CN1315641C - 一种镍铁薄膜及其制备方法 - Google Patents

一种镍铁薄膜及其制备方法 Download PDF

Info

Publication number
CN1315641C
CN1315641C CNB2004100099121A CN200410009912A CN1315641C CN 1315641 C CN1315641 C CN 1315641C CN B2004100099121 A CNB2004100099121 A CN B2004100099121A CN 200410009912 A CN200410009912 A CN 200410009912A CN 1315641 C CN1315641 C CN 1315641C
Authority
CN
China
Prior art keywords
film
substrate
ferronickel
cubic structure
ferro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100099121A
Other languages
English (en)
Other versions
CN1613641A (zh
Inventor
邱宏
陈晓白
潘礼庆
吴平
王凤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CNB2004100099121A priority Critical patent/CN1315641C/zh
Publication of CN1613641A publication Critical patent/CN1613641A/zh
Application granted granted Critical
Publication of CN1315641C publication Critical patent/CN1315641C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提供了一种镍铁薄膜及其制备方法。镍铁薄膜中镍含量在10至35原子百分比,其中面心立方结构所占的比例在0至100%之间可调。镍铁薄膜具有垂直于基片表面的柱状晶粒,晶粒在平行于基片表面方向上的宽度是5至500纳米。用物理气相沉积法制备不同成分的镍铁薄膜,用低于500度的热处理调节镍铁薄膜中面心立方结构所占比例。本发明的优点在于:通过对同一种成分的镍铁薄膜进行低温热处理,调节薄膜中不同结晶结构比例,获得相应的物理特性。由于温度控制容易,所以制备工艺稳定、制备方法简单。

