CN1307380C - 阀及其制造方法 - Google Patents

阀及其制造方法 Download PDF

Info

Publication number
CN1307380C
CN1307380C CNB021527490A CN02152749A CN1307380C CN 1307380 C CN1307380 C CN 1307380C CN B021527490 A CNB021527490 A CN B021527490A CN 02152749 A CN02152749 A CN 02152749A CN 1307380 C CN1307380 C CN 1307380C
Authority
CN
China
Prior art keywords
nickel
valve
base alloy
equal
smaller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB021527490A
Other languages
English (en)
Other versions
CN1431416A (zh
Inventor
近崎充夫
松下静雄
国谷治郎
清时芳久
竹岛菊男
坂本�明
千叶良照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN1431416A publication Critical patent/CN1431416A/zh
Application granted granted Critical
Publication of CN1307380C publication Critical patent/CN1307380C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/32Means for additional adjustment of the rate of flow
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/005Particular materials for seats or closure elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/12Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with wedge-shaped arrangements of sealing faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6851With casing, support, protector or static constructional installations
    • Y10T137/7036Jacketed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lift Valve (AREA)
  • Powder Metallurgy (AREA)
  • Sliding Valves (AREA)

Abstract

本发明的课题是提供不含钴、具有优秀的耐磨损性、耐烧损性的阀。通过粒径小的硅化物粒子或者硼化物粒子微细地分散的镍基合金形成阀体(2)及阀箱(3)的阀座(4、5),通过低熔点的由镍基合金构成的插入部件将该阀座与阀体或者阀箱进行液态扩散接合。

