CN1317815C - Mini piezoelectric drive for MEMS - Google Patents

Mini piezoelectric drive for MEMS Download PDF

Info

Publication number
CN1317815C
CN1317815C CNB2004100086776A CN200410008677A CN1317815C CN 1317815 C CN1317815 C CN 1317815C CN B2004100086776 A CNB2004100086776 A CN B2004100086776A CN 200410008677 A CN200410008677 A CN 200410008677A CN 1317815 C CN1317815 C CN 1317815C
Authority
CN
China
Prior art keywords
multilayer film
driver
symmetry axis
piezoelectric
film composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100086776A
Other languages
Chinese (zh)
Other versions
CN1564451A (en
Inventor
方华军
刘理天
任天令
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB2004100086776A priority Critical patent/CN1317815C/en
Publication of CN1564451A publication Critical patent/CN1564451A/en
Application granted granted Critical
Publication of CN1317815C publication Critical patent/CN1317815C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

The present invention discloses a micro piezoelectric driver used for MEMS capable of generating long vertical displacement, which belongs to the mechanical field of microelectronics. The driver uses a multi-stage gradually progressive mode to increase piezoelectric driving displacement; both ends of a suspension elastic beam or the middle of the suspension elastic beam is connected by a short cross beam; the driver with the structure of symmetrical parallel cascade suspension beams is formed corresponding to a symmetry axis X; the middle part of each of the suspension beams on both outer sides of the driver is connected with a substrate to form into a fixed end by the short cross beam which is connected with the substrate; the number of the parallel cascade suspension beams can be equal to or greater than the integer of three; compound piezoelectric units of multi-layer films on suspension elastic beams are symmetrically distributed according to a symmetry axis Y to form a multi-stage progressive piezoelectric driver for generating long vertical displacement, which increases piezoelectric driving displacement. The present invention can reduce the length of a driving structure of a micro-electro-mechanical system and lower driving voltage; besides, the present invention has high driving force. The present invention has the advantages of simple structure, high reliability of devices, simple technology, easy processing and high manufacture rate of finished products. The present invention is suitable for bulk production and has important value for various microelectronics mechanical devices and systems.

