CN1309485A - 在压缩模式中利用导频码型同步化帧的方法 - Google Patents

在压缩模式中利用导频码型同步化帧的方法 Download PDF

Info

Publication number
CN1309485A
CN1309485A CN01104000A CN01104000A CN1309485A CN 1309485 A CN1309485 A CN 1309485A CN 01104000 A CN01104000 A CN 01104000A CN 01104000 A CN01104000 A CN 01104000A CN 1309485 A CN1309485 A CN 1309485A
Authority
CN
China
Prior art keywords
correlation
alignment word
frame alignment
frame
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01104000A
Other languages
English (en)
Other versions
CN1231002C (zh
Inventor
宋宁俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020000007328A external-priority patent/KR100720570B1/ko
Priority claimed from KR1020000007602A external-priority patent/KR100720542B1/ko
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN1309485A publication Critical patent/CN1309485A/zh
Application granted granted Critical
Publication of CN1231002C publication Critical patent/CN1231002C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • H04W56/007Open loop measurement
    • H04W56/0075Open loop measurement based on arrival time vs. expected arrival time
    • H04W56/0085Open loop measurement based on arrival time vs. expected arrival time detecting a given structure in the signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • H04B7/2671Arrangements for Wireless Time-Division Multiple Access [TDMA] System Synchronisation
    • H04B7/2678Time synchronisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Television Systems (AREA)

Abstract

在压缩模式下利用导频码型同步化帧的方法。在W-CDMA移动通信系统操作在压缩模式的情况下,即使一个帧的所有15个时隙没有被发送,本发明也允许利用专用导频序列码型恢复帧中的完整帧同步字,和利用恢复的帧同步字的相关获得帧同步。

