CN1322548C - 硅和硅锗量子点阵列的制备方法 - Google Patents

硅和硅锗量子点阵列的制备方法 Download PDF

Info

Publication number
CN1322548C
CN1322548C CNB2005100117961A CN200510011796A CN1322548C CN 1322548 C CN1322548 C CN 1322548C CN B2005100117961 A CNB2005100117961 A CN B2005100117961A CN 200510011796 A CN200510011796 A CN 200510011796A CN 1322548 C CN1322548 C CN 1322548C
Authority
CN
China
Prior art keywords
silicon
quantum dot
dot array
solution
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100117961A
Other languages
English (en)
Other versions
CN1725438A (zh
Inventor
黄智鹏
吴茵
朱静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB2005100117961A priority Critical patent/CN1322548C/zh
Publication of CN1725438A publication Critical patent/CN1725438A/zh
Application granted granted Critical
Publication of CN1322548C publication Critical patent/CN1322548C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Weting (AREA)
  • Silicon Compounds (AREA)

Abstract

硅和硅锗量子点阵列的制备方法,属于纳米材料制备技术领域。所述方法将硅片或沉积有硅锗薄膜的硅片依次经过丙酮振荡清洗、酒精振荡清洗、Piranha溶液和RCA溶液处理;然后将质量百分比浓度范围为0.01%-0.9%的聚苯乙烯小球溶液用微量可调移液管滴到步骤1清洗干净的硅片或沉积有硅锗薄膜的硅片表面,置于空气中自然晾干;再将排好聚苯乙烯小球阵列的硅片或沉积有硅锗薄膜的硅片在90℃-110℃保温1-6min,用真空蒸镀仪往基底上沉积25-100nm厚的Ag膜;将沉积好Ag膜的样品浸入氢氟酸和硝酸铁腐蚀液中处理。由于本制备方法简单,不需要复杂设备就能制备出大面积有序排布的硅量子点阵列和硅锗量子点阵列,适宜于规模化工业生产。

