CN1325927C - 解扩gps信号的方法 - Google Patents

解扩gps信号的方法 Download PDF

Info

Publication number
CN1325927C
CN1325927C CNB028002288A CN02800228A CN1325927C CN 1325927 C CN1325927 C CN 1325927C CN B028002288 A CNB028002288 A CN B028002288A CN 02800228 A CN02800228 A CN 02800228A CN 1325927 C CN1325927 C CN 1325927C
Authority
CN
China
Prior art keywords
gps
signal
gps receiver
doppler
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028002288A
Other languages
English (en)
Other versions
CN1455876A (zh
Inventor
S·R·多利
A·T·于勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0102881.0A external-priority patent/GB0102881D0/en
Priority claimed from GB0103228A external-priority patent/GB0103228D0/en
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1455876A publication Critical patent/CN1455876A/zh
Application granted granted Critical
Publication of CN1325927C publication Critical patent/CN1325927C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • G01S19/235Calibration of receiver components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/254Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to Doppler shift of satellite signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/258Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to the satellite constellation, e.g. almanac, ephemeris data, lists of satellites in view
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0027Transmission from mobile station to base station of actual mobile position, i.e. position determined on mobile

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种解扩含有伪随机噪声(PRN)码序列并且由GPS接收机(24)接收的GPS扩频信号的方法、一种GPS接收机(24)和一种移动通信设备(MS1)(特别是移动蜂窝电话)。所述方法包括步骤:提供涉及多普勒频移中的变化的估计的多普勒信息,所述多普勒频移中的变化是由GPS接收机在目标信号上观测到的并且归因于GPS卫星的运动的;将目标信号与含有相应PRN码序列的参考信号相关,其中,在单个停留时间过程中,相关被修改为多普勒信息的一个函数。

