CN1310286C - 制造ⅲ-v族化合物半导体的方法 - Google Patents

制造ⅲ-v族化合物半导体的方法 Download PDF

Info

Publication number
CN1310286C
CN1310286C CNB031085350A CN03108535A CN1310286C CN 1310286 C CN1310286 C CN 1310286C CN B031085350 A CNB031085350 A CN B031085350A CN 03108535 A CN03108535 A CN 03108535A CN 1310286 C CN1310286 C CN 1310286C
Authority
CN
China
Prior art keywords
compound semiconductor
iii
nitride compound
substrate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031085350A
Other languages
English (en)
Other versions
CN1447388A (zh
Inventor
平松和政
三宅秀人
坊山晋也
前田尚良
家近泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of CN1447388A publication Critical patent/CN1447388A/zh
Application granted granted Critical
Publication of CN1310286C publication Critical patent/CN1310286C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

当形成Ⅲ-V族氮化物半导体的晶体层时,首先在衬底上覆盖氮化物半导体层以便形成基底层,并且通过氢化物气相外延在不低于800Torr的淀积压力下在该基底层上外延生长由通式InxGayAlzN(其中0≤x≤1,0≤y≤1,0≤z≤1,x+y+z=1)表示的Ⅲ-V族氮化物半导体。通过使淀积压力不低于800Torr,可以显著地提高Ⅲ-V族氮化物半导体的结晶性并降低它的缺陷密度。

