robot have been carried out the teaching operation, by the teach programming device drive motors is controlled, also can realize the control of drive motors network programming, thereby satisfy the job requirement that drives dim light and filter system in the different operating stage by main control computer; Dim light and filter system comprise dim light eyeglass, filter glass and lens supports, movable rod, actuating arm, dim light eyeglass and filter glass are overlapping to be arranged on the lens supports, be connected with actuating arm by movable rod, and actuating arm directly links to each other with the reduction unit output shaft of motor driven systems, can be output axle and just drive/reverse rotation; Whole sensor of the present invention is fixedlyed connected with the welding gun of welding robot robot end by mounting bracket.
When sensor of the present invention uses, weld the last stage beginning, because electric arc does not ignite, system adopts the natural lighting imaging, at this moment controls the drive motors counter-rotating, drive the actuating arm counter-rotating in dim light and the filter system, by movable rod, light damping plate and optical filter mounting bracket are removed from the video camera front end, make video camera can directly take the welded piece image, realize the recognition and verification of butt welded seam and weld start position, carry out identification and the guiding of welding robot initial welding position; Carrying out the welding process stage, because electric arc ignites, illumination is very strong, in order to make the video camera can be clear to the welding pool imaging, can control drive motors and just change, the actuating arm that drives in dim light and the filter system just changes, pass through movable rod, light damping plate and optical filter mounting bracket are moved on to the video camera front end, thus make video camera by optical filter and light damping plate to the welding pool imaging, by weld joint tracking and the control of welding penetration that can carry out welding process to the processing of crater image.Thereby realized only adopting an independent video camera to carry out multiple sensing demand, simplified the structure of sensor, satisfied the practicality requirement.
After the installation site of video camera is fixing, need demarcate the inside and outside parameter of video camera and the trick Relation Parameters of welding robot, and when video camera and robot arm (welding gun) relative position change, need again the trick Relation Parameters of robot to be demarcated, as seen, simple and rapid welding robot hand and eye calibrating algorithm is very necessary for practical application.
Hand-the eye of welding robot monocular vision sensor of the present invention concerns quick calibrating method, by camera interior and exterior parameter is being demarcated simultaneously, the method that world coordinate system is overlapped with the robot body coordinate system, in the calibrating camera inside and outside parameter, according to the coordinate transform relation of same coordinate under plural coordinate system, with the expression of external parameters of cameras under world coordinate system, be converted in the expression of getting off of welding robot robot end control point (hand) coordinate system, thereby the trick relation of finishing welding robot is demarcated.
Below by step the present invention is done further concrete the qualification:
(1) according to " 5 standardizations " welding robot control point (the most advanced and sophisticated point of welding gun) accurately demarcated;
(2) camera interior and exterior parameter is demarcated, and demarcated the capture position and the attitude data at recorder people control point constantly.Wherein, demarcating the camera intrinsic parameter that is obtained is the intrinsic parameter of imaging geometry model of video camera self, and it can not become once just demarcating for a certain video camera again.And outer parameter characterization is being demarcated capture constantly, the relative position relation of camera coordinate system and world coordinate system.In three-dimensional coordinate acquisition process to calibration point, adopt ROBOT CONTROL to put the mode of obtaining indirectly, world coordinate system can be overlapped with the robot body coordinate system in this way, the external parameters of cameras that is obtained during calibrating camera then, be video camera and demarcating the relative position relation of the moment with respect to the robot body coordinate system, in conjunction with calibrating camera robot control point attitude data constantly,, can demarcate the trick relation of robot fast by the appropriate coordinate system conversion.
Sensor of the present invention has distinguishing feature, and sensor bulk is small and exquisite, has satisfied the welding robot flexibility in the course of the work and the prudent requirement for restriction of robot body.And in the different operating stage of welding robot, according to different needs of work, sensor can be realized different functions, can satisfy multiple need of work.Designed robot-eye concerns that quick calibrating method and traditional robot-eye concern that scaling method compares, complicated measuring instruments such as 3 d space coordinate measuring instrument have been omitted, and needn't mobile welding robot, reduced because the calibrated error that the welding robot motion produces.And the capture number of times with to the demarcation number of times of external parameters of cameras be half of conventional method, simplified the amount of calculation and the complexity of demarcating greatly, have higher precision and bigger use value, satisfy the production real work needs of welding robot fully.