Description

解扩GPS信号的方法
技术领域
本发明涉及对由GPS接收机接收到的GPS扩频信号进行解扩的方法,并且涉及GPS接收机以及包含这种用于同样目的的GPS接收机在内的移动通信设备(特别是移动蜂窝电话)。
背景技术
众所周知,可以提供GPS接收机,其中连续地生成复制GPS卫星伪随机噪声(PRN)码信号,并且与接收到的GPS信号进行相关,从而可以得到这些GPS信号。典型地,由于复制码的码相位可能与所接收到的GPS信号的相位不同,而且还由于接收机和轨道卫星之间的多谱勒频移会导致频率的不同,因此需要采用二维码频率/相位扫描,从而这种扫描最终会导致输入PRN码与本地生成的复制码具有相同的频率和码相位。如果可以检测到,则可以对该码捕获和跟踪,并且可以获得伪距信息,通过使用常规导航算法,可以从该信息中计算出接收机的位置。
还众所周知,可以提供包含这种GPS接收机在内的移动蜂窝电话,用于如下目的:使蜂窝电话网络的运营商能够根据所实施呼叫,特别是针对紧急业务的紧急呼叫,来确定定位。当然对紧急呼叫来说,期望可以尽快得到呼叫定位信息,然而根据“冷启动”(即GPS接收机没有访问最新的星历数据),或者甚至更坏,根据“出厂冷启动”(即GPS接收机没有最新的日期年历),首次定位时间(TTFF)可以是介于30秒到5分钟之间的任何取值。
为了减小TTFF,以更快地捕获GPS信号,可以为GPS接收机配备基站辅助。这种辅助可以包含:由基站向接收机提供用于对GPS接收机内使用的本地振荡器进行校准的精确载波频率参考信号,可用来确定可见卫星的多普勒频移的最新卫星年历以及星历数据的数据消息;以及当前PRN码相位。借助于此,可以只对已知目标PRN码所用的缩窄范围的频率和码相位进行扫描,由此可以减小需要被校验的码实例的数量,并且减小码捕获的时间。在美国专利5841396和5874914中进一步描述了这种基站辅助,在此引入作为参考。
需要被校验的码实例数量的大大降低能够增加每次校验的停留时间,而不会显著地影响整体捕获时间。这样的好处在于停留时间的增加可以提高捕获弱GPS信号的概率。例如,对于各个信号码实例或停留来说,相关可以出现在10ms的时段内,这大概等于10个PRN码的重复(C/A模式),或出现在由10个10ms各个相关时段的非相干相加所构成的100ms的时段内。
发明内容
本发明的一个目的是提供解扩由GPS接收机接收的GPS扩频信号的方法,其中捕获微弱信号的概率被提高,特别是但并非只是当采用扩展的停留时间来捕获这种微弱信号时。
根据本发明,提供这种方法,包括步骤:提供涉及由GPS接收机在目标信号上观测到的多普勒频移中的变化的估计的并且可归因于GPS卫星的运动的多普勒信息;将目标信号与含有对应于目标信号中的PRN码序列的PRN码序列的参考信号相关,其中在单独停留的过程中,相关被修改为多普勒信息的一个函数。这可以通过例如在相关之前修改目标信号或参考信号作为多普勒信息的函数而产生。
通过已知和补偿这种错误源,其对于信号捕获过程的有害影响可以被避免或者至少减轻,从而有助于捕获微弱的GPS信号。当在试图捕获其余的微弱信号中采用非常长的停留时间(例如相当于单个10ms相关相加的1ms)时,尤其是这样。利用理想的频率匹配,理论上可以对一个无限周期积分以捕获一个无线的微弱信号。不过,应归于卫星运动的多普勒频移中的变化典型地在大约每秒1Hz,其没有补偿这种多普勒变化,将有用的积分周期限制在大约0.5s(即~1/2f,其中f是频率变化)。
可以根据GPS接收机的上次已知的定位或者当GPS接收机包括在适合于与附近的通信基站通信的移动通信设备中时,基于通信基站提供的定位来计算多普勒频移。例如,一个定位对应于通信基站的位置。
附图说明
以下结合附图举例描述本发明的用于蜂窝电话网中的包括GPS接收机的移动蜂窝电话的实施例,在附图中:
图1给出蜂窝电话网络的地理分布;
图2更加详细地给出图1中的移动蜂窝电话MS1;
图3更加详细地给出图1中的基站BS1;以及
图4更加详细地给出GPS接收机以及移动蜂窝电话MS1的处理器。
具体实施方式
图1中概要给出常规蜂窝电话网络1的地理分布。网络中包含多个基站BS,其中给出7个位于各个相互地理位置分开的基站BS1-BS7。这些基站当中的每个基站都包含由任意位置或业务区域内的集群系统控制器所操作的整套无线发射机和接收机。这些基站的各个业务区域SA1到SA7是相互重叠的,如截面线所示,它们共同为图中所示的整个区域提供覆盖。系统中还包括配备分别连接到每个基站BS1到BS7的双向通信链路CL1到CL7的系统控制器SC。这些通信链路中的每个链路可以例如是专用地面电缆。系统控制器SC还可以被连接到公共交换电话网(PSTN),使得可以在移动蜂窝电话MS1与该网络的用户之间进行通信。可以提供多个移动蜂窝电话MS,其中给出三个移动电话MS1、MS2和MS3,每个MS都能够自由地在整个区域内,以及在区域外进行漫游。