Description

在压缩模式中利用导频码型同步化帧的方法
本发明涉及一种在压缩模式下利用导频码型同步化帧的方法。
最近的3GPP(Third Generation Partnership Project)具有用于进一步开发下一代移动通信的传送信道和物理信道的说明。对于物理信道,将一个DPCH(专用物理信道)用于一个上行链路和一个下行链路。DPCH一般是由超帧,无线电帧,和时隙的分级层组成的。有两种类型的DPCH:一种是DPDCH(专用物理数据信道),另一种是DPCCH(专用物理控制信道)。DPDCH用于专用数据的传送,DPCCH用于控制信息的传送。DPCCH具有多个字段,例如:一个导频,一个TFCI,一个FBI,和一个TPC。导频Npilot具有用于支持进行相干检测的信道评估的导频比特(或码元),和用于帧同步化的导频比特(或码元)。特别是,在下一代移动通信系统的接收机一方利用导频Npilot的导频码型进行帧同步的识别,以及帧同步的故障检测是十分重要的。下面的表1示出了在上行链路和下行链路DPCH中使用的帧同步字。表1
        帧同步字
    C1=(100011110101100)
    C2=(101001101110000)
    C3=(110001001101011)
    C4=(001010000111011)
    C5=(111010110010001)
    C6=(110111000010100)
    C7=(100110101111000)
    C8=(000011101100101)
表1中的代码具有如下面方程式(1)中表达的自相关函数:(1)
方程式(1)中的Ri(τ)是一个帧同步字Ci的自相关函数。表1中的代码可以分类成如下面方程式(2)中表示的四类。
E={C1,C2},F={C3,C4},G={C5,C6},H={C7,C8}    (2)
每一类中的每个代码对具有如下面方程式(3)和(4)表示的互相关函数。
Figure A0110400000062
                                           (3)
Figure A0110400000063
                                           (4)其中i,j=1,2,…,8,Ri,j(τ)代表每个类E,F,G,H中的代码对之间的一个互相关函数。最终,可以通过根据如方程式(1)中表示的自相关函数适当地组合帧同步字获得如下面方程式(5)中表示的相关结果,和通过根据如方程式(3)和(4)中表示的互相关函数适当地组合每个类中的代码获得如下面方程式(6)中表示的相关结果。
Figure A0110400000064
                                            (5)
Figure A0110400000065
                                            (6)
图1A示出了当方程式(5)中α=2时的自相关结果的曲线图,图1B示出了当方程式(6)中α=2时相同类中代码之间的互相关结果的曲线图。图2A示出了当方程式(5)中α=4时自相关结果的曲线图,图2B示出了当方程式(6)中α=4时类“E”和“F”的一对代码之间的互相关结果的曲线图。例如,可以从图2A看到的,表1中所示的帧同步字的自相关函数在一个延迟时间点“0”(τ=0)有一个最大相关结果,和在一个不是延迟时间点“0”的延迟时间点的旁瓣的一个最大相关结果。如可以从图2B看到的,在相同类中的每一对帧同步字代码的互相关函数显示了一个在中间延迟点τ=7的负极性的最大相关结果,和一个在除了中间延迟时间点τ=7之外的延迟时间点的最小相关结果。
因此,在现有技术中,获得了帧同步,并且用表1中所示的帧同步字的相关识别出帧同步。但是,尽管当为一个帧传送15个时隙时,可以恰当地进行获得帧同步的操作,但是当像在作为W-CDMA的一个特征的压缩模式中那样为一个帧传送最小8个时隙和最大14个时隙时,不能恰当地进行获得帧同步的操作。此外,在现有技术中,为了识别帧同步和检测帧同步失调而进行了导频码型的相关。当从一个导频码型相关的结果作出帧同步识别和帧同步失调的检测时,在现有技术中,提供一个预定的阈值,用于把为每个时隙计算的相关值与该阈值比较,以识别同步和检测帧同步失调。
但是,显然,在现有技术中移动站UE或基站节点B自由设置的阈值,可能会由于不同的阈值而造成帧同步识别或帧同步失调检测的失败,这可能是下一代移动通信系统所追求的全球漫游中的一个重大问题。因此,需要一个用于确定帧同步识别和帧同步失调检测的统一的基准,并且需要有一种执行可靠帧同步识别和帧同步失调检测的方法。
因此,本发明致力于一种在压缩模式中利用导频码型同步化帧的方法,这种方法实际上避免了由于现有技术的限制和缺点而造成的一种或多种问题。
本发明的一个目的是要提供一种在压缩模式中利用导频码型同步化帧的方法,它即使在W-CDMA移动通信系统是在压缩模式的情况下,也能够取得完全同步。
本发明的另一个目的是要提供一种在压缩模式中利用导频码型同步化帧的方法,它能够提供用于帧同步识别或帧同步失调检测的基准。
在以下的说明中将提出本发明的附加特征和优点,从以下的说明中可以部分地明白,或可以通过本发明的实践了解本发明的这些特征和优点。通过写出的说明书和权利要求以及附图中特别指出的结构可以实现和获得本发明的目的和其它优点。
为了取得根据本发明的目的的这些和其它优点,作为具体和广义的说明,利用专用导频码型将帧同步字完整地恢复在帧中。利用恢复的帧同步字的相关取得帧同步。
本发明的一个方面中,把要通过一个帧从发送方发送的帧同步字穿孔(punctured)希望数量的时隙。一旦在接收机方接收到穿孔帧同步字的一系列代码,利用接收系列代码的相关把帧同步字在帧中恢复。利用恢复的帧同步字的相关获得有关一个信道的帧同步。
最好在恢复帧同步字的步骤中,利用每类中的一个代码对的关系Ci,j=-Ci+1(j+7)mod 15恢复由于穿孔而未发送的代码比特,和利用每类中的一个代码对的关系Ci+1,j=-Ci,(j+8)mod 15恢复由于穿孔而未发送的代码比特。
为了完全帧同步,最好自相关或互相关那些是导频比特序列的恢复帧同步字。负相加自相关结果和互相关结果,并且与一个预定的阈值β比较。根据比较的结果确定接收信道的帧同步成功,并向上一层报告。
最好把恢复的帧同步字分类成对应于帧同步字对的多个类,并且在一个类中的帧同步字对的一个字是循环移位了7比特并且倒置的另一个字。
根据SNR比率把阈值β设定为一个等于“0”的值,或大于“0”的值。
应当知道,上述的一般说明和以下的详细说明是示例和解释性的,是为了提供权利要求中定义的本发明的进一步的解释。
作为说明书的一个组成部分而包括在说明书中以提供对本发明的进一步理解的附图,示出了本发明的实施例,并且与说明书一同用来解释本发明的原理,在附图中:
图1A示出了利用3GPP RAN标准的导频码型在α=2时的自相关的曲线图;
图1B示出了利用3GPP RAN标准的导频码型在α=2时的互相关的曲线图;
图2A示出了利用3GPP RAN标准的导频码型在α=4时的自相关的曲线图;
图2B示出了利用3GPP RAN标准的导频码型在α=4时的互相关的曲线图;
图3示出了3GPP RAN标准的一个上行链路DPCH的结构;
图4示出了3GPP RAN标准的一个下行链路DPCH的结构;
图5解释在3GPP RAN标准的下行链路DPCH中的一个STTD编码原则;
图6示出了一个在本发明的压缩模式中恢复用于帧同步化的导频码型的装置的方框图;
图7示出了根据本发明的一个优选实施例的一个用于帧同步的自相关装置的方框图;
图8示出了根据本发明的一个优选实施例的一个用于帧同步的互相关装置的方框图;
图9示出了3GPP RAN标准的SCCPCH的一种结构;和
图10示出了根据本发明的一个优选实施例的用于帧同步识别和帧同步失调检测的相关器系统的方框图。