Description of drawings
Fig. 1 sensor construction schematic diagram of the present invention
The specific embodiment
As shown in Figure 1, welding robot monocular vision sensor of the present invention comprises: miniature CCD video camera 1, dim light and filter system 2, motor driven systems 3 and mounting bracket 4.Its annexation is: miniature CCD video camera 1, dim light and filter system 2 and motor driven systems 3 all are arranged on the mounting bracket 4, dim light and filter system 2 comprise dim light eyeglass 5, filter glass 6 and lens supports 7, movable rod 8, actuating arm 9, dim light eyeglass 5 and filter glass 6 overlapping being arranged on the lens supports 7, be connected with actuating arm 9 by movable rod 8, and actuating arm 9 deceleration device 11 output shafts direct and in the motor driven systems link to each other, and can be output axle and just drive/reverse rotation; Motor driven systems 3 comprises drive motors 10 and deceleration device 11, and wherein drive motors 10 is fixedlyed connected with deceleration device 11, is exported by deceleration device 11 output shafts.
Whole sensor of the present invention is fixedlyed connected with the welding gun 12 of welding robot robot end by mounting bracket 4.
Below the content of the inventive method is done further to understand:
For the quick calibrating method of welding robot staff-eye relation, its specific implementation mainly is to concern according to the coordinate transform between the different coordinates of space.Suppose given coordinate system A}, B} and C}, if known B} with respect to A} is described as, and C} with respect to B} is described as, and then can obtain following formula (1):
Spin matrix R that is tried to achieve during according to camera calibration and translation vector T can be in the hope of robot body coordinate system C RobWith camera coordinate system C cBetween description, promptly be equivalent in the formula (1) B AT is known; At the camera calibration capture last joint coordinate system C of read machine human arm in real time constantly hWith respect to robot body coordinate system C RobThe position vector and the anglec of rotation, thereby can be in the hope of robot arm end joint coordinate system C hWith respect to robot body coordinate system C RobDescription, promptly be equivalent in the formula (1) C BT is known.Promptly formed a closed chain link with these three coordinate systems of robot arm end (welding gun) coordinate system by camera coordinate system, welding robot body coordinate system (world coordinate system), thus can be in the hope of robot arm end joint coordinate system C hWith respect to camera coordinate system C cDescription.Then only demarcate by carry out a capture a position, " hand-eye " of demarcating welding robot when just can be implemented in the outer parameter of calibrating camera concerns.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100528574A CN1331642C (en) | 2004-07-15 | 2004-07-15 | Single eye visual sensor for welding robot and its hand-eye relation quick marking method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100528574A CN1331642C (en) | 2004-07-15 | 2004-07-15 | Single eye visual sensor for welding robot and its hand-eye relation quick marking method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100076443A Division CN100480004C (en) | 2004-07-15 | 2004-07-15 | Method for rapid calibrating hand-eye relationship of single eye vision sensor of welding robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1586833A CN1586833A (en) | 2005-03-02 |
CN1331642C true CN1331642C (en) | 2007-08-15 |
Family
ID=34602628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100528574A CN1331642C (en) | 2004-07-15 | 2004-07-15 | Single eye visual sensor for welding robot and its hand-eye relation quick marking method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1331642C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110238820A (en) * | 2019-07-12 | 2019-09-17 | 易思维(杭州)科技有限公司 | Hand and eye calibrating method based on characteristic point |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100460166C (en) * | 2007-03-08 | 2009-02-11 | 上海交通大学 | Welding robot multifunctional double-eye visual sensor and calibration method thereof |
CN101224519B (en) * | 2008-01-31 | 2010-04-14 | 上海交通大学 | Arc welding robot jointing monitoring system based vision sensing |
CN102151945A (en) * | 2011-01-28 | 2011-08-17 | 唐山开元焊接自动化技术研究所有限公司 | Multifunctional arc welding vision monitoring device and monitoring method |
CN102990181B (en) * | 2012-10-23 | 2014-05-21 | 廖怀宝 | Method for compensating soldering point offset program file of automatic tin soldering robot |