参考图2,更加详细地给出移动蜂窝电话MS1,其中包括连接到通信天线20并且受通信微处理器(Commμc)22控制,用于与所其注册的基站BS1进行通信的通信发射机(Comm Tx)和接收机(Comm Rx)。这种在蜂窝电话网络内用于双向通信的电话的设计和制造都是公认已知的,在此不再对未组成本发明内容的那些部分进行阐述。
除了移动电话的常规部件之外,电话MS1内还包含连接到GPS天线23并且受接收从轨道GPS卫星发出的GPS扩频信号的GPS微处理器(GPSμc)25控制的GPS接收机(GPS Rx)24。操作时,GPS接收机24可以通过天线23接收NAVSTAR SPS GPS信号,并且对其进行预处理,其中典型地包括:为了最小化带外RF干扰可以采用无源带通滤波、到中频(IF)的下变频转换和模数转换。结果得到的经过数字化的IF信号保持被调制,其中仍然包含来自可用卫星的所有信息,并且被送到GPS微处理器25的存储器内。然后,出于根据利用常规导航算法所确定的移动电话的位置,得到伪距信息的目的,在若干数字接收机信道中(典型地最多为12个)的任意信道内可以捕获并且跟踪GPS信号。这种用于GPS信号捕获和跟踪的方法是公认已知的,例如参见Artech House出版的,题为“GPS Principles and Applications(GPS原理与应用)”(ISBN0-89006-793-7)一书的第四章(GPSsatellite signal characteristics“GPS卫星信号特性”)和第五章(GPS satellite signal acquisition and tracking“GPS卫星信号捕获和跟踪”)。GPS微处理器25可以以通用微处理器、可选地与通信微处理器22相同或者嵌入在GPS专用集成电路(ASIC)中的微处理器的形式来实现。
图3中概要给出蜂窝电话网络基站BS1。除了基站的常规元素之外,其中还包含基本上连续操作的GPS天线34、接收机35和微处理器36,由此基站能够拥有最新的GPS卫星信息。该信息内包括哪一个轨道卫星目前可见(这种卫星为相等宏区、旁边的掩星的电话和相关基站所共有);GPS数据消息内包括最新的年历和星历数据以及卫星时钟校正数据,还有基站所观测到的GPS卫星信号的多谱勒频移和当前码相位。
众所周知,在移动蜂窝电话MS1用户发出紧急呼叫,并且经过上行通信链路CL1受系统控制器SC的控制的情况下,基站BS1可以为电话提供这种信息,由此只要求对已知目标PRN码所占用的缩小范围中的频率和码相位进行扫描,以确保能够实现快速码捕获以及TTFF。然后,把定位从电话传送回基站,并且再传送给紧急业务运营商,在美国称作公共安全应答点(PSAP)。
参考图4,概要给出实施伪随机码(PRN)扫描的、电话MS1的GPS微处理器25,其中连续生成卫星PRN码的提前(E)、当前(P)以及滞后(L)复制码,并且与由接收机接收到的输入卫星PRN码进行比较。为了从存储在GPS微处理器25内的信号样值中恢复伪距信息,必须通过利用载波生成器41去生成同相相位(I)和正交相位(Q)复制载波信号的接收机,实现消除载波。通常采用载波锁相环(PLL)去准确地复制接收载波的频率。为了捕获码相位的锁定,需要由码生成器42连续地生成提前(E)、当前(P)以及滞后(L)复制码。然后,复制码与I和Q信号进行相关,生成三个同相相位的相关分量(IE、IL、IP)以及三个正交相位的相关分量(QE、QL、QP),再典型地通过积分器43进行积分。计算码鉴相器,作为相关分量和应用于码鉴相器的门限测试的函数;如果码鉴相器为高,则宣布码匹配,如果不为高,则码生成器利用相位偏移生成下一系列复制码。线性相位扫描最终会导致输入PRN码与本地生成的复制码同相,从而实现码捕获。
根据本发明,移动电话MS1的GPS处理器25可以以随后实例中任意一种实例中所描述的方式,去捕获输入GPS信号。
实例
其中GPS信号接收通常较差的建筑物内的移动蜂窝电话MS1的用户进行到紧急服务(在美国称作“公共安全应答点”)的紧急呼叫。经过双向通信链路CL1受系统控制器SC的控制,基站BS1提供最新的年历和星历数据,以及由基站当前观测到的GPS卫星信号中的多谱勒频移。