Description

A kind of miniature piezoelectric driver that is used for MEMS
Technical field
The invention belongs to the microelectron-mechanical field, particularly can on microchip, realize a kind of miniature piezoelectric driver that is used for MEMS that big vertical displacement drives.
Background technology
Along with progress of science and technology, systems such as electronics, machinery develop towards miniaturization, microminiaturized direction, the high density of chip, multi-functional, the intelligent integrated important directions that becomes people's research.In recent ten years, based on large scale integrated circuit manufacturing technology and the exclusive special process of micromachining technology, realize the multi-functional integrated of MIniature machinery structure, miniature actuator, microelectronic component and circuit system, form so-called microelectromechanical systems (MicroElectroMachanical System, be called for short MEMS), or micro-system (Microsystem).The progress of this microsystems technology makes the ic manufacturing technology based on advanced person's semiconductor technology develop into manufacturing sophisticated electronic mechanical system on microchip, forms SOC (system on a chip) integrated (SOC).With microminiaturized, integrated, intelligent, information-based, advanced person is fabricated to the MEMS technology of characteristics from being designed into manufacturing, not only based on microelectric technique, and relate to many technology-oriented disciplines such as computer technology, the communication technology, microelectric technique, automatic control technology, Machine Design and manufacturing, can be described as the complex art of a multidisciplinary intersection.Based on complicated micro-system such as the microsensor of MEMS technology, miniature actuator, micro-optical systems, radio system, microbe chip, microfluidic device, stereo integrated circuit, the existing considerable industries such as industry, military affairs, biology, medical science that are applied to.
At present, physical principles such as static, electromagnetism, heat, piezoelectricity, marmem extensively are applied to MEMS actuator and driver.Advantages such as electrostatic and piezoelectric type microactrator has the precision height, do not generate heat, response speed is very fast.Through people's unremitting effort and broad research for many years, the static microactrator has become the vitals that MEMS drives, and simultaneously, the application of other little execution mechanism also obtains deep research.But, utilize existing little execution architecture of these principles generally to have big driver size, take more chip area, and the vertical drive displacement that realizes on substrate is limited, complex manufacturing technology, reliability are not high, and power consumption is big, and the life-span is short.In being subjected to the MEMS piezoelectric membrane type of drive of broad research, adopt cantilever beam structure mostly, because the elongation of piezoelectric membrane is limited, so the maximum deflection displacement on the cantilever beam structure is very limited, simultaneously, be driven structure and when realizing vertical displacement, also be accompanied by lateral shift and rotation.This feature limits the extensive use of Piezoelectric Driving mode in the MEMS field, the ripe MEMS commercialized device that causes present employing piezoelectric membrane to drive seldom occurs.This cantilever Drive Structure will realize big vertical displacement, require to increase the length of beam and increase driving voltage, so just one side has increased the cantilever beam static deflection amount that is caused by gravity, when causing not making alive, cantilever promptly has big yaw displacement, seriously limits its range of application.On the other hand, the straight cantilever beam Drive Structure of this length significantly reduces the mechanical vibration strength of driver, is easy to generate jitter phenomenon in the work, and very easily is hit and fractures.In addition, the straight cantilever Drive Structure of the list of this length has increased the inertia effects of cantilever itself, makes the operating frequency of driver very low, the application scenario that the many operating frequencies of incompatibility are higher.In addition, for obtaining big displacement, high driving voltage very easily causes piezoelectric membrane to puncture, and to the quality proposition higher requirement of piezoelectric membrane, increases the technology difficulty of piezoelectric membrane deposit.High driving voltage brings many additive effects to piezoelectric membrane simultaneously, and has increased the complexity of corresponding electronic circuit.At manufacture view, the long cantilever that easily shakes significantly increases the complexity of manufacturing, reduces the rate of finished products of micromachined.Long driver length also makes it be difficult to the application of adaptation in some micro structural components or device array.These have all seriously limited the application of cantilever beam piezoelectric actuator in microelectronic mechanical devices and system.
Summary of the invention