Description

制造III-V族化合物半导体的方法
                    发明背景
技术领域
本发明涉及一种通过氢化物气相外延(HVPE)来制造III-V族氮化合物半导体的方法。
背景技术
可以通过改变III族元素含量来调整由通式InxGayAlzN(其中0≤x≤1,0≤y≤1,0≤z≤1,x+y+z=1)表示的III-V族氮化物化合物半导体的直接带隙能量。由此使它们适合波长从紫外光到红光的光能,利用它们作为从紫外光到可见光的宽范围的高效发光元件材料。因此,因为它们比直到现在广泛采用的Si、GaAs和其它的这种半导体具有更宽的带隙,它们能在常规的半导体不能工作的高温下保持半导体的特性。主要利用这种特性来制造具有优良的耐环境的电子器件。
然而,由于在熔点附近的III-V族氮化物化合物半导体的非常高的蒸汽压,生长大晶体就非常困难,并且就不能获得用作制造半导体芯片的衬底的实用尺寸的晶体。因此,在常规的制造化合物半导体的实践中将采用Si、GaAs、SiC、蓝宝石、ZrB2或其它具有类似于化合物半导体的晶体结构并能够制造大晶体的材料的衬底并在衬底上外延生长所需的单晶薄膜层。现在利用这种方法已经获得了这些化合物半导体的相对良好质量的晶体。通过利用金属有机气相外延(MOVPE)方法以便利用缓冲层进行生长,通常就能够获得由x射线摇摆(rocking)曲线检测的大约200秒的(0004)的半值宽度(half-value width)。
另一方面,氢化物气相外延(HVPE)与生长化合物半导体的其它方法相比有利的是高生长速率并能够通过抑制杂质的结合而获得高纯晶体生长。然而,在利用缓冲层能够两级生长的异质外延方法的建立方面,HVPE就落后于MOVPE和其它方法。实际生产中,采用MOVPE等生长大约3μm厚度的薄膜作为基底层,并且在基底层上通过HVPE同质外延生长化合物半导体的厚层。然而,即使当通过HVPE进行同质外延生长时,也会发生龟裂,因此就很难获得大面积上的高质量的晶体。还出现其它缺陷,例如生长层的结晶性小于基底层的结晶性,其证据为生长层的x射线摇摆曲线(XRC)的半值宽度基底层的半值宽度宽的事实。
发明内容
本发明的一个目的是提供一种获得高质量III-V族化合物半导体晶体的方法。
本发明的另一个目的是提供一种通过HVPE生长具有优良结晶性的III-V族化合物半导体晶体的方法。
本发明的另一个目的是提供一种能够低成本地外延生长具有优良结晶性的III-V族化合物半导体的制造III-V族化合物半导体的方法。
本发明人进行了许多不同的测试和试验以实现该目的。这些想法的前提是,当通常在大气压下通过HVPE进行GaN晶体的生长时,可以想象通过改变生长的压力就可以影响结晶性。这种方法就导致了本发明,即当淀积压力稍微高于大气压时,晶体质量就显著地提高。基于此发现就完成了本发明。
根据本发明,通过HVPE制造III-V族氮化物化合物半导体的方法的特征在于,淀积压力设置为不低于800Torr。优选淀积压力不低于850Torr,更加优选不低于900Torr。当淀积压力低于800Torr时,就不能获得本发明的效果。
根据本发明的另一个特征,当通过氢化物气相外延形成由通式InxGayAlzN(其中0≤x≤1,0≤y≤1,0≤z≤1,x+y+z=1)表示的III-V族氮化物化合物半导体的晶体层时,通过制备衬底并在不低于800Torr的淀积压力下在衬底上形成III-V族氮化物化合物半导体,就能够获得具有优良结晶性的III-V族化合物半导体的晶体层。
衬底可以适当地选自例如Si、GaAs、SiC、ZrB2和蓝宝石的材料。还可以使用在前述的衬底之一上预先通过MOVPE、分子束外延(MBE)等生长的氮化物化合物半导体的衬底。当利用HVPE在这种衬底上外延生长III-V族氮化物化合物半导体时,与利用大气压淀积相比通过将淀积压力设置为稍微高于大气压就能够非常显著地提高所获得的III-V族氮化物化合物半导体的结晶性。这种原因不清楚,但应当考虑加压以提高结晶性的方式改变生长机理。还能够首先在衬底上形成氮化物化合物半导体层,然后在淀积压力不低于800Torr下通过氢化物气相外延在氮化物化合物半导体层上生长所需的III-V族氮化物化合物半导体晶体层。
附图说明
图1A-1D是用于解释本发明的实施例的方法的工艺图。
图2示出用于进行图1A-1D的工艺的气相淀积半导体的制造系统的主要部件示意图。
图3示出图2中所示的系统的反应器中的温度分布曲线图。
图4示出根据本发明制造的样品的XRC半值宽度随淀积气压变化的曲线图。
图5示出根据本发明制造的样品的GaN薄膜表面状态的显微照片。
图6示出通过常规方法制造的样品的GaN薄膜表面状态的显微照片。
具体实施方式
图1A-1D是用于解释本发明的一个实施例的方法的工艺图。首先,通过清洗去除油污和水(图1A)来制备适合尺寸的蓝宝石衬底1。可以采用任何各种已知的清洗液来进行清洗。
随后,将已清洗的蓝宝石衬底1放置到MOVPE反应器中并在大约1000℃的高温下进行表面腐蚀。然后在大约500℃的温度下生长例如AlN、GaN、AlGaN或SiC的缓冲层2(图1B)。在形成缓冲层2之后,将温度返回到大约1000℃并形成III-V族氮化物化合物半导体层3(图1C)。采用以此方式获得的多层半导体晶体作为本发明中的基底层B。在HVPE反应器中放置获得的基底层B以便外延生长由通式InxGayAlzN(其中0≤x≤1,0≤y≤1,0≤z≤1,x+y+z=1)表示的III-V族氮化物化合物半导体。在本实施例中生长的化合物半导体是GaN。结果,就获得了GaN薄膜4(图1D)。可以在适当地选自现有技术中已知的温度条件但淀积压力必须不小于800Torr的温度条件下在基底层B上进行GaN薄膜4的外延生长。与在大气压下获得GaN薄膜4的晶体质量相比,利用800Torr或更高的淀积压力,即稍微高于大气压的淀积压力,显著地提高GaN薄膜4的晶体质量。