Description

一种镍铁薄膜及其制备方法
技术领域
本发明属于镍铁薄膜材料技术领域,特别提供了一种镍铁薄膜(NixFe1-x薄膜)及其制备方法。
背景技术
由于镍铁薄膜具有较好的磁学、电学和磁电阻特性,并且制备简单,因此镍铁薄膜作为低维功能材料被广泛地应用在存储器、微型传感器、微型变压器和微型驱动器中。正如人们已经知道的那样,镍铁合金随着镍、铁成分的不同,其结晶结构将会发生变化,即,从面心立方结构(fcc结构)向体心立方结构(bcc结构)转变或从体心立方结构(bcc结构)向面心立方结构(fcc结构)转变,从而导致镍铁合金的物理特性的变化。对于镍铁合金薄膜材料而言,当镍的含量小于28原子百分比(28at%)时,镍铁薄膜(NixFe1-x薄膜,x<28at%)是体心立方结构;当镍的含量大于50原子百分比(50at%)时,镍铁薄膜(NixFe1-x薄膜,x>50at%)是面心立方结构;而镍的含量在28原子百分比和50原子百分比之间,镍铁薄膜(NixFe1-x薄膜,28at%<x<50at%)的结构由面心立方结构和体心立方结构共同构成[参考论文:[1]Dimpich,et al,Journal of Magnetism and Magnetic Materials,67(1987)55;[2]Sumitama,et al,Trans.Japan.Inst.Met.,24(1983)190]。镍铁薄膜的物理特性随着结构的变化(镍、铁成分的变化)而变化。
现在,通常通过改变镍铁薄膜中镍、铁成分来调节薄膜的结构,从而达到改变镍铁薄膜的物理特性的目的。由于受到物理气相沉积技术的限制,制备由面心立方结构和体心立方结构共同构成的镍铁薄膜时,在面心立方结构部分和体心立方结构部分的比例控制上,存在较大的难度,特别是制备工艺稳定性差。
发明内容
本发明的目的在于提供一种镍铁薄膜(NixFe1-x薄膜)及其制备方法,镍铁薄膜的镍含量在10原子百分比至35原子百分比(NixFe1-x薄膜,10at%≤x≤35at%)。通过对镍铁薄膜的进行200℃度至500度℃的真空热处理,控制热处理温度,制备出具有不同面心立方结构部分和体心立方结构部分比例的镍铁薄膜。解决了在制备由面心立方结构和体心立方结构共同构成的镍铁薄膜时,面心立方结构部分和体心立方结构部分的比例控制难度大,制备工艺稳定性差的问题。实现了制备工艺稳定,并简化了制备方法。
本发明的薄膜由基片1及在基片上生成的镍铁薄膜2组成,镍铁薄膜中的面心立方结构部分3和体心立方结构部分4的比例可以调整,镍铁薄膜2的厚度为10纳米至1000纳米。
本发明的镍铁薄膜的基片1为玻璃、二氧化硅等非晶态材料。
镍铁薄膜2中的面心立方结构部分3所占比例在0至100%之间可调,相应的体心立方结构部分4所占比例在100%至0之间可调。镍铁薄膜2具有垂直于基片表面的柱状结晶晶粒5,结晶晶粒的大小,即结晶晶粒在平行于基片表面方向上的宽度,是5纳米至500纳米。
本发明的镍铁薄膜的制备方法包括选择基片、在基片上制备镍铁薄膜、对镍铁薄膜进行200℃度至500℃度的真空热处理,具体步骤如下:
1、选择基片:基片采用非晶态材料;
2、在基片上制备镍铁薄膜:采用直流等离子体磁控溅射法,基片温度为30℃至100℃,制备10纳米至1000纳米厚的镍铁薄膜;
3、对镍铁薄膜进行200℃度至500℃度的真空热处理:热处理的真空度5×10-2帕斯卡(Pa)至1×10-5帕斯卡(Pa),热处理时间在50~180分钟。
本发明的优点在于:制备镍含量在10原子百分比至35原子百分比的镍铁薄膜(NixFe1-x薄膜,10at%≤x≤35at%)方法简单,并通过对镍铁薄膜的进行低于500℃的真空热处理,控制热处理温度,制备出具有不同面心立方结构部分和体心立方结构部分比例的镍铁薄膜。由于温度控制容易,所以制备工艺稳定、制备方法简单。
附图说明
图1为本发明制作的镍铁薄膜的示意图。基片1,镍含量在10原子百分比至35原子百分比的镍铁薄膜2,其包含面心立方结构部分3和体心立方结构部分4、5镍铁薄膜的柱状结晶晶粒。
图2为本发明Ni33Fe67薄膜的X射线衍射谱(XRD)。图2(a)没有经过真空热处理,图2(b)300℃度真空热处理,图2(c)400℃度真空热处理,(d)480℃度真空热处理。其横坐标为衍射角,单位是:度;纵坐标为衍射强度,单位是:计数/秒。
图3为本发明Ni21Fe79薄膜的X射线衍射谱(XRD)。图3(a)没有经过真空热处理,图3(b)300℃度真空热处理,图3(c)400℃度真空热处理,图3
(d)480℃度真空热处理。其横坐标为衍射角,单位是:度;纵坐标为衍射强度,单位是:计数/秒。
具体实施方式
实施例1
对直径50毫米的具有热氧化二氧化硅的Si基片按丙酮、去离子水和乙醇的顺序分别进行超声波清洗,清洗后的基片用60℃度热空气吹干。把基片放到磁控溅射镀膜机的镀膜室内,把镀膜室抽到1×10-4帕斯卡(Pa)的真空度。然后,用具有双斜靶(Ni80Fe20靶和Fe靶)的直流等离子体磁控溅射镀膜机沉积约200纳米厚的Ni33Fe67薄膜。沉积条件是:氩气压力1.2帕斯卡(Pa),Ni80Fe20靶的溅射功率是84瓦(W),Fe靶的溅射功率是173瓦(W),基片温度为40℃,基片到各靶的距离是100毫米。薄膜厚度可以用调整沉积时间来控制。
实施例2
对直径50毫米的具有热氧化二氧化硅的Si基片按丙酮、去离子水和乙醇的顺序分别进行超声波清洗,清洗后的基片用60℃热空气吹干。把基片放到磁控溅射镀膜机的镀膜室内,把镀膜室抽到1×10-4帕斯卡(Pa)的真空度。然后,用具有双斜靶(Ni80Fe20靶和Fe靶)的直流等离子体磁控溅射镀膜机沉积约200纳米厚的Ni21Fe79薄膜。沉积条件是:氩气压力1.2帕斯卡(Pa),Ni80Fe20靶的溅射功率是42瓦(W),Fe靶的溅射功率是173瓦(W),基片温度为40℃,基片到各靶的距离是100毫米。薄膜厚度可以用调整沉积时间来控制。
在真空中对Ni21Fe79薄膜和Ni33Fe67薄膜进行热处理,热处理条件:真空度4×10-4帕斯卡(Pa),热处理温度是300℃、400℃、480℃,热处理时间60分钟。
图2显示了本发明实施例中的Ni33Fe67薄膜的X射线衍射谱(XRD)。从图2中可以看出,没有热处理的薄膜具有体心立方结构和面心立方结构(bcc结构+fcc结构),其中面心立方结构(fcc结构)部分在薄膜中所占比例多于体心立方结构(bcc结构)部分;随着热处理温度的升高,薄膜中的面心立方结构(fcc结构)部分渐渐增加;当薄膜在480℃被热处理后,薄膜只具有面心立方结构(fcc结构)。
图3显示了本发明实施例中的Ni21Fe79薄膜的X射线衍射谱(XRD)。从图3中可以看出,没有热处理的薄膜具有体心立方结构(bcc结构);400℃热处理的薄膜具有体心立方结构和面心立方结构(bcc结构+fcc结构);480℃热处理的薄膜具有体心立方结构和面心立方结构(bcc结构+fcc结构),其面心立方结构(fcc结构)部分在薄膜中所占比例多于400℃热处理薄膜中的面心立方结构(fcc结构)部分。
场发射扫描电子显微镜(FE-SEM)的观察显示,Ni33Fe67薄膜和Ni21Fe79薄膜具有垂直于基片表面的柱状晶粒结构,晶粒尺寸约为25纳米。

Claims (2)