The purpose of this invention is to provide the miniature piezoelectric driver of a kind of MEMS of being used for, it is characterized in that: this MEMS miniature piezoelectric driver is to adopt the multistage mode of going forward one by one, and increases the Piezoelectric Driving displacement.Two ends or centre at suspension spring beam 1 connect through tail trimmer 3, become symmetry cascade suspension beam structure side by side with respect to the first symmetry axis X-shaped, the structure on two sides of the first symmetry axis X is all identical, and the overarm middle part in driver two outsides links to each other with substrate by substrate connection tail trimmer 4 and forms stiff end; In each overarm, be second symmetry axis with the central vertical bisector Y of length direction, segmented deposition is pressed multilayer film composite piezoelectric unit 4 symmetrically, and every section multilayer film composite piezoelectric unit 2 forms the driver element that utilizes piezoelectric effect with following suspension spring beam 1; Multilayer film composite piezoelectric unit 2 on every suspension spring beam 1 is symmetrically distributed with the second symmetry axis Y, and the multilayer film composite piezoelectric unit 2 of each side can be 2,4,6 or 8, in whole Drive Structure, on the suspension spring beam 1 of the first symmetry axis X both sides, apply voltage with symmetric mode, in first each side of symmetry axis X, each suspension spring beam 1 applies opposite polarity voltage with the upper and lower electrode of the multilayer film composite piezoelectric unit of the same side contiguous suspension spring beam 1 same position; Upper and lower electrode in the contiguous multilayer film composite piezoelectric of upper and lower electrode layer and its same side unit of each multilayer film composite piezoelectric unit of second each side of symmetry axis Y applies opposite polarity voltage; Simultaneously, two the most contiguous upper and lower electrodes in multilayer film composite piezoelectric unit apply the voltage of identical polar in the second symmetry axis Y both sides.
Described multilayer film composite piezoelectric unit is on elastic film beam 1, resilient coating 5 is arranged from bottom to up, mutually unconnected mea layers 6 down, piezoelectric layer 7 and upper film electrode layer 8 complex superposition with multilayer film composite piezoelectric unit 2 of definite shape form, can also cover one deck insulating medium layer 9 at the upper electrode film laminar surface, top electrode lead-in wire 10, bottom electrode lead-in wire 11 are connected with upper film electrode layer 8, following mea layers 6 respectively.
The number of the overarm of described cascade arranged side by side can be for being equal to or greater than 3 integer.
Described piezoelectric layer 7 can be a kind of piezoelectric among PZT, PLZT, ZnO, AlN, the PVDF or is combined into the composite membrane of the piezoelectricity Seed Layer of multi-layer piezoelectric film or piezoelectric membrane and deposit in advance by more than one piezoelectric.
Described suspension spring beam 1 can be the compound tunic of one or more elastomeric materials in monocrystalline silicon, polysilicon, silicon dioxide, amorphous silicon, the silicon nitride.
Two the most contiguous multilayer film composite piezoelectric unit 2 of the described second symmetry axis Y both sides can couple together, and form a big multilayer film composite piezoelectric unit.
The invention has the beneficial effects as follows and adopt a kind of suspension Drive Structure of the multistage cascade of going forward one by one to realize big vertical displacement.Effectively shortened the length of driver, made it can save device area significantly in some applications; Reduced driving voltage; Improve the operating frequency of driver, had good device drive performance.Simultaneously, it is simple in structure, has very high device reliability, and technology is simple, and easily processing has higher fabrication yield, is fit to produce in batches.
Description of drawings:
Fig. 1 for the suspension spring beam and on multilayer film composite piezoelectric cell schematics.
Fig. 2 applies specific voltage rear drive beam distortion schematic diagram for the multilayer film composite piezoelectric unit on the suspension spring beam.
The activation configuration schematic diagram of Fig. 3 for constituting by four suspension flexible drive beams.
Fig. 4 is the drive operation principle schematic that four suspension flexible drive beams constitute.
The activation configuration schematic diagram of Fig. 5 for constituting by three suspension flexible drive beams.
Fig. 6 is seven or eight drive operation principle schematic that suspension flexible drive beam constitutes.
Fig. 7 is a multilayer film composite piezoelectric cellular construction schematic diagram.
Embodiment
The invention provides the miniature piezoelectric driver of a kind of MEMS of being used for.On this MEMS miniature piezoelectric driver, adopt the multistage mode of going forward one by one, increase the Piezoelectric Driving displacement.At the two ends of suspension spring beam 1 or middlely connect through tail trimmer 3, become symmetry cascade suspension beam structure side by side with respect to the first symmetry axis X-shaped, the number of the overarm of cascade can be for being equal to or greater than 3 integer side by side.The first symmetry axis X structure on two sides is identical, and the overarm middle part in driver two outsides links to each other with substrate by substrate connection tail trimmer 4 and forms stiff end; In each overarm, be second symmetry axis with the central vertical bisector Y of length direction, segmented deposition is pressed multilayer film composite piezoelectric unit 2 symmetrically, and every section multilayer film composite piezoelectric unit 2 forms the driver element that utilizes piezoelectric effect with following suspension spring beam 1; Multilayer film composite piezoelectric unit 2 on every suspension spring beam 1 is symmetrically distributed with the second symmetry axis Y, and the multilayer film composite piezoelectric unit 2 of each side can be 2,4,6 or 8, in whole Drive Structure, on the suspension spring beam 1 of the first symmetry axis X both sides, apply voltage with symmetric mode, in first each side of symmetry axis x, each suspension spring beam 1 applies opposite polarity voltage with the upper and lower electrode of the multilayer film composite piezoelectric unit of the same side contiguous suspension spring beam 1 same position; Upper and lower electrode in the contiguous multilayer film composite piezoelectric of upper and lower electrode layer and its same side unit of each multilayer film composite piezoelectric unit of second each side of symmetry axis Y applies opposite polarity voltage; Simultaneously, two the most contiguous upper and lower electrodes in multilayer film composite piezoelectric unit apply the voltage (as shown in Figure 1 and Figure 2) of identical polar in the second symmetry axis Y both sides.