Description

阀及其制造方法
技术领域
本发明涉及阀及其制造方法,特别是关于用于阀座的材料和阀座的形成方法。本发明的阀可以用于涡轮机、泵、送风机等的流体机械、内燃机、化学设备或原子能设备等。
背景技术
对于阀要求不易磨损、不容易产生烧损。也需要不易产生金属磨损、和腐蚀。耐腐蚀性高的比较好。以往,在用于各种的流体机械、化学设备或者原子能设备的安全阀、球型阀、闸门阀、单向阀、控制阀、放汽阀或者蝶型阀上,一直使用着将被称为钨铬钴合金的钴基合金在阀座上堆焊的构造。但是,钴资源的枯竭危机,以及对原子能设备要求无钴化,期望开发不含钴的阀座材料。
在特开平11-63251号公报中,记载了将在包含铬和硼及硅的镍基合金上使硼化铬粒子分散的合金用于阀座材料上,在阀体或阀箱上堆焊的结构。另外,在特开昭62-1837号公报及美国特许第4754950号的说明书中,记载了由通过铬-镍-铁系的铁基析出硬化型合金形成阀体和阀箱的一方的阀座、通过硬度(Hv)400以上的镍基合金形成另一方的阀座而成的阀。记载了硬度(Hv)400以上的上述镍基合金包含碳、硅、硼及铬。还有,记载了上述镍基合金在阀箱或阀体上通过堆焊、钎焊或扩散接合被接合。但是,具体给出示例的只是通过堆焊而接合的构造。
本发明的发明者们确认在金属组织的基质上使硅化物粒子和硼化物粒子的一方或者两方细微地分散的镍基合金具有延展性、抗热或者机械的冲击强,另外耐磨损性及耐烧损性优良,适合用于阀座。但是他们发现,将硅化物粒子或硼化物粒子分散的镍基合金在阀座上堆焊的情况下,焊接时镍基合金熔化,成为含有硅化物或硼化物、粗大的树枝状凝固组织。具有树枝状凝固组织的镍基合金延展性低、抗热或机械的冲击弱、容易破损。
本发明的目的是,提供即使在将在金属组织的基质上使至少硅化物粒子和硼化物粒子的一方分散的镍基合金用于阀座、将阀体和阀箱接合的情况下,也不产生树枝状凝固组织,能够维持硅化物粒子和硼化物粒子的微细的分散的状态的阀的制造方法,以及通过该制造方法而得到的阀。
发明内容
本发明的阀,其特征在于,由在金属组织的基质上使至少硅化物粒子和硼化物粒子的一方分散的镍基合金而构成的阀座与阀体或阀箱,通过比其熔点更低的中间层扩散接合,特别是最好是液态扩散接合。在液态扩散接合时只有中间层熔化,阀座或阀体或者阀箱的材料实质上不熔化。因此,阀座的材料即使在接合后也实质上具有接合前的初期的状态。另外,在液态扩散接合时,由于包含在阀座的材料中的合金元素的一部分及阀体或者阀箱的材料中所包含的合金元素的一部分扩散到中间层中,能够得到强度上更强的接合部。
若在阀座与阀体、或者阀座与阀箱之间夹置作为中间层的板部件(以下称为插入部件),加热至插入部件的熔点以上的温度时,插入部件在起初熔化,由于阀座、阀体或者阀箱中所含的合金元素逐渐扩散到熔化部分中而使熔点变高,在接合中凝固。即使将制造出的阀加热到插入部件的熔点,插入部件已经不能熔化。
通常阀体或阀箱的材料使用碳素钢或者低合金钢。也有使用不锈钢的情况。因此,最好插入部件的材料使用在阀座上使用的镍基合金或在阀体或阀箱上使用的碳素钢、低合金钢或者不锈钢所含的合金元素容易扩散的材料。由镍与硅及硼组成的镍基合金、或由镍和铬和硅及硼组成的镍基合金、以及由镍和磷组成的镍基合金最适宜作为本发明的插入部件。镍基合金的插入部件耐腐蚀性也优良。在使用这些插入部件制造阀的实施例中,在阀座的材料中所含的合金元素、和在阀体或阀箱的材料中所含的合金元素扩散到插入部件中的现象以被承认。还有,即使将制造出的阀加热到插入部件的熔点,接合部没有熔化。液态扩散接合最好在真空中进行。另外,最好一边对接合部加压一边加热。施加的压力为几十g/cm2就可以,最高也只是100g/cm2以下。因此,不会由于施加压力使接合部变形或者阀座的材料破裂。
作为与液态扩散接合类似的接合方法有钎焊,在钎焊时,由于不得不使用焊锡,以及向焊锡中阀座、阀体或阀箱的材料中所含的合金元素全部或几乎不扩散,接合部的强度很低,阀座容易剥落而不适宜。
为了在液态扩散接合时使插入部件容易熔化以及使熔化的插入部件不向接合部的外部流出,插入部件的厚度最好薄一些,20至50μm范围的厚度最佳。
分散到阀座的镍基合金中的硅化物粒子或硼化物粒子的化合物的形态没有特别的限定。可以使镍与硼的化合物、镍与硅的化合物、铬与硼的化合物等分散。
最好阀座的镍基合金使用包括硅占重量8%以下、硼占重量0至4%、铬占重量7至30%、碳占重量1.2%以下、钨占重量0至5%及铁占重量42以下(但不超过镍量的范围),在金属组织的基质上至少分散硅化物粒子的镍基合金。这种化学组成的镍基合金延展性很好,抗机械的冲击或热的冲击强。还有,摩擦系数小不容易产生金属磨损。硬度在Hv400以上,耐磨损性、耐腐蚀性良好。这样限定镍基合金的化学组成的理由是由于以下的原因。