GPS接收机对100ms的GPS信号进行采样,然后利用基站所提供的卫星信息,GPS处理器25在捕获GPS信号的尝试中,采用常规的提前减滞后的相关结构。利用100ms被采样GPS信号价值中的10ms的一部分进行采样,GPS处理器25只对已知目标PRN码占用的缩窄的频率范围进行扫描,并且在此操作期间,尽力捕获两个具有相对强的信号噪声比的GPS信号。这可以出现在如下的情况中,例如各个GPS卫星可以通过建筑物的窗口与GPS接收机之间存在直线视距。然后,完成其它GPS信号的非成功扫描之后,还要求两个信号,以得到位置定位,GPS接收机采用修正的捕获过程,其中:
(1)利用当前所捕获的信号之一,GPS处理器25在100ms的GPS信号样值内,测量由GPS接收机观测到的信号的频率变化。这可以通过如下来实施,或者在所有100ms的样值序列中,利用该若干10ms的停留时段,重复地捕获该信号;或者利用100ms样值序列的初始10ms部分,捕获该信号之后,在100ms样值序列内跟踪该信号。变化典型地归因于本地振荡器的漂移,GPS接收机测量频率的参考,以及由于手持设备和卫星移动所引起的多谱勒频移的变化。
(2)频率变化概况可以被修改以便排除那些归因于由卫星运动导致的多普勒频移的与捕获的信号相关的频率变化,所述频率变化能够被根据基站提供的天文历数据或者根据先前捕获的GPS信号、诸如基于上次已知的定位或者由通信基站提供的定位以及可以从一个GPS卫星和定位估计获得的GPS时间而容易地计算出。
(3)为了有助于捕获其它GPS信号,可以再修改频率变化概况,以补偿由于与该信号(即目标信号)相关的卫星的移动所引起的多谱勒频移而造成的可预见的频率变化。同样再次,它也可以根据基站所提供或从GPS信号中得到的星历数据,位置估计以及GPS时间的知识中简单地计算得到。
(4)利用GPS信号样值的整个100ms上的停留时间,GPS处理器25再次只扫描已知目标PRN码占用的缩小范围的频率。但是,这次要根据步骤(3)修改之后的频率变化概况,修改用于捕获该信号的相关过程。也就是,手持设备移动以及本地振荡器漂移的影响都被消除或至少被减轻。这可以按照如下方式中的任意一种来完成:在以常规方式处理数据之前,将其与表示被检测频率变化的数据进行混合;或者代替与作为部分常规搜索机制的将数据与固定频率偏移信号混合,使用一个以包括测量的频率变化的方式调整的可变频率信号。
在上面的例子中,在两个相对强的信号被捕获之后在相对弱的信号的捕获过程中,多普勒中的变化被考虑。当例如天文历数据、移动电话位置的估计以及当前GPS时间被由基站提供给蜂窝电话时,这种变化还被考虑以便捕获第一信号。
此外,作为提前-滞后相关方法的候选方案,为了获得PRN码,可以使用快速卷积方法,以及特别是包含快速付立叶变换(FFT)在内的方法。在Robert G Davenport的、题为“FFT processing of directsequence spreading codes using modern DSP microprocessors(利用现代DSP微处理器的直接序列扩频码的FFT处理)”的文章(IEEE1991国家航空和电子会议NAECON 1991,第一卷,98-105页)内,以及在美国批准专利5,663,734中描述了这种卷积方法。本发明的方法同样可适用于这种卷积方法,至少因为如上所述,即在执行FFT卷积之前,任意载波可以被从信号中剥离出来。
主要在由美国国防部开发和目前运行的全天候的基于分隔的导航系统NAVSTAR GPS中描述了本发明。但是,应当理解,GPS的一般基础原理通用的并且不只限于NAVSTAR。因此,GPS旨在指包括处于不同位置的多个扩频无线电发射机以及根据无线电发射机的发射的到达时间来确定其位置的一个接收机的任何定位系统。
通过阅读本公开内容,其它修改对于本领域技术人员是显而易见的并且可以包括其它特征,这些其它特征在GPS接收机及其部件的设计、制造和使用中是已知的并且可以被用来代替或者补充以上描述的特征。尽管在本申请中将权利要求阐明为特定的特征组合,但是应当理解,本申请公开内容的范围还包括这里明确或隐含公开的任何新颖特征或者任何新颖特征的组合,而不管它是否涉及与在任何权利要求中要求相同的发明或者它是否减轻了与本发明相同的任何或者所有问题。因此,申请人指出在本申请或者从中获得的任何进一步的申请的执行过程中,新的权利要求可以被阐明为这种特征和/或这种特征的组合。