Description

硅和硅锗量子点阵列的制备方法
技术领域
本发明涉及硅和硅锗量子点阵列的制备方法,尤其是涉及大面积有序排布的硅和硅锗量子点阵列的制备方法,属于纳米材料制备与应用技术领域。
背景技术
由于光电器件和传统电子器件的集成有望解决超大规模集成电路在高密度连接以及带宽方面所受的限制,获得高效率的硅或硅基材料发光性能一直是研究的热点。根据理论计算和已有文献报道,硅和硅锗量子点阵列的准零维盘(点)结构能够使电子空穴对局域化,从而减小非辐射复合几率,增大发光效率。因此,硅和硅锗量子点阵列的制备研究受到了极大的关注。目前主要有以下几种硅和硅锗量子点阵列的制备方法:电子束光刻和反应离子刻蚀(Electron-beam lithography and reactive ion etching)[参见W.X.Ni,J.Birch,Y.S.Tang,K.B.Joelsson,et al.Lattice distortion in dry-etched Si/SiGe quantum dot array studied by 2D reciprocalspace mapping using synchrotron X-ray diffraction,Thin Solid Films 294,300(1997)],超高真空沉积法(Ultra-high-vacuum deposition)[参见A.A.Saranin,A.V.Zotov,V.G.Kotlyar,O.A.Utas,etal.Formation of Si nanodot arrays on the oxidized Si(100)surface,Applied Surface Science 243,199(2005)],超高真空化学气相沉积法(UHV chemical vapor deposition)[参见Wen-Hao Chang,Wen-Yen Chen,An-Tai Chou,Tzu-Min Hsu,et al.Effects of spacer thickness on optical propertiesof stacked Ge/Si quantum dots grown by chemical vapor deposition,Journal of Applied Physics 93,4999(2003)],全息光刻和离子刻蚀(Holographic lithography and ion etching)[参见I.L.Drichko,A.M.Diakonov,V.I.Kozub,I.Yu.Smirnov,et al.AC-hopping conductance of self-organized Ge/Siquantum dot arrays,Physica E 26,450(2005)]等。这些方法通常需要相当苛刻的条件和一些复杂的设备,因此生产成本较高。此外,这些方法很难制备出大面积规则排布的量子点阵列,量子点的周期性和有序性也都不高。
我们将纳米小球刻蚀技术[参见:Alyson V.Whitney,Benjamin D.Myers,and Richard P.Van Duyne,Sub-100nm triangular nanopores fabricated with the reactive ion etching variant ofnanosphere lithography and angle-resolved nanosphere lithography,Nano Letters 4,1507(2004)]和彭奎庆等人发明的硅催化腐蚀技术[参见:中国专利申请号02104179.2,公开号CN1382626A,公开日期2002.12.4,授权日期2004年5月19日]结合起来,在国际上第一次制备出大面积有序排布的硅和硅锗量子点阵列,量子点的直径可以小到30nm。
发明内容
本发明的目的在于提供一种大面积有序排布的硅和硅锗量子点阵列的制备方法。
本发明提出的硅和硅锗量子点阵列的制备方法,其特征在于:所述方法依次按如下步骤进行:
(1)将硅片或沉积有硅锗薄膜的硅片依次经过丙酮振荡清洗、酒精振荡清洗、Piranha溶液和RCA溶液处理,表面显示良好的亲水性;
(2)将质量百分比浓度范围为0.01%-0.9%的聚苯乙烯小球溶液用微量可调移液管滴到步骤1清洗干净的硅片或沉积有硅锗薄膜的硅片表面,置于空气中自然晾干;
(3)蒸镀银之前,将排好聚苯乙烯小球阵列的硅片或沉积有硅锗薄膜的硅片在90℃-110℃保温1-6min,然后用真空蒸镀仪往基底上沉积25-100nm厚的Ag膜;
(4)将沉积好Ag膜的样品浸入Fe(NO3)3+HF+H2O或H2O2+HF+H2O腐蚀液中处理10-600s。
在上述硅和硅锗量子点阵列的制备方法中,所述Piranha溶液为浓H2SO4∶H2O2=4∶1,V/V,沸腾1小时。
在上述硅和硅锗量子点阵列的制备方法中,所述RCA溶液为NH3·H2O∶H2O2∶H2O=1∶1∶5,V/V,80℃1小时。
在上述硅和硅锗量子点阵列的制备方法中,所述步骤4氢氟酸浓度范围为1.15-6.9mol/L,硝酸铁浓度范围为0.0675-0.27mol/L。