含有硅及硼的原因是由于在金属组织的基质上使由Ni3Si、Ni2B、Cr2B等组成的硅化物或者硼化物分散而提高延展性和耐腐蚀性。与硼化物相比使硅化物扩散更有效,因此,硅是一定要含有的。硅的含量最好是重量的8%以下。如果含有超过重量的8%的情况下,就缺乏提高延展性的效果。在含有硼在重量的4%以下时延展性提高的效果最显著。
铬使耐腐蚀性提高并强化基质。当铬没有达到重量的7%时缺乏效果,如果超过重量的30%则韧性降低,所以最好在重量的7至30%的范围内。
碳的含有是由于可提高机械的强度和耐磨损性。通过含有碳例如可以形成铬碳化物,使材质强化。若含有碳超过重量的1.2%的情况下,延展性不良。
钨有着强化基质的作用。但是若超过重量的5%则材质变脆。
铁作为强化元素含有重量的42%以下。但是,应该使其含量不超过镍含量地考虑其他的合金成分的含有量来决定配合量。若铁的含量过高则延展性降低,另外,耐腐蚀性也不良。
用于阀座的镍基合金最好是将通过喷雾法制造镍基合金粉末后压缩成形、再进行HIP处理(Hot Isostatic Press)及粉末热间挤出加工而制造成板部件。另外,最好是将真空熔化的镍基合金的锭通过静水压挤出加工、再施行热间冲压加工而制造成板部件。这样制造出的板部件金属组织微细,另外硅化物粒子或硼化物粒子成为几十μm以下的粒状至块状的粒子分散到金属组织的基质中。通过使金属组织变得微细,更提高硬度和耐腐蚀性。
硅化物粒子及硼化物粒子的粒径对延展性有影响,越微细越提高延展性。在本发明的阀中,硅化物粒子及硼化物粒子的粒径最好为30μm以下。象这样含有微细的硅化物粒子或硼化物粒子的镍基合金与具有含有硅化物或硼化物的树枝状凝固组织的镍基合金相比,延展性提高1.5倍或其以上。
最好阀体及阀箱的一方的阀座由含有硅占重量8%以下、硼占重量0至4%、铬占重量7至30%、碳占重量1.2%以下、钨占重量0至5%及铁占重量10%以下、在金属组织的基质上至少分散硅化物粒子的镍基合金形成,另一方的阀座由含有硅占重量8%以下、硼占重量0至4%、铬占重量7至30%、碳占重量1.2%以下、钨占重量0至5%及铁占重量25至42%以下(但不超过镍量的范围)、在金属组织的基质上至少分散硅化物粒子的镍基合金形成。
根据本发明,提供一种阀,具有阀体和阀箱,在所述阀体和所述阀箱上配置阀座,设置在所述阀体上的阀座是由使化合物粒子分散的镍基合金形成的,其特征在于,所述化合物粒子是包含硅化物粒子和硼化物粒子中的至少之一的小于等于30μm的粒子,所述阀体和形成于所述阀体上的阀座,借助具有比各材料的熔点低的熔点的中间层扩散接合在一起,并且,前述镍基合金包含:占所述镍基合金的总重量的百分比小于等于8%的硅、0至4%的硼、7至30%的铬、小于等于1.2%的碳、0至5%的钨、小于等于42%的铁、比铁的量多的镍。
根据本发明,还提供一种阀,具有阀体和阀箱,在所述阀体和所述阀箱上配置阀座,设置在所述阀箱上的阀座是由使化合物粒子分散的镍基合金形成的,其特征在于,所述化合物粒子是包含硅化物粒子和硼化物粒子中的至少之一的小于等于30μm的粒子,所述阀箱和形成于所述阀箱上的阀座,借助具有比各材料的熔点低的熔点的中间层扩散接合在一起,并且,前述镍基合金包含:占所述镍基合金的总重量的百分比小于等于8%的硅、0至4%的硼、7至30%的铬、小于等于1.2%的碳、0至5%的钨、小于等于42%的铁、比铁的量多的镍。
优选地,铁占所述镍基合金的重量的百分比小于等于10%,所述阀箱和形成于所述阀箱上的阀座,借助具有比各材料的熔点低的熔点的中间层扩散接合在一起,并且,所述镍基合金包含:占所述镍基合金的总重量的百分比小于等于8%的硅、0至4%的硼、7至30%的铬、小于等于1.2%的碳、0至5%的钨、25至42%的铁、比铁的量多的镍。
优选地,铁占所述镍基合金的重量的百分比为25至42%,所述阀箱和形成于所述阀箱上的阀座,借助具有比各材料的熔点低的熔点的中间层扩散接合在一起,并且,所述镍基合金包含:占所述镍基合金的总重量的百分比小于等于8%的硅、0至4%的硼、7至30%的铬、小于等于1.2%的碳、0至5%的钨、小于等于10%的铁、比铁的量多的镍。
优选地,所述阀体和所述阀箱的材质包括碳素钢、低合金钢或不锈钢。
优选地,所述硅化物粒子和硼化物粒子包含粒径小于等于10μm的粒子。
优选地,所述中间层的材质由从镍和硅及硼所组成的镍基合金、或镍和铬及硼所组成的镍基合金、以及镍和磷所组成的镍基合金中选出的一个构成。
优选地,所述扩散接合为液态扩散接合。
优选地,所述阀用在原子能设备中。
附图说明
图1是根据本发明的实施例的闸门阀的剖面图。
图2是图1的闸门阀中的阀体的扩大图。
图3是图1的闸门阀中的阀箱的扩大图。
图4是表示阀体与阀座的接合部的模式图。
图5是根据本发明的其他实施例的单向阀的剖面图。
具体实施方式
(实施例1)