Above-mentioned piezoelectric layer 7 can be a kind of piezoelectric among PZT, PLZT, ZnO, AlN, the PVDF or is combined into the composite membrane of the piezoelectricity Seed Layer of multi-layer piezoelectric film or piezoelectric membrane and deposit in advance by more than one piezoelectric.
Above-mentioned suspension spring beam 1 can be the compound tunic of one or more elastomeric materials in monocrystalline silicon, polysilicon, silicon dioxide, amorphous silicon, the silicon nitride.
Two the most contiguous multilayer film composite piezoelectric unit 2 of the described second symmetry axis Y both sides can couple together, and form a big multilayer film composite piezoelectric unit (as Fig. 3, shown in Figure 5).
Figure 7 shows that multilayer film composite piezoelectric unit is on elastic film beam 1, resilient coating 5 is arranged from bottom to up, mutually unconnected mea layers 6 down, piezoelectric layer 7 and upper film electrode layer 8 complex superposition with multilayer film composite piezoelectric unit 2 of definite shape form, can also cover one deck insulating medium layer 9 at the upper electrode film laminar surface, top electrode lead-in wire 10, bottom electrode lead-in wire 11 are connected with upper film electrode layer 8, following mea layers 6 respectively.Form a kind of multistage cascaded symmetric type of drive of going forward one by one.
For the situation that an elasticity overarm is only arranged, as shown in Figure 1.
The elasticity overarm is gone up and is formed four piezoceramic multilayer film unit A, B, C, D.Wherein, A, B and C, D are with respect to the second symmetry axis Y symmetry.If apply identical voltage between the upper/lower electrode of piezoceramic multilayer film unit A, C, and it is identical to apply size between B, D upper/lower electrode, the polarity opposite voltage.Then whole overarm can produce bending as shown in Figure 2.
If elasticity overarm unit shown in Figure 1 is connected to form four beam cascade drivers shown in Figure 3 through short beam, then whole driver is with respect to the first symmetry axis X symmetry.Driver links to each other with substrate by short beam 4.Because of driver with respect to the first symmetry axis X-axis symmetry, so if the corresponding upper and lower electrode of piezoceramic multilayer film applies the voltage and the load of symmetry in the overarm of the first symmetry axis X both sides, then the malformation and the displacement of the first symmetry axis X both sides are identical.
From structure shown in Figure 3, the structure of the first symmetry axis X upside, if apply identical voltage between piezoceramic multilayer film unit 1A, 1C, 2B, the upper and lower electrode of 2D, and it is identical to apply size between 1B, 1D, the upper and lower electrode of 2A, 2C, the polarity opposite voltage.Then whole suspension structure may produce bending as shown in Figure 4, (end view).At this moment 3 of the short beams on the first symmetry axis X produce the maximum perpendicular displacement, and the direction of displacement is different and different with the polarity of voltage that each piezoceramic multilayer film unit applied.
Form driver by single overarm shown in Figure 1, versions such as three beams, four beams, five beams, six beams, seven beams, eight beams can be arranged according to its number difference, they all are the big vertical displacements of effect generation of going forward one by one by different number overarms.
For three beams (as shown in Figure 5), four beam drivers (as shown in Figure 3), when the malformation (end view) as shown in Figure 4 that applies after requiring voltage.
For seven beams, eight beam drivers, when the malformation (end view) as shown in Figure 6 that applies after requiring voltage.
Above-mentioned two kinds of situations all are at the first symmetry axis X and the second symmetry axis Y joint place maximum displacement to take place.
For five beams, six beam drivers, when apply require voltage after maximum displacement occur in the middle of the two ends of long overarm.
The miniature piezoelectric driver of realizing this patent has the kinds of processes method.Only set forth wherein a kind of method below: at first use the twin polishing silicon substrate, deposit silicon nitride after the two-sided thermal oxidation, back side photolithographic structures window, etch away silicon nitride, float the thermal oxide layer that exposes, utilize anisotropic etchants such as KOH or TMAH to carry out bulk silicon etching, form silicon thin film, remove the silicon nitride and the thermal oxide layer on two sides then, the thermal oxide film of the suitable thickness that regrows carries out the manufacture craft of PZT (lead zirconate titanate) composite multi-layer film as resilient coating in the front, the deposit lower electrode layer successively in the front, piezoelectric membrane, upper electrode layer, and adopt physics or chemical etching technology, etch top electrode successively, piezoelectric layer, the bottom electrode figure, last deposit dielectric insulating film adopts physics or chemical etching technology etching upper/lower electrode fairlead, depositing metal and etching line again.Photoetching is subsequently also adopted anisotropic etch process etching silicon fiml, discharges suspension structure, forms Drive Structure.In this method example, bottom electrode can be made of titanium/platinum composite bed or platinum, and piezoelectric membrane is by piezoelectricity Seed Layer PbTiO 3Constitute with the PZT composite bed, top electrode is made of titanium/platinum composite bed or platinum.