在本发明中,大面积规则排布的PS小球阵列主要为之后的化学腐蚀提供模板。蒸镀在小球缝隙间的Ag颗粒在腐蚀过程中起到催化的作用,与Ag颗粒接触的区域首先发生腐蚀,形成纳米量级的腐蚀孔。随着反应的进行,腐蚀孔横向扩展至相互交错成网络状的腐蚀沟槽,而与小球底部接触的区域则在腐蚀过程中被保护起来,最终形成硅或硅锗量子点阵列。由于本制备方法条件简单,不需要高温,不需要复杂设备,并能够成功制备出大面积有序排布的硅量子点阵列和硅锗量子点阵列,在规模化工业生产中具有良好的应用前景。
附图说明
图1A是经过腐蚀处理得到的硅量子点阵列的SEM形貌,图1B是经过腐蚀处理得到的硅锗量子点阵列的SEM形貌。
具体实施方式
下面结合实施例对本发明做进一步说明:
本发明结合纳米小球刻蚀技术和硅的催化腐蚀技术在经过清洗的硅片或沉积有硅锗薄膜的硅片表面制备出大面积规则排列的硅和硅锗量子点阵列。其主要制备步骤如下:
(1)硅片或沉积有硅锗薄膜的硅片依次经过丙酮振荡清洗(室温10分钟)、酒精振荡清洗(室温10分钟)、Piranha溶液(浓H2SO4∶H2O2=4∶1,V/V,沸腾1小时)和RCA溶液(NH3·H2O∶H2O2∶H2O=1∶1∶5,V/V,80℃1小时)处理后,表面显示良好的亲水性。根据基底表面积的大小,将浓度范围在0.01%-0.9%(质量百分比浓度)的聚苯乙烯(PS)小球溶液用微量可调移液管滴到清洗干净的硅片或沉积有硅锗薄膜的硅片表面,置于空气中自然晾干。
(2)蒸镀银之前,将排好PS小球阵列的硅片或沉积有硅锗薄膜的硅片在90℃-110℃保温1-6min以增强小球和基底之间的结合,然后用真空蒸镀仪往基底上沉积25-100nm厚的Ag膜。
(3)将沉积好Ag膜的样品浸入Fe(NO3)3+HF+H2O或H2O2+HF+H2O腐蚀液中处理10-600s。氢氟酸浓度范围为1.15-6.9mol/L,硝酸铁浓度范围为0.0675-0.27mol/L。
(4)最后,为了除掉样品表面的银颗粒和PS小球,以80%的功率超声振荡一个小时。
实施例1
根据基底表面积,将浓度0.01%的聚苯乙烯小球溶液滴到清洗干净的硅片表面,晾干后在90℃保温6min。然后在排好PS小球阵列的硅片表面用真空蒸镀仪蒸镀25nm(±3nm)厚的Ag膜,再将沉积有银膜的样品浸入含有氢氟酸和硝酸铁混合溶液的密闭容器釜中(氢氟酸和硝酸铁的浓度分别为1.15mol/L和0.0675mol/L)处理10min,即可获得大面积有序排布的硅量子点阵列。
实施例2
根据基底表面积,将浓度0.01%的聚苯乙烯小球溶液滴到清洗干净的硅片表面,晾干后在90℃保温6min。然后在排好PS小球阵列的硅片表面用真空蒸镀仪蒸镀50nm(±5nm)厚的Ag膜,再将沉积有银膜的样品浸入含有氢氟酸和硝酸铁混合溶液的密闭容器釜中(氢氟酸和硝酸铁的浓度分别为2.3mol/L和0.0675mol/L)处理6min,即可获得大面积有序排布的硅量子点阵列。
实施例3
根据基底表面积,将浓度0.1%的聚苯乙烯小球溶液滴到清洗干净的硅片表面,晾干后在100℃保温5min。然后在排好PS小球阵列的硅片表面用真空蒸镀仪蒸镀100nm(±10nm)厚的Ag膜,再将沉积有银膜的样品浸入含有氢氟酸和硝酸铁混合溶液的密闭容器釜中(氢氟酸和硝酸铁的浓度分别为4.6mol/L和0.135mol/L)处理3min,即可获得大面积有序排布的硅量子点阵列。
实施例4
根据基底表面积,将浓度0.1%的聚苯乙烯小球溶液滴到清洗干净的硅片表面,晾干后在100℃保温5min。然后在排好PS小球阵列的硅片表面用真空蒸镀仪蒸镀50nm(±5nm)厚的Ag膜,再将沉积有银膜的样品浸入含有氢氟酸和硝酸铁混合溶液的密闭容器釜中(氢氟酸和硝酸铁的浓度分别为6.9mol/L和0.27mol/L)处理10s,即可获得大面积有序排布的硅量子点阵列。
实施例5
根据基底表面积,将浓度0.5%的聚苯乙烯小球溶液滴到清洗干净的硅锗薄膜表面,晾干后在100℃保温3min。然后在排好PS小球阵列的硅锗薄膜表面用真空蒸镀仪蒸镀25nm(±3nm)厚的Ag膜,再将沉积有银膜的样品浸入含有氢氟酸和硝酸铁混合溶液的密闭容器釜中(氢氟酸和硝酸铁的浓度分别为1.15mol/L和0.0675mol/L)处理10min,即可获得大面积有序排布的硅锗量子点阵列。
实施例6
根据基底表面积,将浓度0.5%的聚苯乙烯小球溶液滴到清洗干净的硅锗薄膜表面,晾干后在100℃保温3min。然后在排好PS小球阵列的硅锗薄膜表面用真空蒸镀仪蒸镀50nm(±5nm)厚的Ag膜,再将沉积有银膜的样品浸入含有氢氟酸和硝酸铁混合溶液的密闭容器釜中(氢氟酸和硝酸铁的浓度分别为2.3mol/L和0.0675mol/L)处理6min,即可获得大面积有序排布的硅锗量子点阵列。
实施例7
根据基底表面积,将浓度0.9%的聚苯乙烯小球溶液滴到清洗干净的硅锗薄膜表面,晾干后在110℃保温1min。然后在排好PS小球阵列的硅锗薄膜表面用真空蒸镀仪蒸镀100nm(±10nm)厚的Ag膜,再将沉积有银膜的样品浸入含有氢氟酸和硝酸铁混合溶液的密闭容器釜中(氢氟酸和硝酸铁的浓度分别为4.6mol/L和0.135mol/L)处理3min,即可获得大面积有序排布的硅锗量子点阵列。
实施例8
根据基底表面积,将浓度0.9%的聚苯乙烯小球溶液滴到清洗干净的硅锗薄膜表面,晾干后在110℃保温1min。然后在排好PS小球阵列的硅锗薄膜表面用真空蒸镀仪蒸镀50nm(±5nm)厚的Ag膜,再将沉积有银膜的样品浸入含有氢氟酸和硝酸铁混合溶液的密闭容器釜中(氢氟酸和硝酸铁的浓度分别为6.9mol/L和0.27mol/L)处理10s,即可获得大面积有序排布的硅锗量子点阵列。