通过喷雾法制造包含重量百分比Si6.8%、B0.9%、Cr18%、C0.3%、W1.5%、Fe6.5%,其余部分由Ni及不可避不纯物组成的Ni基合金的粉末。使用粉末粒度分布为80至100筛眼的上述雾化粉在常温下压缩成型(压力8000kg/cm2),之后,为了追求粉末的密实化及气孔率的降低,在900℃的温度下,进行HIP处理及粉末热间挤出加工。挤出压力约为5000kg/cm2,棒杆速度10mm/s。通过HIP处理及粉末热间挤出加工后的金属微小组织观察,可以确认到硅化物成为粒径10μm以下的粒状或者块状分散在金属组织的基质上。在测定延展率时,为0.7%,可以确认到与具有树枝状凝固组织的情况相比,延展性提高1.5倍以上,效果优良。硬度为Hv580。从该镍基合金切削出厚度为5mm的环,与后述的通过液态扩散接合方法由碳素钢构成的阀体接合。
另外,通过真空熔化制造包含重量百分比Si4.4%、B0.2%、Cr12%、C0.7%、W1.6%、Fe38%,其余部分由Ni及不可避不纯物组成的Ni基合金的锭,在900℃的温度下,进行静水压挤出加工后,再在大约900℃的温度下进行热间冲压加工。通过金属微小组织观察,可以确认到粒径10μm以下的硅化物成为粒状或者块状分散在金属组织的基础上。从该镍基合金切削出厚度为5mm的环,与后述的通过液态扩散接合方法由碳素钢构成的阀体接合。接着,制造出如图1~图3所示构造的闸门阀。图1为闸门阀的剖面图,图2为阀体的扩大图,图3为阀箱的扩大图。
本实施例的闸门阀1由阀体2和阀箱3构成,在阀体侧上具有阀座4,在阀箱侧具有阀座5。通过将阀体2从图1的状态向上方拔出,则阀被开放,液状或者气体状的流体可以流动。阀体2及阀箱3的材料在此是由含碳量约占重量0.25%的碳素钢(JIS规格的SCPH2(相当于S25C))构成,为铸铁制。阀体2与阀座4之间的接合以及阀箱3与阀座5之间的接合都是通过在接合面将包含重量百分比Si4.5%和B3.2%、其余部分由Ni组成的镍基合金的插入部件夹置来进行。插入部件的厚度约40μm。插入部件的固态线温度约970℃,液态线温度约1000℃。液态扩散接合在接合温度1040℃、保持时间1小时、真空度2×10-4Torr、接合部的施加压力80g/cm2的条件下进行。插入部件在加热的最初,在达到1000℃时熔化,由于在熔化部中,含在阀体及阀座的材料中的合金元素扩散,使熔点上升而凝固,在接合进行中还原成固体。图4是模式地表示阀体2与阀座4通过插入部件被接合的状态的图,在阀体2与阀座4之间具有中间层(插入部件)20。
通过接合部的金属微小观察,可以确认到在阀座的镍基合金上,硅化物粒子及硼化物粒子保持着微细地分散的状态,阀座及阀体的材料扩散到插入部件中。在接合部没有发现空隙等的缺陷。
对于通过本实施例制造的闸门阀、和从以本实施例的过程中得到的镍基合金切削出焊接棒,在阀体及阀座上堆焊而形成阀座的闸门阀,进行在高温水中的摩擦系数的测定。试验面压为2000kg/cm2、滑动速度300mm/分。其结果,通过堆焊形成阀座的比较例的结果是摩擦系数为0.41至0.45,根据本实施例的结果是0.33至0.35,可以看出,摩擦系数小而不易产生金属磨损。
根据本实施例的闸门阀,不易产生由于溶存氧气的腐蚀,适合用于原子能装置。
(实施例2)
通过真空熔化制造包含重量百分比Si3.5%、B2.5%、Cr12%、C0.5%、Fe3%,其余部分由Ni及不可避不纯物组成的Ni基合金的锭,在900℃的温度下,进行静水压挤出加工后,再在大约900℃的温度下进行热间冲压加工。通过金属微小组织观察,可以确认到粒径10μm以下的硅化物粒子及硼化物粒子成为粒状或者块状分散在金属组织的基质上。该镍基合金的延展率约为0.7%。从该镍基合金切削出厚度为5mm的环,在阀体及阀箱上进行液态扩散接合。阀体及阀箱的材料是由含碳量约占重量0.25%的碳素钢构成,为铸铁。根据本实施例,制造出图5所示的单向阀。单向阀6由阀体7和阀箱8构成,在阀体7上接合阀座9,在阀箱8上接合阀座10。通过将阀体7从图5的状态打开,流体可以流动。在阀体7与阀座9之间以及阀箱8与阀座10之间,夹置插入部件。在接合温度950℃、保持时间1小时、真空度2×10-4Torr、施加压力50g/cm2的条件下进行液态扩散接合。对于插入部件,使用含有占重量11%的磷、其余部分由镍组成的Ni基合金。该插入部件的液态线温度及固态线温度大致相同,约为875℃。
通过进行接合后的金属微小观察,可以确认到,阀座、阀体及阀箱的材料中所含的合金元素扩散到插入部件一侧,而且,没有发现空隙等的接合缺陷。根据本实施例的单向阀,由于粒径小的硅化物粒子及硼化物粒子保持着微细地分散到金属组织的基质中,具有抗热及机械的冲击强不容易破损的特长。也不易产生由于溶存氧气的腐蚀,在用于原子能装置的情况下,耐泄漏性能良好。
根据本发明,能够实现阀座材料的无钴化。因此,适合用于原子能装置的阀。