图2示出可用于实施本发明的方法的HVPE半导体制造系统的一个实例的气相淀积半导体的制造系统10主要部件的示意图。
气相淀积半导体的制造系统10配备有反应器12,通过材料供应线路11从初始材料供应系统(未示出)供应源气体给反应器12。在反应器12中设置衬托器17用于放置并加热基底层B。初始材料供应线路11由用于提供N2吹扫气体的第一线路11A、用于提供NH3和载气的第二线路11b、以及用于提供HCl和载气的第三线路11C组成。由第二线路11B提供的载气可以是N2或H2的一种或N2和H2的混合物。由第三线路11C提供的载气还可以是N2或H2的一种或N2和H2的混合物。
排气线路13连接到反应器12的排气口12A。通过排气线路13释放的排出气体的流速通过在排气线路13中设置的流速控制阀VL控制。这样就能够控制反应器12中的压力。因此就能够通过调节流速控制阀VL将反应器12中的淀积压力控制到所需的值。
通过压力传感器14检测反应器12中的压力。将压力传感器14的输出传送到压力显示器15,通过压力显示器15监测反应器12中的淀积压力。在本实施例中,把压力传感器14放置在排气口12A和流速控制阀VL之间的排气线路13中以便能够检测反应器12中的压力。
提供电炉16用于加热衬托器17。可以通过将电源(未示出)提供的加热电流给电炉16来加热反应器12以建立所需的淀积温度分布。图3示出反应器12中的淀积温度分布图。
在前述结构的气相淀积半导体的制造系统10中,通过初始材料供应线路11提供到反应器12的源气体在基底层B(图2中省略)上反应以便在基底层B上气相淀积所需的GaN薄膜,基底层B放置在由电炉16加热的衬托器17上。通过排气口12A向外释放使用过的气体以便通过排气线路13传送到排出气体处理装置(未示出)。
将更加详细地解释此工艺。例如(图1D),将在图1C的步骤中获得的基底层B放置在反应器12中的衬托器17上,将源气体提供到反应器12中,利用图3中所示的淀积温度分布在基底层B上生长GaN薄膜4。
密切注视压力显示器15,操作者调整流速控制阀VL以便控制通过排气线路13的排出气体的流速并由此建立将反应器12中的淀积压力保持在例如800Torr的源气体的流速。
因此和参照图1D解释的一样,通过维持淀积压力稍微高于大气压即在800Torr或更高压力下,在基底层B上生长高质量的GaN薄膜4。当通过HVPE外延生长III-V族氮化物化合物半导体时,仅仅通过设置稍微高于大气压的淀积压力就可以制造具有非常良好的结晶性的III-V族氮化物化合物半导体。因此,本发明提供一种具有杰出的工业价值的方法,它能够低成本地制造高质量的III-V族化合物半导体。
前面解释的本发明的实施例涉及在基底层B上生长GaN薄膜4的情况。然而,本发明并不限制于本实施例,并且例如当应用于通过ELO(附晶生长的外延层)再生长GaN层时,本发明能够提供相同的突出的效果。当采用具有比较接近将被制造的化合物半导体的晶格常数的衬底材料作为基底层时,也可以直接应用本发明。
工作实例
(实例1)
下面采用图2中所示的气相淀积半导体的制造系统10以便开始通过MOVPE在蓝宝石衬底上形成的GaN基底层上外延生长GaN薄膜。
随着温度增加、通过调整流速控制阀VL来控制反应器12中的温度,如图3中所示建立反应器12中的温度分布。以恒定的V/III比率为25(NH3分压:0.2atm,GaCl分压:8×10-3atm)提供初始材料,并将反应器12的内部压力控制到910Torr来进行生长。当流速恒定时,载气的流速随压力而变化。采用相同量的N2和H2(N2∶H2=1∶1)组成的混合载气来进行实验。在300Torr和760Torr下制造比较样品。
通过x射线衍射分析来评价在910Torr的淀积压力下制造的本发明的样品和在300Torr和760Torr的淀积压力下制造的用于比较的样品的结晶性。图4中,通过分析获得的对于(0004)和(10 10)的XRC(x射线摇摆曲线)的半值宽度随淀积压力的变化被划出。在(0004)和(10 10)衍射结果中,当淀积压力为910Torr时,半值宽度(FWHM:在最大值的一半处的整个宽度)最小,表明和在300Torr和760Torr的淀积压力下获得的样品相比,其结晶性有了改善。这些结果表明当淀积压力增加时GaN薄膜的结晶性就会提高。
图5示出在910Torr的淀积压力下生长的GaN薄膜的表面状态。图6示出在760Torr的常规淀积压力下生长的GaN薄膜的表面状态。观察两种表面确信仅仅通过将淀积压力从760Torr提高到910Torr就能够抑制龟裂发生以便获得显著改善的表面状态。
(实施例2)
在通过MOVPE在蓝宝石衬底上形成的GaN基底层上生长GaN薄膜来制造样品。采用与实施例1的相同方法,期望将淀积压力改变为836Torr。由光学显微镜观测样品的表面形态。发现表面没有龟裂并且具有与实施例1一样的优良质量。测量并发现(0004)和(10 10)衍射的半值宽度为175秒和220秒,表明具有与实施例1同等的结晶性。
正如在前文中所作出的解释,本发明可以,当通过HVPE外延生长III-V族氮化物化合物半导体时,仅仅通过将淀积压力设置为稍微高于大气压就能够制造具有非常良好结晶性的III-V族氮化物化合物半导体。因此,本发明提供一种具有显著工业价值的方法,因为它能够低成本地制造高质量的III-V族化合物半导体。