Claims (4)

1、硅和硅锗量子点阵列的制备方法,其特征在于:所述方法依次按如下步骤进行:
(1)硅片或沉积有硅锗薄膜的硅片依次经过丙酮振荡清洗、酒精振荡清洗、Piranha溶液和RCA溶液处理,表面显示良好的亲水性;
(2)将质量百分比浓度范围为0.01%-0.9%的聚苯乙烯小球溶液用微量可调移液管滴到步骤1清洗干净的硅片或沉积有硅锗薄膜的硅片表面,置于空气中自然晾干;
(3)蒸镀银之前,将排好聚苯乙烯小球阵列的硅片或沉积有硅锗薄膜的硅片在90℃-110℃保温1-6min,然后用真空蒸镀仪往基底上沉积25-100nm厚的Ag膜;
(4)将沉积好Ag膜的样品浸入Fe(NO3)3+HF+H2O腐蚀液中处理10-600s。
2、根据权利要求1所述的硅和硅锗量子点阵列的制备方法,其特征在于:所述Piranha溶液为浓H2SO4∶H2O2=4∶1,V/V,沸腾1小时。
3、根据权利要求1所述的硅和硅锗量子点阵列的制备方法,其特征在于:所述RCA溶液为NH3·H2O∶H2O2∶H2O=1∶1∶5,V/V,80℃ 1小时。
4、根据权利要求1所述的硅和硅锗量子点阵列的制备方法,其特征在于:所述步骤4氢氟酸浓度范围为1.15-6.9mol/L,硝酸铁浓度范围为0.0675-0.27mol/L。
CNB2005100117961A 2005-05-27 2005-05-27 硅和硅锗量子点阵列的制备方法 Expired - Fee Related CN1322548C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100117961A CN1322548C (zh) 2005-05-27 2005-05-27 硅和硅锗量子点阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100117961A CN1322548C (zh) 2005-05-27 2005-05-27 硅和硅锗量子点阵列的制备方法

Publications (2)

Publication Number Publication Date
CN1725438A CN1725438A (zh) 2006-01-25
CN1322548C true CN1322548C (zh) 2007-06-20

Family

ID=35924792

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100117961A Expired - Fee Related CN1322548C (zh) 2005-05-27 2005-05-27 硅和硅锗量子点阵列的制备方法

Country Status (1)