Claims (9)

1.一种阀,具有阀体和阀箱,在所述阀体和所述阀箱上配置阀座,设置在所述阀体上的阀座是由使化合物粒子分散的镍基合金形成的,其特征在于,
所述化合物粒子是包含硅化物粒子和硼化物粒子中的至少之一的小于等于30μm的粒子,
所述阀体和形成于所述阀体上的阀座,借助具有比构成所述阀体的材料的熔点以及构成形成于所述阀体上的阀座的熔点的低的熔点的中间层扩散接合在一起,
前述镍基合金包含:占所述镍基合金的总重量的百分比小于等于8%的硅、小于等于4%的硼、7至30%的铬、小于等于1.2%的碳、小于等于5%的钨、小于等于42%的铁、比铁的量多的镍。
2.一种阀,具有阀体和阀箱,在所述阀体和所述阀箱上配置阀座,设置在所述阀箱上的阀座是由使化合物粒子分散的镍基合金形成的,其特征在于,
所述化合物粒子是包含硅化物粒子和硼化物粒子中的至少之一的小于等于30μm的粒子,
所述阀箱和形成于所述阀箱上的阀座,借助具有比构成所述阀箱的材料的熔点以及构成形成于所述阀箱上的阀座的材料的熔点低的熔点的中间层扩散接合在一起,
前述镍基合金包含:占所述镍基合金的总重量的百分比小于等于8%的硅、小于等于4%的硼、7至30%的铬、小于等于1.2%的碳、小于等于5%的钨、小于等于42%的铁、比铁的量多的镍。
3.如权利要求1所述的阀,其特征在于,设置在所述阀箱上的阀座由使化合物粒子分散的镍基合金形成,铁占设置在所述阀箱上的阀座的所述镍基合金的重量的百分比小于等于10%,所述阀箱和形成于所述阀箱上的阀座,借助具有比各材料的熔点低的熔点的中间层扩散接合在一起,并且,设置在所述阀箱上的阀座的镍基合金包含:占所述镍基合金的总重量的百分比小于等于8%的硅、小于等于4%的硼、7至30%的铬、小于等于1.2%的碳、小于等于5%的钨、25至42%的铁、比铁的量多的镍。
4.如权利要求1所述的阀,其特征在于,设置在所述阀箱上的阀座由使化合物粒子分散的镍基合金形成,铁占设置在所述阀箱上的阀座的所述镍基合金的重量的百分比为25至42%,所述阀箱和形成于所述阀箱上的阀座,借助具有比各材料的熔点低的熔点的中间层扩散接合在一起,并且,设置在所述阀箱上的阀座的镍基合金包含:占所述镍基合金的总重量的百分比小于等于8%的硅、0至4%的硼、7至30%的铬、小于等于1.2%的碳、0至5%的钨、小于等于10%的铁、比铁的量多的镍。
5.如权利要求1或2所述的阀,其特征在于,所述阀体和所述阀箱的材质包括碳素钢、低合金钢或不锈钢。
6.如权利要求1或2所述的阀,其特征在于,所述硅化物粒子和硼化物粒子包含粒径小于等于10μm的粒子。
7.如权利要求1或2所述的阀,其特征在于,所述中间层的材质由从具有镍和硅及硼的镍基合金、具有镍和铬及硼的镍基合金、具有镍和磷的镍基合金中选出的一个构成。
8.如权利要求1或2所述的阀,其特征在于,所述扩散接合为液态扩散接合。
9.如权利要求1或2所述的阀,其特征在于,所述阀用在原子能设备中。
CNB021527490A 2002-01-11 2002-11-27 阀及其制造方法 Expired - Lifetime CN1307380C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP004034/2002 2002-01-11
JP2002004034A JP2003207059A (ja) 2002-01-11 2002-01-11 弁及びその製造方法