CN103231162A (en) * | 2013-04-17 | 2013-08-07 | 柳州市自动化科学研究所 | Device and method for visual detection of welding quality of robot |
CN103878774A (en) * | 2014-02-25 | 2014-06-25 | 西安航天精密机电研究所 | Vision calibration method based on robot |
CN104260112B (en) * | 2014-09-18 | 2016-05-18 | 西安航天精密机电研究所 | A kind of Robot Hand-eye localization method |
CN105499772B (en) * | 2016-01-26 | 2017-10-24 | 清华大学 | A kind of MICROBEAM PLASMA WELDING shaping control system of thin-walled areola ring longitudinal joint |
CN105598600B (en) * | 2016-02-02 | 2018-06-19 | 上海理工大学 | A kind of box part weld seam independently seeks position and track automatic generation method |
CN106624418B (en) * | 2016-10-20 | 2019-03-22 | 北京工业大学 | A kind of application characteristic spectral line welding pool mobile monitoring method |
CN108226168A (en) * | 2018-01-14 | 2018-06-29 | 湘潭大学 | The multi-functional main passive vision sensing device of monocular and its method for sensing |
CN108413896B (en) * | 2018-02-27 | 2019-12-13 | 博众精工科技股份有限公司 | mechanical arm calibration method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4614868A (en) * | 1984-10-12 | 1986-09-30 | Caterpillar Industrial Inc. | Fiber optic seam tracking apparatus |
US5151608A (en) * | 1989-04-19 | 1992-09-29 | Fanuc Ltd | Optical distance sensor using a laser beam and processing means |
US5570187A (en) * | 1993-10-26 | 1996-10-29 | Fanuc Ltd | Weld-position detector provided with an optical axis adjustment means and used with a robot welding machine |
-
2004
- 2004-07-15 CN CNB2004100528574A patent/CN1331642C/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4614868A (en) * | 1984-10-12 | 1986-09-30 | Caterpillar Industrial Inc. | Fiber optic seam tracking apparatus |
US5151608A (en) * | 1989-04-19 | 1992-09-29 | Fanuc Ltd | Optical distance sensor using a laser beam and processing means |
US5570187A (en) * | 1993-10-26 | 1996-10-29 | Fanuc Ltd | Weld-position detector provided with an optical axis adjustment means and used with a robot welding machine |
Non-Patent Citations (1)
Title |
---|
铝合金焊接熔池图象传感器 王建军,林涛等,传感器技术,第20卷第10期 2001 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110238820A (en) * | 2019-07-12 | 2019-09-17 | 易思维(杭州)科技有限公司 | Hand and eye calibrating method based on characteristic point |
Also Published As
Publication number | Publication date |
---|---|
CN1586833A (en) | 2005-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7255498B2 (en) | Low profile system for joining optical fiber waveguides | |
US8125512B2 (en) | System and method for moving object selection in a handheld image capture device | |
JP2505192B2 (en) | Zoom mechanism | |
JP2720744B2 (en) | Laser processing machine | |
US5497188A (en) | Method for virtualizing an environment | |
JP4933785B2 (en) | Video tool control method for image inspection system | |
CN103424954B (en) | Lens devices and image picking system | |
CN102906594B (en) | Method and apparatus for using gestures to control laser tracker | |
CN101351294B (en) | Laser processing system and laser processing method | |
JP6468741B2 (en) | Robot system and robot system calibration method | |
KR100882967B1 (en) | Laser welding apparatus and method for adjusting laser beam of the laser welding apparatus | |
US7460980B2 (en) | Method for the control of a pipe inspection system and for the evaluation of the inspection data | |
CN104175031B (en) | A kind of welding robot system with autonomous centering capacity carries out the method for welding | |
CN107824940A (en) | Welding seam traking system and method based on laser structure light | |
JP4864005B2 (en) | Optical laser guidance system apparatus and method | |
EP1769878B1 (en) | Display method of and system for laser irradiation state with a laser scanning head | |
CN100502181C (en) | Robot of autonomous moving along 110KV transmission line and its working method | |
US4761596A (en) | Method of detecting and controlling work start point of robot | |
JP3626141B2 (en) | Automatic collimation surveying instrument with imaging device | |
JP2006038683A (en) | Three-dimensional measuring instrument | |
JP4167954B2 (en) | Robot and robot moving method | |
CN103105193B (en) | Precision machine vision inspection and the method being used for operating this system | |
ES2531855T3 (en) | Apparatus and method to control the attitude of a vehicle | |
JP2004333003A (en) | Autonomous heliostat | |
US20070265495A1 (en) | Method and apparatus for field of view tracking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
C06 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
C10 | Entry into substantive examination | ||
GR01 | Patent grant | ||
C14 | Grant of patent or utility model | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070815 Termination date: 20100715 |
|
C17 | Cessation of patent right |