现在将对本发明的优选实施例进行详细的说明,附图中示出了它们的示例。本发明实施例的说明将针对在上行链路DPCH和下行链路DPCH中使用的导频码型。但是,本发明也可以应用于所有在上行链路和下行链路中使用导频码型的信道。图3示出了3GPP RAN标准的一个上行链路DPCH的结构。下面的表2示出了有关一个上行链路DPDCH的每个字段的信息,接下来的表3示出了有关一个下行链路DPDCH的每个字段的信息。表2
时隙格式#I 信道比特率(kbps) 信道码元率(ksps)  扩展因数  比特/帧  比特/时隙  Ndata
    0     15     15     256  150     10    10
    1     30     30     128  300     20    20
    2     60     60     64  600     40    40
    3     120     120     32  1200     80    80
    4     240     240     16  2400     160    160
    5     480     480     8  4800     320    320
    6     960     960     4  9600     640    640
表3
时隙格式#I  信道比特率(kbps)  信道码元率(ksps)   S.F.   比特/帧   比特/时隙 Npilot   1*  2* NFBI   发送的时隙/帧
    0     15     15  256  150  10  6  2  2  0    15
    0A     15     15  256  150  10  5  2  3  0    10-14
0B 15 15 256 150 10 4 2 4 0 8-9
    1     15     15  256  150  10  8  2  0  0     8-15
    2     15     15  256  150  10  5  2  2  1     15
    2A     15     15  256  150  10  4  2  3  1   10-14
    2B     15     15  256  150  10  3  2  4  1     8-9
    3     15     15  256  150  10  7  2  0  1     8-15
    4     15     15  256  150  10  6  2  0  2     8-15
    5     15     15  256  150  10  5  1  2  2     15
    5A     15     15  256  150  10  4  1  3  2   10-14
    5B     15     15  256  150  10  3  1  4  2     8-9
S.F.:扩展因数,1*:NTPC,2*:NTFCI
如表3中所示,具有TFCI的DPCCH的时隙格式在压缩模式中被改变。即,如表3中所示,增加了两种具有加到其上的独立索引号的模式。例如:时隙格式#2是用于一般模式的字段信息的,而时隙格式#2A和#2B是用于压缩模式的字段信息的。如整个表3中所示,在一般模式中每帧的发送时隙的数量是15,而在压缩模式中最少是8。也就是说,在压缩模式中至少有8个时隙的信息被发送。下面的表4示出了一个应用本发明的一个上行链路DPCCH的导频比特码型,其中在一个时隙中的导频比特的数量Npilot是3,4,5或6。下面的表5示出了应用本发明的上行链路DPCCH的导频比特码型,其中一个时隙中的导频比特的数量Npilot是7或8。
表4:具有Npilot=3,4,5和6的上行链路DPCCH的导频比特码型
表5:具有Npi1ot=7和8的上行链路DPCCH的导频比特码型
Figure A0110400000131
在表4和5中所示的导频码型中,阴影部分用于帧同步,其余部分的导频比特值是“1”。每个具有全是“1”的比特值的纵向序列用于相干检测的信道评估。在表4和5中每个用阴影标出的具有长度15的纵向序列是用于帧同步的表1中已经说明过的帧同步字。下面的表6中示出了表4和5中所示的用于帧同步的纵向序列与表1中的帧同步字之间的映像关系。
表6
    Npilot 导频比特的位置#  导频码型的15比特长度纵向序列
     3        0              C1
       1              C2
     4        1              C1
       2              C2
     5        0              C1
       1              C2
       3              C3
       4              C4
    6        1              C1
       2              C2
       4              C3
       5              C4
    7        1              C1
       2              C2
       4              C3
       5              C4
    8        1              C1
       3              C2
       5              C3
       7              C4
如上所述,代码C1,C2,C3和C4形成类E和F中的代码对。特别是,当上行链路DPCH Npilot=3时,从下面的表7可以知道各比特#的C1和C2的关系。
表7
在表7中,Ci,j代表一个导频比特码型的Ci的第(j)个时隙比特。当上行链路DPCH Npilot=6时,从下面的表8可以知道各比特#的C1和C2,以及C3和C4之间的关系。
表8也是在这个例子中,在表8中,Ci,j代表一个导频比特码型Ci的第(j)个时隙比特。本发明可以便利地通过使用导频比特码型的相应的代码关系知道压缩模式中的未发送时隙的信息,特别是,可以恢复帧中的导频比特码型,用于帧同步。首先,可以如下用类E和F表示在上行链路导频比特中使用的四个代码。
E={C1,C2},F={C3,C4}
从表7和8中可以知道,每个类中的对应的两个代码具有如下面方程式7和8表示的关系。
Ci,j=-Ci+(j+7)mod 15                             (7)
Ci+1.j=-Ci,(j+8)mod 15                          (8)
其中,i=1,3,j=0~14,它们是整数。据此,当以压缩模式通过8个时隙发送一个上行链路DPCCH时,利用方程式(7)恢复下面方程式(9)中表示的导频比特码型C1之中的未发送信息比特。
 15-γ,8≤γ≤14                                 (9)
在一个类似的方法中,可以利用方程式(8)恢复导频比特码型C2的未发送信息比特。结果,利用方程式(7)和(8)不仅可以恢复类E中的导频比特码型的未发送信息比特,而且可以恢复压缩模式中的类F中的所有导频比特码型的未发送信息比特。例如,用方程式(7)恢复导频比特码型C3的(15-γ)未发送信息比特,和用方程式(8)恢复导频比特码型C4的未发送信息比特。由于相同类中的两个代码具有互补关系,使这种方法成为可能。
图4示出了3GPP RAN标准的一个下行链路DPCH的结构,其中参数“k”代表一个DPCH中一个时隙中的比特总数。参数“k”与SF(扩展因数)有关,利用(SF)=512/2k,将SF固定为4~512。下面的表9示出了一部分有关下行链路DPCCH的字段信息。