Claims (5)

1.一种解扩含有伪随机噪声(PRN)码序列并且由GPS接收机接收的目标GPS扩频信号的方法,该方法包括步骤:
-提供涉及多普勒频移中的变化的估计的多普勒信息,所述多普勒频移中的变化是由GPS接收机在目标信号上观测到的并且归因于GPS卫星的运动的;以及
-将目标信号与含有相应PRN码序列的参考信号相关,
其中,在单个码相位/频率校验过程中,相关被修改为多普勒信息的一个函数。
2.根据权利要求1的方法,其中目标信号在被与参考信号相比较之前,被修改为多普勒信息的一个函数。
3.根据权利要求1的方法,其中参考信号在被与目标信号相比较之前,被修改为多普勒信息的一个函数。
4.一种包含被配置来利用根据前面任何一个权利要求的方法解扩由GPS接收机接收的GPS扩频信号的处理器的GPS接收机。
5.一种包括根据权利要求4的GPS接收机的移动电话。
CNB028002288A 2001-02-06 2002-02-04 解扩gps信号的方法 Expired - Fee Related CN1325927C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GBGB0102881.0A GB0102881D0 (en) 2001-02-06 2001-02-06 A method of despreading GPS signals
GB0102881.0 2001-02-06
GB0103228.3 2001-02-09
GB0103228A GB0103228D0 (en) 2001-02-09 2001-02-09 A method of despreading GPS signals

Publications (2)

Publication Number Publication Date
CN1455876A CN1455876A (zh) 2003-11-12
CN1325927C true CN1325927C (zh) 2007-07-11

Family

ID=26245684

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028002288A Expired - Fee Related CN1325927C (zh) 2001-02-06 2002-02-04 解扩gps信号的方法

Country Status (6)