1、一种镍铁薄膜,其薄膜的镍含量在10原子百分比至35原子百分比;其特征在于:由具有热氧化二氧化硅的Si基片(1)及在具有热氧化二氧化硅的Si基片上生成的镍铁薄膜(2)组成,镍铁薄膜(2)的厚度为10纳米至1000纳米;镍铁薄膜(2)中的面心立方结构部分(3)所占比例在0至100%之间,相应的体心立方结构部分(4)所占比例在100%至0之间,镍铁薄膜(2)具有垂直于基片表面的柱状结晶晶粒(5),结晶晶粒的大小,即结晶晶粒在平行于基片表面方向上的宽度,为5纳米至500纳米。
2、一种制备权利要求1所述的镍铁薄膜的方法,其特征在于:该方法包括选择基片、在基片上制备镍铁薄膜、对镍铁薄膜进行200℃至500℃的真空热处理;步骤如下:
a、选择基片:基片采用具有热氧化二氧化硅的Si基片;
b、在具有热氧化二氧化硅的Si基片上制备镍铁薄膜:采用直流等离子体磁控溅射法,基片温度30℃至100℃,制备10纳米至1000纳米厚的镍铁薄膜;
c、对镍铁薄膜进行200℃至500℃的真空热处理:热处理的真空度5×10-2帕斯卡至1×10-5帕斯卡,热处理时间在5~180分钟。
CNB2004100099121A 2004-11-30 2004-11-30 一种镍铁薄膜及其制备方法 Expired - Fee Related CN1315641C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100099121A CN1315641C (zh) 2004-11-30 2004-11-30 一种镍铁薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100099121A CN1315641C (zh) 2004-11-30 2004-11-30 一种镍铁薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN1613641A CN1613641A (zh) 2005-05-11
CN1315641C true CN1315641C (zh) 2007-05-16

Family

ID=34763129

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100099121A Expired - Fee Related CN1315641C (zh) 2004-11-30 2004-11-30 一种镍铁薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN1315641C (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109719303A (zh) * 2018-12-28 2019-05-07 江苏博迁新材料股份有限公司 一种软磁材料用的亚微米级铁镍合金粉生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091266A (en) * 1988-09-02 1992-02-25 Matsushita Electric Industrial Co., Ltd. Soft-magnetic film having saturation magnetic-flux density and magnetic head utilizing the same
US20030137784A1 (en) * 2002-01-18 2003-07-24 Fujitsu Limited Magnetoresistive film having reduced electric resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091266A (en) * 1988-09-02 1992-02-25 Matsushita Electric Industrial Co., Ltd. Soft-magnetic film having saturation magnetic-flux density and magnetic head utilizing the same
US20030137784A1 (en) * 2002-01-18 2003-07-24 Fujitsu Limited Magnetoresistive film having reduced electric resistance

Also Published As

Publication number Publication date
CN1613641A (zh) 2005-05-11

Similar Documents

Publication Publication Date Title
Cemin et al. Epitaxial growth of Cu (001) thin films onto Si (001) using a single-step HiPIMS process
CN103956261B (zh) 纳米结构多功能铁磁复合薄膜材料和制备方法
Ahmad et al. Effect of power and nitrogen content on the deposition of CrN films by using pulsed DC magnetron sputtering plasma
CN113421733B (zh) 一种增加铁磁薄膜材料的垂直磁各向异性的方法
CN105002467B (zh) 一种Cu‑Ti非晶合金薄膜及其制备方法
Muslim et al. Properties of nickel films growth by radio frequency magnetron sputtering at elevated substrate temperatures
CN110129732B (zh) 一种高电阻率高熵合金薄膜及其制备方法
CN1315641C (zh) 一种镍铁薄膜及其制备方法
Yuan et al. Preparation and characterization of copper nitride films at various nitrogen contents by reactive radio-frequency magnetron sputtering
Luches et al. Oxidation–reduction reactions at as-grown Fe/NiO interface
CN111573658A (zh) 一种大面积直接生长的扭角双层石墨烯及其制备方法
CN108588646B (zh) 一种制备塑性提高的非晶/非晶纳米多层薄膜的方法
US5648174A (en) Highly hard thin film and method for production thereof
CN101215689B (zh) 一种新的制备(002)织构Fe薄膜的方法
JP3281173B2 (ja) 高硬度薄膜及びその製造方法
Merakeb et al. Investigation of phase transformation for ferrite–austenite structure in stainless steel thin films
Window Plastic flow and preferred orientation in molybdenum and zirconium films
CN108624852B (zh) 一种高居里温度的铁锆非晶多层膜及其制备方法
Iljinas et al. Thin ferromagnetic films deposition by facing target sputtering method
Xi et al. Growth and magnetic properties of soft ferrite films by pulsed laser deposition
Liu et al. The magnetic properties of cobalt films produced by glancing angle deposition
Padmaprabu et al. Microstructural characterisation of TiAl thin films grown by DC magnetron co-sputtering technique
Karthikeyan et al. Nano-structured morphological features of pulsed direct current magnetron sputtered Mo films for photovoltaic applications
Zhou et al. Formation of cubic boron nitride films on nickel substrates
Wang et al. Microstructure and magnetic properties of (0 0 1)-oriented L10 FePt films: role of Ag underlayer and Fe/Pt ratio

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070516

Termination date: 20091230