表9:DPDCH和DPCCH字段
时隙格式#I 信道比特率(kbps) 信道码元率(ksps) SF 比特/时隙    DPDCH比特/时隙         DPCCH比特/时隙  每天线电帧发送的时隙NTr
NData1  NData2  NTPC  NTFCI  Npilo
   0     15     7.5  512   10     0  4     2     0     4     15
   0A     15     7.5  512   10     0  4     2     0     4     8-14
   0B     30     15  256   20     0  8     4     0     8     8-14
   1     15     7.5  512   10     0  2     2     2     4     15
   1B     30     15  256   20     0  4     4     4     8     8-14
   2     30     15  256   20     2  14     2     0     2     15
   2A     30     15  256   20     2  14     2     0     2     8-14
   2B     60     30  128   40     4  28     4     0     4     8-14
   3     30     15  256   20     2  12     2     2     2     15
   3A     30     15  256   20     2  10     2     4     2     8-14
   3B     60     30  128   40     4  24     4     4     4     8-14
   4     30     15  256   20     2  12     2     0     4     15
   4A     30     15  256   20     2  12     2     0     4     8-14
   4B     60     30  128   40     4  24     4     0     8     8-14
   5     30     15  256   20     2  10     2     2     4     15
   5A     30     15  256   20     2  8     2     4     4     8-14
   5B     60     30  128   40     4  20     4     4     8     8-14
   6     30     15  256   20     2  8     2     0     8     15
   6A     30     15  256   20     2  8     2     0     8     8-14
   6B     60     30  128   40     4  16     4     0     16     8-14
   7     30     15  256   20     2  6     2     2     8     15
   7A     30     15  256   20     2  4     2     4     8     8-14
   7B     60     30  128   40     4  12     4     4     16     8-14
   8     60     30  128   40     6  28     2     0     4     15
   8A     60     30  128   40     6  28     2     0     4     8-14
   8B     120     60  64   80    12  56     4     0     8     8-14
   9     60     30  128   40     6  26     2     2     4     15
   9A     60     30  128   40     6  24     2     4     4     8-14
   9B     120     60  64   80    12  52     4     4     8     8-14
   10     60     30  128   40     6  24     2     0     8     15
   10A     60     30  128   40     6  24     2     0     8     8-14
   10B     120     60  64   80    12  48     4     0     16     8-14
   11     60     30  128   40     6  22     2     2     8     15
   11A     60     30  128   40     6  20     2     4     8     8-14
   11B     120     60  64   80    12  44     4     4     16     8-14
   12     120     60  64   80    12  48     4     8*     8     15
   12A     120     60  64   80    12  40     4    16*     8     8-14
   12B     240     120  32  160    24  96     8    16*    16     8-14
   13     240     120  32  160    28  112     4     8*     8     15
   13A     240     120  32  160    28  104     4    16*     8     8-14
   13B     480     240  16  320    56  224     8    16*     16     8-14
   14     480     240  16  320    56  232     8     8*     16     15
   14A     48     240  16  320    56  224     8    16*     16     8-14
   14B     960     480  8  640    112  464     16    16*     32     8-14
   15     960     480  8  640    120  488     8     8*     16     15
   15A     960     480  8  640    120  480     8    16*     16     8-14
   15B    1920     960  4  1280    240  976     16    16*     32     8-14
   16    1920     960  4  1280    248  1000     8     8*     16     15
   16A    1920     960  4  1280    248   992     8    16*     16     8-14