Claims (5)

1.一种制造III-V族化合物半导体的方法,包括:通过氢化物气相外延形成由通式InxGayAlzN表示的III-V族氮化物化合物半导体的晶体层的步骤,其中0≤x≤1,0≤y≤1,0≤z≤1,x+y+z=1,在反应器内导入源气体和载气,使得在生长III-V族氮化物化合物半导体期间的淀积压力设置为不低于800Torr。
2.根据权利要求1的制造III-V族化合物半导体的方法,其中制备衬底并在该衬底上形成III-V族氮化物化合物半导体。
3.根据权利要求2的制造III-V族化合物半导体的方法,其中该衬底是选自Si、GaAs、SiC、ZrB2和蓝宝石中的一种。
4.根据权利要求2的制造III-V族化合物半导体的方法,其中首先在该衬底上覆盖氮化物化合物半导体层以便形成基底层并在该基底层上形成III-V族氮化物化合物半导体。
5.根据权利要求4的制造III-V族化合物半导体的方法,其中通过MOVPE或MBE在该衬底上形成该氮化物化合物半导体层。
CNB031085350A 2002-03-26 2003-03-26 制造ⅲ-v族化合物半导体的方法 Expired - Fee Related CN1310286C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP84851/2002 2002-03-26
JP2002084851 2002-03-26
JP84851/02 2002-03-26
JP211603/2002 2002-07-19
JP211603/02 2002-07-19
JP2002211603A JP2004006568A (ja) 2002-03-26 2002-07-19 3−5族化合物半導体の製造方法

Publications (2)

Publication Number Publication Date
CN1447388A CN1447388A (zh) 2003-10-08
CN1310286C true CN1310286C (zh) 2007-04-11

Family

ID=28043834

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031085350A Expired - Fee Related CN1310286C (zh) 2002-03-26 2003-03-26 制造ⅲ-v族化合物半导体的方法

Country Status (7)

Country Link
US (1) US6946308B2 (zh)
JP (1) JP2004006568A (zh)
KR (1) KR20030077435A (zh)
CN (1) CN1310286C (zh)
DE (1) DE10313315A1 (zh)
SG (1) SG114605A1 (zh)
TW (1) TWI254465B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409664A (zh) * 2011-08-17 2017-02-15 住友化学株式会社 氮化物半导体模板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361220B2 (en) 2003-03-26 2008-04-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing group III nitride single crystal, device used for the method and group III nitride single crystal obtained by the method
EP1766667A4 (en) * 2004-05-19 2011-06-01 Epivalley Co Ltd METHOD FOR DRAWING GAN-BASED NITRIDE LAYER MATERIAL
JP4187175B2 (ja) * 2006-03-13 2008-11-26 国立大学法人東北大学 窒化ガリウム系材料の製造方法
US10340375B2 (en) * 2007-02-16 2019-07-02 Sumitomo Chemical Company, Limited Epitaxial substrate for field effect transistor
JP4714192B2 (ja) 2007-07-27 2011-06-29 住友電気工業株式会社 窒化ガリウム結晶の成長方法、窒化ガリウム結晶基板、エピウエハの製造方法およびエピウエハ
WO2010082358A1 (ja) * 2009-01-16 2010-07-22 住友電気工業株式会社 窒化ガリウム基板、窒化ガリウム基板の製造方法、及び半導体デバイス
JP5110117B2 (ja) * 2010-04-30 2012-12-26 住友電気工業株式会社 窒化ガリウム結晶の成長方法、窒化ガリウム結晶基板、エピウエハの製造方法およびエピウエハ
JP6652042B2 (ja) * 2016-12-13 2020-02-19 三菱電機株式会社 Iii−v族窒化物半導体エピタキシャルウェハの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888303A (en) * 1988-11-09 1989-12-19 The United States Of America As Represented By The Secretary Of The Air Force Vapor phase epitaxy-hydride technique with a constant alloy source for the preparation of InGaAs layers
US6086673A (en) * 1998-04-02 2000-07-11 Massachusetts Institute Of Technology Process for producing high-quality III-V nitride substrates
CN1289867A (zh) * 1999-09-29 2001-04-04 中国科学院物理研究所 一种氮化镓单晶的热液生长方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440823B1 (en) * 1994-01-27 2002-08-27 Advanced Technology Materials, Inc. Low defect density (Ga, Al, In)N and HVPE process for making same
US6447604B1 (en) * 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
TW504754B (en) * 2000-03-24 2002-10-01 Sumitomo Chemical Co Group III-V compound semiconductor and method of producing the same
US6673149B1 (en) * 2000-09-06 2004-01-06 Matsushita Electric Industrial Co., Ltd Production of low defect, crack-free epitaxial films on a thermally and/or lattice mismatched substrate
JP4595198B2 (ja) * 2000-12-15 2010-12-08 ソニー株式会社 半導体発光素子及び半導体発光素子の製造方法
JP2003077847A (ja) * 2001-09-06 2003-03-14 Sumitomo Chem Co Ltd 3−5族化合物半導体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888303A (en) * 1988-11-09 1989-12-19 The United States Of America As Represented By The Secretary Of The Air Force Vapor phase epitaxy-hydride technique with a constant alloy source for the preparation of InGaAs layers
US6086673A (en) * 1998-04-02 2000-07-11 Massachusetts Institute Of Technology Process for producing high-quality III-V nitride substrates
CN1289867A (zh) * 1999-09-29 2001-04-04 中国科学院物理研究所 一种氮化镓单晶的热液生长方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GaN基材生长及其在光电器件领域的应用 王三胜,顾彪,徐茵,秦福文,窦宝锋,杨大智,材料导报,第vol.16卷第no.1期 2002 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409664A (zh) * 2011-08-17 2017-02-15 住友化学株式会社 氮化物半导体模板
US10418241B2 (en) 2011-08-17 2019-09-17 Sumitomo Chemical Company, Limited Metal chloride gas generator, hydride vapor phase epitaxy growth apparatus, and nitride semiconductor template
CN106409664B (zh) * 2011-08-17 2020-05-12 住友化学株式会社 氮化物半导体模板