Country Link
CN (1) CN1322548C (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148429B (zh) * 2010-02-06 2016-03-30 清华大学 纳米光学天线阵列的制造方法
CN102064245A (zh) * 2010-11-12 2011-05-18 西安神光安瑞光电科技有限公司 发光二极管制造方法
CN102543107B (zh) * 2010-12-07 2014-07-23 吉林师范大学 一种具有垂直磁各向异性纳米点阵列的制备方法
CN102157621B (zh) * 2011-03-03 2013-03-13 郑州大学 一种方形硅纳米孔洞及其制备方法
CN105068312B (zh) * 2015-08-06 2019-01-25 青岛海信电器股份有限公司 光转换膜及其制备方法、液晶显示模组
CN108970612B (zh) * 2018-06-26 2021-01-15 西安理工大学 一种制备Ag负载ZnO纳米棒阵列的方法
CN109585503B (zh) * 2018-10-08 2021-04-02 惠科股份有限公司 显示面板及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135017A (ja) * 1995-09-08 1997-05-20 Sony Corp 量子デバイスの製造方法
US5705321A (en) * 1993-09-30 1998-01-06 The University Of New Mexico Method for manufacture of quantum sized periodic structures in Si materials
CN1382626A (zh) * 2002-03-15 2002-12-04 清华大学 一种合成纳米硅线阵列的方法
CN1454841A (zh) * 2003-05-19 2003-11-12 清华大学 大面积p-n结纳米硅线阵列及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705321A (en) * 1993-09-30 1998-01-06 The University Of New Mexico Method for manufacture of quantum sized periodic structures in Si materials
JPH09135017A (ja) * 1995-09-08 1997-05-20 Sony Corp 量子デバイスの製造方法
CN1382626A (zh) * 2002-03-15 2002-12-04 清华大学 一种合成纳米硅线阵列的方法
CN1454841A (zh) * 2003-05-19 2003-11-12 清华大学 大面积p-n结纳米硅线阵列及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Sub-100nm triangular nanopores fabricated with the reactiveion etching variant of nanosphere lithography andangle-resolved nanosohere lithography Alyson V.Whitney etal,Nano letters,Vol.4 No.8 2004 *

Also Published As

Publication number Publication date
CN1725438A (zh) 2006-01-25

Similar Documents

Publication Publication Date Title
CN1322548C (zh) 硅和硅锗量子点阵列的制备方法
CN1312034C (zh) 单一轴向排布的单晶硅纳米线阵列制备方法
Sun et al. FTIR spectroscopic studies of the stabilities and reactivities of hydrogen-terminated surfaces of silicon nanowires
US20160359096A1 (en) Nanostructured silicon with useful thermoelectric properties
US7052618B2 (en) Nanostructures and methods of making the same
Jiang et al. Growing monodispersed PbS nanoparticles on self-assembled monolayers of 11-mercaptoundecanoic acid on Au (111) substrate
Omampuliyur et al. Nanostructured thin film silicon anodes for Li-ion microbatteries
CN1599939A (zh) 微观结构
CN102163487A (zh) 功能化的Si基板表面制备图案化BiFeO3薄膜的方法
Li et al. XPS depth profiling of functional materials: applications of ion beam etching techniques
Yasseri et al. Growth and use of metal nanocrystal assemblies on high-density silicon nanowires formed by chemical vapor deposition
Ghai et al. Effect of texturing and vertex angle on silicon based multilayer absorber
Kim et al. Etch characteristics of magnetic tunnel junction materials using H2/NH3 reactive ion beam
CN1966398A (zh) 一种单质微-纳半导体方块及其制备方法和应用
Tseng et al. Using intruded gold nanoclusters as highly active catalysts to fabricate silicon nanostalactite structures exhibiting excellent light trapping and field emission properties
McIntyre et al. XPS studies of octadecylphosphonic acid (OPA) monolayer interactions with some metal and mineral surfaces
Moyen et al. Novel anodic aluminum oxide‐based nanofabrication: applications in physics and biology
Sharma et al. Ion irradiation (low & high energy ion) induced surface plasmon resonance in Cu (10%) C70 nanocomposite thin films
Yasseri et al. Electroless deposition of Au nanocrystals on Si (111) surfaces as catalysts for epitaxial growth of Si nanowires
CN108502840A (zh) 一种高效率制备环状纳米间隙有序阵列的方法
Ferfolja Structural, morphological and chemical properties of metal/topological insulator interfaces
Ghosh et al. Wettability of metal assisted chemically etched (MaCE) grass like silicon nanowires
Natelson Fabrication of metal nanowires
JP2004087055A (ja) 磁気記録媒体
AHMED Energy Transfer and Current Transport for Si Nanostructured Photovoltaic Cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070620

Termination date: 20200527

CF01 Termination of patent right due to non-payment of annual fee