DPCH可以有或没有TFCI。特别是,在压缩模式中使用了一个不同于一般模式中使用的时隙格式。即,在压缩模式中,如表9中所示,增加了两个具有加到其上的独立索引号的模式,其中“A”类型时隙格式用作一种发送时间减少方法,而“B”类型时隙格式用作一种扩展因数减小方法。例如,时隙格式#3是用于一般模式中的字段信息,而时隙格式#3A和#3B是用于压缩模式下的字段信息。从整个表9中可知,在一般模式中每一帧的时隙发送数量是15,而在压缩模式下最少是8。也就是说,即使在压缩模式下也发送至少8个时隙信息。在下行链路压缩模式下将B类型时隙格式用作扩展因数减小方法的情况下,当码元被重复时,发送两倍的TPC比特,和两倍的导频字段比特。例如,在一般模式中用x1,x2,x3,…,Xx代表两个字段的比特,在压缩模式下的两个字段的对应比特以x1,x2,x1,x2,x3,x4,x3,x4,…,Xx,Xx的顺序被重复发送。下面的表10中示出了应用本发明的一个下行链路DPCCH的导频码元码型,其中在一个时隙中的导频码元Npilot形成2,4,8和16比特导频码元码型。
表10:具有Npilot=2,4,8和16的下行链路DPCCH的导频比特码型
在表10的导频码型中,整个导频码元中的阴影部分用于帧同步,其余部分具有值“1”。具有“1”的码元值的纵向序列用于相干检测的信道评估。表11中示出了表10中用于帧同步的纵向序列与表1中帧同步字之间的映像关系。
表11
码元率 码元# 信道 导频码型的15比特长度纵向序列
Npilot=2     0  I-CH     C1
 Q-CH     C2
 Npilot=4     1  I-CH     C1
 Q-CH     C2
 Npilot=8     1  I-CH     C1
 Q-CH     C2
    3  I-CH     C3
 Q-CH     C4
 Npilot=16     1  I-CH     C1
 Q-CH     C2
    3  I-CH     C3
 Q-CH     C4
    5  I-CH     C5
 Q-CH     C6
    7  I-CH     C7
 Q-CH     C8
特别是在下行链路DPCH Npilot=8的情况下,从下面的表12可以知道各个码元#的C1和C2,以及C3和C4之间的关系。
表12
Figure A0110400000221
表12中的Ci,j代表导频码元码型Ci的第(j)个码元。本发明可以便利地通过利用这种下行链路导频码元码型码的关系知道有关压缩模式下未发送时隙的信息,特别是可以便利地恢复帧中的导频码元码型,以便帧同步。将下行链路导频码元码型中使用的八个代码分类在如下的E,F,G,H类中。
E={C1,C2},F={C3,C4},G={C5,C6},H={C7,C8}
从表12可以知道,每个类中的两个代码具有在方程式7和8中已经解释过的关系,除了,在下行链路的情况下,i=1,3,5,7,和j=0~14,它们都是整数。因此,当在压缩模式中通过8个时隙发送下行链路DPCCH时,利用方程式(7)恢复导频码元C1的多个未发送信息比特,和利用方程式(8)恢复导频码元C2的多个未发送信息比特。结果,通过使用方程式(7)和(8)不仅恢复了类E中的导频比特码型的未发送信息比特,而且恢复了类F,G和H中的压缩模式下未发送的所有导频比特码型。例如,通过方程式(7)恢复导频比特码型C1,C3,C5,C7的(15-γ)未发送信息比特,和通过方程式(8)恢复C8。由于在相同类中的两个代码具有互补关系,因而使得这种方法成为可能。下面的表13示出了在考虑到STTD(时空发射分集)的表10中的所示的导频码元码型的导频码元码型。
表13:在Npilot=2,4,8和16时,STTD中下行链路DPCCH的导频比特码型
Figure A0110400000241
通过一种图5中所示原理的STTD编码产生表13中的导频码元码型。下面的表14中示出了表13中纵向序列与表1中帧同步字的映像关系。
表14
码元率 码元# 信道 导频码型的15比特长度纵向序列
Npilot=2     0  I-CH     -C1
 Q-CH     C2
 Npilot=4     0  I-CH     -C1
 Q-CH     C2
 Npilot=8     1  I-CH     -C3
 Q-CH     C4
    3  I-CH     C1
 Q-CH     -C2
 Npilot=16     1  I-CH     -C3
 Q-CH     C4
    3  I-CH     C1
 Q-CH     -C2
    5  I-CH     -C7
 Q-CH     C8
    7  I-CH     C5
 Q-CH     -C6
对如此STTD编码的信息进行STTD解码,并且根据上述的导频码元码型恢复方法恢复其未发送时隙信息。可以用图6中所示的装置的系统代表至此所述的恢复方法。图6示出了一个恢复用于在本发明的压缩模式下帧同步化的导频码型的装置的方框图。
由于在压缩模式中发送至少8个时隙,因而在一个帧中穿孔多达7个时隙。穿孔之前和之后的帧同步字的函数可以如下表示。
C1(t),C2(t),C3(t),…,C8(t)
C1(t)P(t),C2(t)P(t),C3(t)P(t),….,C8(t)P(t)      (10)
穿孔并且在压缩模式中发送的帧具有附加在其上的噪声分量,表示如下。 C ^ 1 ( t ) P ( t ) , C ^ 2 ( t ) P ( t ) , C ^ 3 ( t ) P ( t ) , · · · , C ^ 8 ( t ) P ( t ) - - - ( 11 )
然后,根据前面方程式中表示的导频码元码型恢复方法恢复如下面方程式(12)中表示的接收的帧同步字,并且把恢复的帧同步字施加于图7和8中所示的用于帧同步化的相关器。 C ^ 1 ( t ) , C ^ 2 ( t ) , C ^ 3 ( t ) , · · · , C ^ 8 ( t ) - - - ( 12 )
图7示出了根据本发明一个优选实施例的用于帧同步的自相关装置的方框图,图8示出了根据本发明一个优选实施例的用于帧同步的互相关装置的方框图,其中Tframe代表一个帧周期,在当前3GPP标准中它是10msec。一旦根据恢复方法恢复了帧同步字,将恢复的帧同步字施加到图7中的自相关器,或图8中的互相关器。结果,本发明即使在压缩模式下也可以通过使用与一般模式相同的方法和装置方便地获得和识别上行链路和下行链路DPCH的帧同步,并且也能够实现同步失调检测。把经过一个上层从网络给出的一段帧时间周期上的相关器输出与一个特定的阈值电压比较之后,接收机方向上层报告帧同步的成功或失败。
下面参考附图说明根据本发明一个优选实施例的识别帧同步和检测帧同步失调的方法。这个实施例利用一个参数“Z”实现了帧同步并且检测帧同步失调。参数“Z”是通过组合导频码型的自相关函数和互相关函数而获得的。图9示出了3GPP RAN标准的SCCPCH(次级共用控制物理信道)的结构。SCCPCH用于发送FACH(前向接入信道)和一个寻呼信道。下面的表15示出了有关SCCPCH的字段信息。表15
时隙格式#i 信道比特率(Ksps) 信道码元率(ksps)     S.F. 比特/帧 比特/时隙 Ndata Npilot  NTFCI
    30     15     256  300     20     20     0     0
    1     30     15     256  300     20     12     8     0
    2     30     15     256  300     20     18     0     2
    3     30     15     256  300     20     10     8     2