Claims (4)

1. miniature piezoelectric driver that is used for MEMS is characterized in that: at the two ends of suspension spring beam (1) or middlely connect through tail trimmer (3), form the symmetry driver of cascade suspension beam structure side by side with respect to first symmetry axis (X); Identical at first symmetry axis (X) structure on two sides, the overarm middle part in driver two outsides links to each other with substrate by substrate connection tail trimmer (4) and forms stiff end; In each overarm, central vertical bisector (Y) with length direction is second symmetry axis, segmented deposition is pressed multilayer film composite piezoelectric unit (2) symmetrically, and every section multilayer film composite piezoelectric unit (2) forms the driver element that utilizes piezoelectric effect with following suspension spring beam (1); Multilayer film composite piezoelectric unit (2) on every suspension spring beam (1) is symmetrically distributed with second symmetry axis (Y), and the multilayer film composite piezoelectric unit (2) of each side can be 2,4,6 or 8, in whole Drive Structure, suspension spring beam (1) in the first symmetry axis X both sides upward applies voltage with symmetric mode, in first each side of symmetry axis X, each suspension spring beam (1) applies opposite polarity voltage with the upper and lower electrode of the multilayer film composite piezoelectric unit (2) of contiguous suspension spring beam (1) same position in the same side; Upper and lower electrode in the contiguous multilayer film composite piezoelectric of upper and lower electrode layer and its same side unit of each multilayer film composite piezoelectric unit of each side of second symmetry axis (Y) applies opposite polarity voltage; Simultaneously, two the most contiguous upper and lower electrodes in multilayer film composite piezoelectric unit apply the voltage of identical polar in symmetry axis Y both sides.
2. according to the described miniature piezoelectric driver that is used for MEMS of claim 1, it is characterized in that: described piezoceramic multilayer film, every section piezoelectricity composite multi-layer film unit is on the elastic film beam, resilient coating (5) is arranged from bottom to up, unconnected mutually mea layers (6) down, piezoelectric layer (7) and upper film electrode layer (8) complex superposition with multilayer film composite piezoelectric unit (2) of definite shape form, can also cover one deck insulating medium layer (9) at the upper electrode film laminar surface, top electrode lead-in wire (10), bottom electrode lead-in wire (11) respectively with upper film electrode layer (8), following mea layers (6) connects.
3. according to the described miniature piezoelectric driver that is used for MEMS of claim 1, it is characterized in that: the number of the overarm of described cascade arranged side by side is to be equal to or greater than 3 integer.
4. MEMS miniature piezoelectric driver according to claim 1 is characterized in that: the most contiguous two multilayer film composite piezoelectric unit (2), described second symmetry axis (Y) both sides couple together, and form a big multilayer film composite piezoelectric unit.
CNB2004100086776A 2004-03-18 2004-03-18 Mini piezoelectric drive for MEMS Expired - Fee Related CN1317815C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100086776A CN1317815C (en) 2004-03-18 2004-03-18 Mini piezoelectric drive for MEMS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100086776A CN1317815C (en) 2004-03-18 2004-03-18 Mini piezoelectric drive for MEMS

Publications (2)