Also Published As

Publication number Publication date
TWI254465B (en) 2006-05-01
US20030211710A1 (en) 2003-11-13
US6946308B2 (en) 2005-09-20
SG114605A1 (en) 2005-09-28
DE10313315A1 (de) 2003-10-09
TW200403865A (en) 2004-03-01
JP2004006568A (ja) 2004-01-08
CN1447388A (zh) 2003-10-08
KR20030077435A (ko) 2003-10-01

Similar Documents

Publication Publication Date Title
KR101372698B1 (ko) 수소화합물 기상 성장법에 의한 평면, 비극성 질화 갈륨의 성장
US9039834B2 (en) Non-polar gallium nitride thin films grown by metalorganic chemical vapor deposition
US7794541B2 (en) Gallium nitride-based material and method of manufacturing the same
US5122845A (en) Substrate for growing gallium nitride compound-semiconductor device and light emitting diode
EP2313543B1 (en) Growth of planar and semi-polar {1 1-2 2} gallium nitride with hydride vapor phase epitaxy (hvpe)
US20070040219A1 (en) III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer
US20080023710A1 (en) Method of growing a nitride single crystal on silicon wafer, nitride semiconductor light emitting diode manufactured using the same and the manufacturing method
EP1298709B1 (en) Method for producing a iii nitride element comprising a iii nitride epitaxial substrate
US20060175681A1 (en) Method to grow III-nitride materials using no buffer layer
CN1310286C (zh) 制造ⅲ-v族化合物半导体的方法
CN106544643A (zh) 一种氮化物薄膜的制备方法
Tolle et al. Epitaxial growth of Al x Ga 1− x N on Si (111) via a ZrB 2 (0001) buffer layer
US7504321B2 (en) MBE growth of an algan layer or AlGaN multilayer structure
WO2023037896A1 (ja) ScAlMgO4基板を用いたMBE法による窒化物半導体自立基板の作成方法
EP1199388B1 (en) Group III nitride film containing aluminum with hexagonal system crystal structure
EP1197995B1 (en) Method for fabricating a group III nitride film
JP3853942B2 (ja) エピタキシャルウェハ
Yamaguchi et al. The c-axis and a-axis orientations in InN grown directly on (0001) sapphire substrate by rf-MBE
Yam et al. The growth of III-V nitrides heterostucture on Si substrate by plasma-assisted molecular beam epitaxy
Yang et al. Lateral Growth of InN on GaN/Sapphire
Ruterana et al. Structural analysis of thick GaN films grown by hydride vapour phase epitaxy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070411

Termination date: 20160326

CF01 Termination of patent right due to non-payment of annual fee