    4     60     30     128  600     40     40     0     0
    5     60     30     128  600     40     32     8     0
    6     60     30     128  600     40     38     0     2
    7     60     30     128  600     40     30     8     2
    8     120     60     64  1200     80     72     0     8*
    9     120     60     64  1200     80     64     8     8*
    10     240     120     32  2400     160     152     0     8*
    11     240     120     32  2400     160     144     8     8*
    12     480     240     16  4800     320     312     0     8*
    13     480     240     16  4800     320     296     16     8*
    14     960     480     8  9600     640     632     0     8*
    15     960     480     8  9600     640     616     16     8*
    16     1920     960     4  19200     1280     1272     0     8*
    17     1920     960     4  19200     1280     1256     16     8*
S.F.:扩展因数。
表10中具有8比特或16比特导频码元Npilot的时隙代表应用本发明的SCCPCH的导频码元码型。在表10所示的下行链路导频码型中,所有导频码元中的阴影部分用于帧同步,其余的导频码元具有值“1”。全是码元值“1”的纵向序列用于相干检测的信道评估。表13示出了考虑到STTD的表10中的导频码元码型。当网络方具有分集天线或利用开环发射分集发送SCCPCH时,表13中的导频码元码型是通过将SCCPCH码元进行如图5中所示的STTD编码产生的。
下一代移动通信系统的接收机一方利用至此所述的信道导频码型获得帧同步是十分重要的。自相关和互相关的组合和同时使用便利了帧同步识别和帧同步失调检测的双重检查。只要同时参考图7中的自相关器和互相关器的输出,就能够实现在一个帧中的双重检查。如上所述,图7中示出了根据本发明一个优选实施例的用于帧同步识别和帧同步失调检测的一个自相关装置的方框图,其中当将自相关器的输出与一个为了帧同步的识别预定的正“+”阈值比较时,利用图1A和1B中所示形式的自相关结果在帧中识别帧同步。如上所述,图8示出了根据本发明一个优选实施例的帧同步识别和帧同步失调检测的互相关装置的方框图,用于在互相关器的输出与一个用于帧同步识别的预定负“-”阈值比较时,利用图1B或2B中所示形式的互相关结果识别帧同步。在图7和8的相关器中,Tframe代表一个帧时间周期,在当前3GPP标准中它是10msec。但是,如果图7和8中的相关器各自使用,由于这两个相关器在帧同步识别和帧同步失调检测上与现有技术没有区别,因此,从根本上来说,本发明为了帧同步识别和帧同步失调检测而组合图7中的自相关器和图8中的互相关器的输出。本发明利用下面方程式13中所示的参数“Z”确定帧同步识别的成功。 Z = Σ i = 1 α R i ( 0 ) - Σ i = 1 α / 2 ( R 2 i - 1,2 i ( 7 ) + R 2 i , 2 i - 1 ( 8 ) 3 , α = 2,4,6,8 - - - ( 13 )
方程式(13)具有一个不存在无线电信道失真的先决条件,并且参数“Z”是一个用于确定帧同步识别成功的基准。当确定帧同步识别成功时,参数“Z”具有如下面方程式(14)表示的值。 Z = α / 2 • ( 30 - ( - 30 ) ) = α • 30 - - - ( 14 )
在方程式(14)中的参数“Z”大于一个预定阈值β的情况下,将这种情况确定为帧同步识别成功的情况。相反,在方程式(14)中的参数“Z”小于预定阈值β的情况下,将这种情况确定为帧同步识别失败的情况。根据SNR(信噪比)灵活地设置阈值β。如果当前SNR高,那么把阈值β设定得比较高,如果当前SNR低,那么将阈值β设定得比较低。例如,在本实施例中,把阈值设定为“0”,以应付代表正“+”的最大相关值的自相关值小于代表负“-”最大相关值的互相关值时的情况,或应付当代表负“-”最大相关值的互相关值大于代表正“+”最大相关值的自相关值时的情况,在通过设定阈值β=0可以检测帧同步失调时,这种情况在很差的信道条件下可能偶尔出现。图10示出了根据本发明一个优选实施例的用于帧同步识别和帧同步失调检测的相关器的系统的方框图,参考图10说明本发明的相关器系统。图10中的相关器系统具有α=2。
参考图10,第一相关器1和第二相关器2进行接收的帧同步字的自相关,第三相关器3和第四相关器4进行接收的帧同步字的互相关。当提供了第一相关器1的输出R1(0)和第二相关器2的输出R2(0)的和“R1(0)+R2(0)”,并且提供了第三相关器3的输出R1,2(7)和第四相关器4的输出R2,1(8)的和“R1,2(7)+R2,1(8)”时,可以计算参数“Z”。
如上所述的,在求和步骤中,在进行互相关期间,将自相关结果延迟一定的时隙时间周期。然后,将自相关结果和互相关结果负相加。在进行自相关的步骤中,把恢复的帧同步字分类到对应于帧同步字对的多个类中。然后,自相关每一类中的第一帧同步字和第二帧同步字,即,每个代码对,以产生第一自相关结果和第二自相关结果。然后,将第一自相关结果与第二自相关结果相加,产生一个最终自相关结果。在进行互相关的步骤中,首先把恢复的帧同步字分类到对应于帧同步字对的多个类中。然后,相对于一个第一帧同步字对一个第二帧同步字进行互相关运算,以获得第一互相关结果,并且相对于第二帧同步字对第一帧同步字进行互相关运算,以获得一个与第一互相关结果相比延迟一个时间周期的第二互相关结果。然后,把第一互相关结果与第二互相关结果相加,获得最终互相关结果。
通过负相加求和的互相关结果“R1,2(7)+R2,1(8)”和求和的自相关结果“R1(0)+R2(0)”可以获得方程式(13)表示的参数“Z”。由于这个原因,本发明使得可以在如方程式(14)所示的α=2的情况下获得一个两倍于现有技术的相关值,这有使得能够更可靠地识别帧同步。然后,把计算的参数“Z”与一个预定阈值β比较。如果参数“Z”大于阈值β,那么确定帧同步识别成功,如果参数“Z”小于阈值β,那么确定帧同步识别失败。此后,接收机方将确定的结果报告给上层。
如上所述,在本发明的压缩模式下利用导频码型同步化帧的方法具有如下优点:
第一,即使在W-CDMA移动通信系统操作在压缩模式中的情况下,不发送一个帧中的所有15个时隙,本发明允许利用专用导频码型恢复帧中的完整帧同步字。由于即使在压缩模式下也可以使用恢复的帧同步字的相关,因而可以利用与一般模式相同的装置和方法获得帧同步。
第二,导频码型的自相关函数和互相关函数的适当组合使得能够容易地识别帧同步,或易于检测帧同步失调,这使得能够快速同步化
第三,把帧同步识别或帧同步失调检测中的更可靠的相关输出值应用到所有使用本发明的导频码型的下一代移动通信系统,为使用相同导频码型的所有系统提供了相同的基准。
熟悉本领域的人员应当知道,可以对在本发明的压缩模式下利用导频码型同步化帧的方法进行各种修改和改变,而不脱离本发明的精神和范围。因此,本发明将包括本发明的各种修改和改变,只要它们在所附权利要求及其等同物的范围内。