Publication Number Publication Date
CN1564451A CN1564451A (en) 2005-01-12
CN1317815C true CN1317815C (en) 2007-05-23

Family

ID=34477692

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100086776A Expired - Fee Related CN1317815C (en) 2004-03-18 2004-03-18 Mini piezoelectric drive for MEMS

Country Status (1)

Country Link
CN (1) CN1317815C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4316590B2 (en) * 2006-06-23 2009-08-19 株式会社東芝 Piezoelectric drive MEMS actuator
WO2009079460A1 (en) 2007-12-14 2009-06-25 University Of Florida Research Foundation, Inc. Electrothermal microactuator for large vertical displacement without tilt or lateral shift
CN103199733B (en) * 2013-03-22 2015-06-10 北京大学 Piezoelectric actuator and manufacturing method thereof
CN105071690B (en) * 2015-07-20 2017-08-04 南京航空航天大学 A kind of stability maintenance of piezoelectric straight line start two is as platform
CN107102174A (en) * 2017-05-16 2017-08-29 中国计量科学研究院 A kind of preparation method for the extraordinary probe that micro-measurement apparatus is scanned for needlepoint type

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359733A (en) * 2002-01-29 2002-07-24 清华大学 Piezoelectrically driven microspray method and apparatus for atomizing administration
CN1370284A (en) * 1999-08-11 2002-09-18 Adc电信股份公司 Microelectromechanical optical switch and method of manufacture thereof
CN1423755A (en) * 2000-01-14 2003-06-11 康宁股份有限公司 MEMS optical switch and method of manufacture
CN2689586Y (en) * 2004-03-18 2005-03-30 清华大学 MEMS miniature piezoelectric drivers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1370284A (en) * 1999-08-11 2002-09-18 Adc电信股份公司 Microelectromechanical optical switch and method of manufacture thereof
CN1423755A (en) * 2000-01-14 2003-06-11 康宁股份有限公司 MEMS optical switch and method of manufacture
CN1359733A (en) * 2002-01-29 2002-07-24 清华大学 Piezoelectrically driven microspray method and apparatus for atomizing administration
CN2689586Y (en) * 2004-03-18 2005-03-30 清华大学 MEMS miniature piezoelectric drivers

Also Published As

Publication number Publication date
CN1564451A (en) 2005-01-12

Similar Documents

Publication Publication Date Title
JP3016870B2 (en) Elastomeric micro-electro-mechanical systems
US10349182B2 (en) Micromechanical piezoelectric actuators for implementing large forces and deflections
ES2394160T3 (en) Electroactive polymers
US20020050769A1 (en) Electroactive polymer electrodes
JP2011055474A (en) Piezoelectric micro speaker having piston diaphragm and method of manufacturing the same
WO2005008798A1 (en) Actuator device
CN109987574B (en) Piezoelectric microelectromechanical actuator device and apparatus incorporating same
CN1211275C (en) Micro-piezoelectric driver for MEMS
CN101066542A (en) Piezoelectric combining jet device and its making process
JP2009171737A (en) Actuator and electronic equipment using the same
CN102185517A (en) Electrostatic actuator
CN1317815C (en) Mini piezoelectric drive for MEMS
CN2639915Y (en) MEMS scanning microlens
JP3964193B2 (en) Matrix type actuator
EP1932803B1 (en) MEMS device with Z-axis asymetry
CN2689586Y (en) MEMS miniature piezoelectric drivers
US20090267445A1 (en) Micro rocking device and method for manufacturing the same
KR101659127B1 (en) Manufacturing method of piezoelectric actuator module
JP4870904B2 (en) Piezoelectric transducer
CN101814575B (en) Preparation method for piezoelectric bimorph of micro-electromechanical system
WO2014172617A1 (en) Monolithic pzt actuator, stage, and method for making
EP2555175A1 (en) Transducer module
KR101352941B1 (en) Micro structure, micro actuator, method of fabricating micro structure and micro actuator
EP2325910A1 (en) MEMS device and method of fabrication
KR100825626B1 (en) Microstructure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070523

Termination date: 20100318