Country Link
US (2) US6891499B2 (zh)
EP (1) EP1360521A1 (zh)
JP (1) JP4531333B2 (zh)
KR (1) KR100896824B1 (zh)
CN (1) CN1325927C (zh)
WO (1) WO2002063331A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020756B2 (en) * 1999-04-23 2015-04-28 Global Locate, Inc. Method and apparatus for processing satellite positioning system signals
CN1325927C (zh) * 2001-02-06 2007-07-11 皇家菲利浦电子有限公司 解扩gps信号的方法
US7006556B2 (en) * 2001-05-18 2006-02-28 Global Locate, Inc. Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference
US7769076B2 (en) 2001-05-18 2010-08-03 Broadcom Corporation Method and apparatus for performing frequency synchronization
US7596190B2 (en) * 2002-04-01 2009-09-29 Qualcomm Incorporated System, method, and apparatus for correction of code doppler shift
WO2004040329A2 (en) * 2002-10-29 2004-05-13 Sirf Technology, Inc. System and method for estimating clock acceleration and location determination
US7102567B2 (en) * 2003-10-29 2006-09-05 Sirf Technology, Inc. System and method for estimating clock acceleration and location determination
KR100617786B1 (ko) * 2004-07-13 2006-08-28 삼성전자주식회사 도플러 변화를 보상하는 고감도 전세계위치확인 시스템수신기 및 방법
US7453956B2 (en) * 2004-08-16 2008-11-18 Sony Ericsson Mobile Communications Ab Apparatus, methods and computer program products for signal acquisition using common demodulation templates
US8254512B2 (en) 2004-11-17 2012-08-28 Qualcomm Incorporated Method and apparatus for increasing coherent integration length while receiving a positioning signal
JP4274173B2 (ja) * 2005-12-15 2009-06-03 セイコーエプソン株式会社 測位装置、測位方法及びプログラム
EP1801991A3 (en) * 2005-12-21 2008-08-20 Nemerix SA Optimal use of resources for signal processors
US20090239550A1 (en) * 2008-03-18 2009-09-24 Myers Theodore J Random phase multiple access system with location tracking
US7526013B1 (en) * 2008-03-18 2009-04-28 On-Ramp Wireless, Inc. Tag communications with access point
US7773664B2 (en) * 2008-03-18 2010-08-10 On-Ramp Wireless, Inc. Random phase multiple access system with meshing
US7733945B2 (en) * 2008-03-18 2010-06-08 On-Ramp Wireless, Inc. Spread spectrum with doppler optimization
JP5621205B2 (ja) * 2009-04-01 2014-11-12 ソニー株式会社 信号処理装置、情報処理装置、信号処理方法、データ表示方法、及びプログラム
JP5652049B2 (ja) * 2010-08-16 2015-01-14 セイコーエプソン株式会社 位置算出方法及び受信装置
US10754002B1 (en) * 2012-11-05 2020-08-25 Gregory Dean Gibbons Method and apparatus for determining the direction of arrival of radio or acoustic signals, and for transmitting directional radio or acoustic signals
US9602974B2 (en) 2012-12-28 2017-03-21 Trimble Inc. Dead reconing system based on locally measured movement
US9910158B2 (en) * 2012-12-28 2018-03-06 Trimble Inc. Position determination of a cellular device using carrier phase smoothing
US9826495B2 (en) * 2014-12-30 2017-11-21 Hughes Network Systems, Llc Apparatus and method for testing synchronized transmission between systems operating at different clock rates
US10534087B1 (en) * 2015-05-31 2020-01-14 United States Of America As Represented By The Secretary Of The Air Force Differential vector phase locked loop GPS reception method
WO2021033085A1 (en) * 2019-08-16 2021-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Frequency adjustment for non-terrestrial networks
US10838071B1 (en) * 2019-12-12 2020-11-17 The Aerospace Corporation Reducing user multipath error and acquisition time in satellite navigation receivers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194871A (en) * 1982-03-01 1993-03-16 Western Atlas International, Inc. System for simultaneously deriving position information from a plurality of satellite transmissions
CN1215512A (zh) * 1997-02-04 1999-04-28 诺基亚电信股份公司 移动通信系统中的多普勒频移自适应补偿
US6044105A (en) * 1998-09-01 2000-03-28 Conexant Systems, Inc. Doppler corrected spread spectrum matched filter