Claims (14)

1.一种在压缩模式中利用导频码型同步化帧的方法,包括步骤:
(a)将要通过一个帧发送的帧同步字的导频比特序列穿孔希望数量的时隙;
(b)接收一系列的穿孔帧同步字的代码;
(c)利用接收的系列代码的相关恢复帧中的帧同步字;
(d)利用恢复的帧同步字的相关获得有关一个信道的帧同步。
2.根据权利要求1所述的方法,其中步骤(c)包括步骤:
将多个代码分类到每个具有固定数量代码的类中,并且利用每个类中的代码对的Ci,j=-Ci+1(j+7)mod 15的关系恢复由于穿孔而未发送的代码比特,其中Ci,j代表一个导频比特码型Ci的第(j)个时隙比特,i=1,3,5,7,j=0~14。
3.根据权利要求1所述的方法,其中步骤(c)包括步骤:
把多个代码分类到多个类中,和
利用每个类中的代码对的Ci+1,j=-Ci,(j+8)mod 15的关系恢复由于穿孔而未发送的代码比特,其中Ci,j代表一个导频比特码型Ci的第(j)个时隙比特,i=1,3,5,7,j=0~14。
4.根据权利要求1所述的方法,其中步骤(d)包括步骤:
把恢复的帧同步字分类到帧同步字对的多个类中,和
利用每个类中的帧同步字对的至少一个互相关函数实现信道的帧同步。
5.根据权利要求4所述的方法,其中,如果恢复的帧同步字是8个,那么可以把它们分类到以下四类中,
E={C1,C2},F={C3,C4},G={C5,C6},H={C7,C8},
每一类中的每个代码对可以表达为如下的方程式的互相关函数, 其中i,j=1,2,…,8。
6.根据权利要求1所述的方法,其中通过帧同步字的至少一个自相关函数实现步骤(d)。
7.根据权利要求6所述的方法,其中,如果恢复的帧同步字是8个,那么可以把它们分类到下面四类中,
E={C1,C2},F={C3,C4},G={C5,C6},H={C7,C8},
每一类中的每对代码可以表达为如下的方程式的自相关函数,
Figure A0110400000033
8.根据权利要求1所述的方法,其中利用恢复的帧同步字的自相关和互相关实现步骤(d)。
9.根据权利要求8所述的方法,其中步骤(d)包括步骤:
(a)自相关作为导频比特序列的所恢复的帧同步字,以提供最终自相关结果,
(b)互相关所恢复的帧同步字,以提供最终互相关结果,
(c)负相加自相关结果和互相关结果,
(d)将相加的相关结果与一个预定阈值β比较,
(e)根据比较的结果确定接收的信道的帧同步成功,和
(f)将确定的结果报告给一个上层。
10.根据权利要求9所述的方法,其中,在互相关步骤中,把恢复的帧同步字分类到对应于帧同步字对的多个类中,并且一个类中的帧同步字对的一个字是循环移位7个比特并且倒置的另一个字。
11.根据权利要求9所述的方法,其中步骤(c)包括步骤:
在执行互相关的同时把自相关结果延迟一定的时隙时间周期,和负相加自相关结果和互相关结果。
12.根据权利要求9所述的方法,其中根据SNR比率将阈值β设定为等于“0”或大于“0”的值。
13.根据权利要求9所述的方法,其中步骤(a)包括步骤:
将恢复的帧同步字分类到对应于帧同步字对的多个类中,和
相关每个类中的第一帧同步字和第二帧同步字,以提供一个第一自相关结果和一个第二自相关结果,和
相加第一自相关结果和第二自相关结果,以提供最终自相关结果。
14.根据权利要求9所述的方法,其中步骤(b)包括步骤:
把恢复的帧同步字分类到对应于帧同步字对的多个类中,和
把每一类中的第二帧同步字相对于一个第一帧同步字互相关,以获得第一互相关结果,和把每一类中的第一帧同步字相对于第二帧同步字互相关,以获得第二互相关结果,和
相加第一互相关结果和第二互相关结果,以获得最终互相关结果。
CNB011040009A 2000-02-16 2001-02-16 在压缩模式中利用导频码型同步化帧的方法 Expired - Fee Related CN1231002C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020000007328A KR100720570B1 (ko) 2000-02-16 2000-02-16 이동 통신 시스템에서의 프레임 동기 방법 및 압축 모드 지원 방법
KR7328/2000 2000-02-16
KR7602/2000 2000-02-17
KR1020000007602A KR100720542B1 (ko) 2000-02-17 2000-02-17 이동 통신 단말에서 프레임 동기의 성공 여부를 검출하는 방법

Publications (2)

Publication Number Publication Date
CN1309485A true CN1309485A (zh) 2001-08-22
CN1231002C CN1231002C (zh) 2005-12-07

Family

ID=26637128

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011040009A Expired - Fee Related CN1231002C (zh) 2000-02-16 2001-02-16 在压缩模式中利用导频码型同步化帧的方法

Country Status (5)

Country Link
US (1) US6947476B2 (zh)
EP (1) EP1126637B8 (zh)
JP (1) JP3479513B2 (zh)
CN (1) CN1231002C (zh)
AT (1) ATE510368T1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1985451B (zh) * 2004-06-24 2010-12-15 摩托罗拉公司 用于接入无线通信系统的方法
CN101145820B (zh) * 2007-07-26 2012-05-02 威盛电子股份有限公司 用于码分多址系统的信号强度评估系统及方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406104B2 (en) * 2000-08-25 2008-07-29 Lin Yang Terrestrial digital multimedia/television broadcasting system
JP3399923B2 (ja) 2000-11-29 2003-04-28 松下電器産業株式会社 通信端末装置および通信端末装置における復号化方法
US7012966B2 (en) * 2001-05-21 2006-03-14 At&T Corp. Channel estimation for wireless systems with multiple transmit antennas
US7103115B2 (en) * 2001-05-21 2006-09-05 At&T Corp. Optimum training sequences for wireless systems
KR100596413B1 (ko) * 2001-10-24 2006-07-03 삼성전자주식회사 송/수신 다중 안테나를 포함하는 이동 통신 장치 및 방법
US7580390B2 (en) * 2001-11-26 2009-08-25 Qualcomm Incorporated Reducing handover frequency error
JP4005796B2 (ja) * 2001-11-30 2007-11-14 富士通株式会社 電力制御回路および無線送信装置
JP3860762B2 (ja) * 2002-02-14 2006-12-20 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、チャネル同期確立方法、及び移動局
KR100886534B1 (ko) * 2002-03-27 2009-03-02 삼성전자주식회사 코드 분할 다중 접속 통신 시스템에서 시공간 송신 다이버시티 방식을 이용한 채널 신호 수신 장치 및 방법
ATE391361T1 (de) * 2002-08-13 2008-04-15 Alcatel Lucent Verfahren zur leistungssteuerung des tfci- datenfeldes
KR100944175B1 (ko) * 2002-11-22 2010-02-26 인터디지탈 테크날러지 코포레이션 복소 가중치 생성(cwg) 알고리즘을 이용한 레이크 수신기에서의 채널 이득 추정
US7474643B2 (en) * 2003-10-02 2009-01-06 Qualcomm Incorporated Systems and methods for communicating control data using multiple slot formats
KR100929091B1 (ko) * 2004-02-14 2009-11-30 삼성전자주식회사 이동통신 시스템에서 제어 정보 전송 장치 및 방법
KR101053610B1 (ko) * 2004-06-25 2011-08-03 엘지전자 주식회사 Ofdm/ofdma 시스템의 무선자원 할당 방법
US7346116B2 (en) * 2004-07-01 2008-03-18 Zarbana Digital Fund Llc Systems and methods for rapid signal detection and identification
US7424277B2 (en) * 2005-08-25 2008-09-09 Intel Corporation Device, system and method of wireless signal detection
KR101055734B1 (ko) * 2005-10-31 2011-08-11 엘지전자 주식회사 코드 분할 다중 접속 방식 이동통신 시스템에서의 초기동기 추정 방법 및 그 장치
US8599824B2 (en) * 2008-01-11 2013-12-03 Broadcom Corporation Method and system for bluetooth conditional synchronization
JP5401115B2 (ja) * 2009-02-13 2014-01-29 興和株式会社 生物由来の生理活性物質の測定方法及び測定装置
CN105119699A (zh) * 2010-10-01 2015-12-02 交互数字专利控股公司 无线发射/接收单元wtru及在该wtru中使用的方法
CN103139125B (zh) * 2011-12-02 2016-04-13 华为技术有限公司 下行数据发送、接收方法及基站与用户终端
US8724662B2 (en) * 2012-06-25 2014-05-13 Johnson & Johnson Vision Care, Inc. Wireless communication protocol for low power receivers
CN110535546B (zh) * 2019-07-22 2020-10-27 西安交通大学 一种基于稀疏多径感知的滑动互相关帧检测方法
CN114666030B (zh) * 2022-05-25 2022-08-26 华中科技大学 一种混合井下信号编码与解码方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663957A (en) * 1995-07-12 1997-09-02 Ericsson Inc. Dual mode satellite/cellular terminal
JP3336836B2 (ja) * 1995-11-28 2002-10-21 三菱電機株式会社 同期判定回路、復調器及び通信システム
EP0905941B1 (en) * 1997-02-13 2006-12-27 Ntt Mobile Communications Network Inc. Frame synchronizing circuit
US5991330A (en) * 1997-06-27 1999-11-23 Telefonaktiebolaget L M Ericsson (Pub1) Mobile Station synchronization within a spread spectrum communication systems
US6118825A (en) * 1997-08-11 2000-09-12 Sony Corporation Digital data transmission device and method, digital data demodulation device and method, and transmission medium
US6549544B1 (en) * 1999-11-10 2003-04-15 Ibiquity Digital Corporation Method and apparatus for transmission and reception of FM in-band on-channel digital audio broadcasting
US6618367B1 (en) * 1999-12-16 2003-09-09 Agere Systems Inc. Transmission frame structure for a satellite digital audio radio system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1985451B (zh) * 2004-06-24 2010-12-15 摩托罗拉公司 用于接入无线通信系统的方法
CN101145820B (zh) * 2007-07-26 2012-05-02 威盛电子股份有限公司 用于码分多址系统的信号强度评估系统及方法

Also Published As

Publication number Publication date
EP1126637B1 (en) 2011-05-18
JP2001268060A (ja) 2001-09-28
ATE510368T1 (de) 2011-06-15
JP3479513B2 (ja) 2003-12-15
CN1231002C (zh) 2005-12-07
US20010021236A1 (en) 2001-09-13
EP1126637A2 (en) 2001-08-22
EP1126637A3 (en) 2003-09-03
US6947476B2 (en) 2005-09-20
EP1126637B8 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
CN1231002C (zh) 在压缩模式中利用导频码型同步化帧的方法
US6810264B1 (en) Power controlling apparatus and method in mobile communication system
CN100423464C (zh) 用于改进小区检测的方法和设备
CN100338887C (zh) 控制选通发送通信系统的方法和设备
AU729076C (en) Initial acquisition and frame synchronization in spread spectrum communication system
EP1913722B1 (en) Dedicated control channel detection for enhanced dedicated channel
CN100393020C (zh) 在移动通信系统中发送控制信息的装置和方法
CN1533082A (zh) 用于发送和接收可变速率数据的方法和装置
US6567461B1 (en) Device and method for performing frame sync using sync channel in mobile communication system
CN1311968A (zh) 用于快速基站同步和扇区识别的方法,设备,和系统
CN1671081A (zh) 向移动通信系统的基站分配辅助同步码的方法
CN1398458A (zh) 下行链路中的多用户检测支持
US20050201486A1 (en) Apparatus and method for transmitting control information in a mobile communication system
CN101569228B (zh) 在增强型发射机和接收机中降低功率的方法
CN1901715A (zh) 使用码分多址的时分双工通信系统的蜂窝小区查找过程
CN101574011B (zh) 用于在发射机和接收机处降低功率消耗的方法
CN1582001A (zh) Td-scdma系统中直放站获取转换点的方法
CN101026390A (zh) 一种准确判定下行同步时隙的方法
CN1430831A (zh) 用于使接收机与发射机同步的方法
CN1307810C (zh) 宽频带码分多址系统的时槽同步方法
KR100720570B1 (ko) 이동 통신 시스템에서의 프레임 동기 방법 및 압축 모드 지원 방법
CN101383634B (zh) 一种搜索下行同步序列的方法及装置
CN103905174A (zh) 一种提升系统容量的方法、装置及系统
CN1642057A (zh) 码分多址通信系统小区搜索中的初始同步方法
KR100720542B1 (ko) 이동 통신 단말에서 프레임 동기의 성공 여부를 검출하는 방법

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051207

Termination date: 20170216