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146890A (ja) * 1989-11-02 1991-06-21 Pioneer Electron Corp Gps受信機の衛星電波捕捉方式
JPH073463B2 (ja) * 1989-11-22 1995-01-18 パイオニア株式会社 Gps受信機の衛星電波捕捉方法
US5420593A (en) 1993-04-09 1995-05-30 Trimble Navigation Limited Method and apparatus for accelerating code correlation searches in initial acquisition and doppler and code phase in re-acquisition of GPS satellite signals
US5841396A (en) 1996-03-08 1998-11-24 Snaptrack, Inc. GPS receiver utilizing a communication link
US5663734A (en) 1995-10-09 1997-09-02 Precision Tracking, Inc. GPS receiver and method for processing GPS signals
US6208290B1 (en) * 1996-03-08 2001-03-27 Snaptrack, Inc. GPS receiver utilizing a communication link
US6133874A (en) * 1996-03-08 2000-10-17 Snaptrack, Inc. Method and apparatus for acquiring satellite positioning system signals
JP3681230B2 (ja) * 1996-07-30 2005-08-10 松下電器産業株式会社 スペクトル拡散通信装置
US6289041B1 (en) * 1997-02-11 2001-09-11 Snaptrack, Inc. Fast Acquisition, high sensitivity GPS receiver
DE19712751A1 (de) * 1997-03-26 1998-10-08 Deutsch Zentr Luft & Raumfahrt Empfänger zum Empfangen von Signalen eines Satellitennavigationssystems
US6081229A (en) * 1998-03-17 2000-06-27 Qualcomm Incorporated System and method for determining the position of a wireless CDMA transceiver
US6208291B1 (en) * 1998-05-29 2001-03-27 Snaptrack, Inc. Highly parallel GPS correlator system and method
US6181911B1 (en) * 1998-09-09 2001-01-30 Qualcomm Incorporated Simplified receiver with rotator for performing position location
US6331835B1 (en) * 1999-02-02 2001-12-18 The Charles Stark Draper Laboratory, Inc. Deeply-integrated adaptive GPS-based navigator with extended-range code tracking
US6067503A (en) 1999-03-24 2000-05-23 Rockwell Collins, Inc. Method and apparatus for compensating unexpected frequency shifts in positioning receivers
US6346911B1 (en) 2000-03-30 2002-02-12 Motorola, Inc. Method and apparatus for determining time in a GPS receiver
FI20000819A (fi) * 2000-04-06 2002-01-25 Nokia Mobile Phones Ltd Menetelmä vastaanottimessa ja vastaanotin
US6850557B1 (en) * 2000-04-18 2005-02-01 Sirf Technology, Inc. Signal detector and method employing a coherent accumulation system to correlate non-uniform and disjoint sample segments
CN1325927C (zh) * 2001-02-06 2007-07-11 皇家菲利浦电子有限公司 解扩gps信号的方法
US6583758B2 (en) * 2001-02-22 2003-06-24 Motorola, Inc. Memory reduction method for a DSP-based GPS processor
KR100617786B1 (ko) * 2004-07-13 2006-08-28 삼성전자주식회사 도플러 변화를 보상하는 고감도 전세계위치확인 시스템수신기 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194871A (en) * 1982-03-01 1993-03-16 Western Atlas International, Inc. System for simultaneously deriving position information from a plurality of satellite transmissions
CN1215512A (zh) * 1997-02-04 1999-04-28 诺基亚电信股份公司 移动通信系统中的多普勒频移自适应补偿
US6044105A (en) * 1998-09-01 2000-03-28 Conexant Systems, Inc. Doppler corrected spread spectrum matched filter

Also Published As

Publication number Publication date
CN1455876A (zh) 2003-11-12
KR100896824B1 (ko) 2009-05-12
US20020105458A1 (en) 2002-08-08
US20050162311A1 (en) 2005-07-28
JP4531333B2 (ja) 2010-08-25
US6891499B2 (en) 2005-05-10
JP2004525362A (ja) 2004-08-19
EP1360521A1 (en) 2003-11-12
WO2002063331A1 (en) 2002-08-15
KR20030012862A (ko) 2003-02-12
US7327311B2 (en) 2008-02-05

Similar Documents

Publication Publication Date Title
CN1325927C (zh) 解扩gps信号的方法
US6618671B2 (en) Method of determining the position of a mobile unit
KR100734451B1 (ko) Gps 신호 획득 과정에서의 발진기 주파수 보정
JP4902083B2 (ja) Gpsスペクトラム拡散信号を逆拡散する方法
KR100616247B1 (ko) 코드시프트 검색공간이 감소된 셀룰러 이동전화시스템용전지구 측위시스템수신기
KR100912179B1 (ko) Gps 시간의 추정치를 제공하는 방법 및 시스템과, 이동 통신 디바이스
CN1325928C (zh) 解扩gps信号的方法
CN100481745C (zh) 解扩扩频信号的方法
KR100448574B1 (ko) 지피에스 단말기 및 무선통신 단말기에 대한 측위 방법
WO2007043982A2 (en) Extended frequency error correction in a wireless communication receiver

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: NXP CO., LTD.

Free format text: FORMER OWNER: ROYAL PHILIPS ELECTRONICS CO., LTD.

Effective date: 20070803

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20070803

Address after: Holland Ian Deho Finn

Patentee after: Koninkl Philips Electronics NV

Address before: Holland Ian Deho Finn

Patentee before: Koninklike Philips Electronics N. V.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070711

Termination date: 20150204

EXPY Termination of patent right or utility model