Publications (2)

Publication Number Publication Date
CN1431416A CN1431416A (zh) 2003-07-23
CN1307380C true CN1307380C (zh) 2007-03-28

Family

ID=19190944

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021527490A Expired - Lifetime CN1307380C (zh) 2002-01-11 2002-11-27 阀及其制造方法

Country Status (7)

Country Link
US (1) US6959916B2 (zh)
EP (2) EP1584851A3 (zh)
JP (1) JP2003207059A (zh)
KR (1) KR20030061340A (zh)
CN (1) CN1307380C (zh)
CA (1) CA2409441C (zh)
DE (1) DE60208867T2 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8915722B1 (en) 2009-02-23 2014-12-23 George H. Blume Integrated fluid end
US9416887B2 (en) 2000-07-18 2016-08-16 George H Blume Low turbulence valve
JP2004359998A (ja) * 2003-06-04 2004-12-24 Hitachi Ltd 化合物粒子分散合金層を有する金属部材の製造方法及び摺動部材
US7540470B1 (en) * 2005-01-11 2009-06-02 Blume George H Powdered metal inlay
US7726026B1 (en) 2006-05-09 2010-06-01 Blume George H Powdered metal inlay
US8261767B1 (en) 2009-04-24 2012-09-11 Novatech Holdings Corp. Powdered metal inlay
WO2010142279A1 (de) 2009-06-10 2010-12-16 Josch Strahlschweisstechnik Gmbh Verfahren zur herstellung von verbundkörpern unter anwendung einer diffusionsverbindung
US8344299B1 (en) 2009-11-20 2013-01-01 Novatech Holdings Corp. Cylinder heater
JP5427674B2 (ja) * 2010-04-01 2014-02-26 日立Geニュークリア・エナジー株式会社 耐磨耗弁座
WO2012042310A1 (pt) * 2010-10-01 2012-04-05 Bray International, Inc. Válvula angular de retencão de fechamento gravitacional
CN102518820A (zh) * 2011-12-28 2012-06-27 洛阳菲尔曼石化设备有限公司 一种防止翼阀阀板磨损的耐磨方法及耐磨翼阀
US20150115190A1 (en) * 2013-10-25 2015-04-30 Yi-Ming Fan Wear-resistant valve assembly
US9376930B2 (en) 2013-10-30 2016-06-28 Hyundai Motor Company Waste gate valve
JP5947342B2 (ja) * 2014-07-30 2016-07-06 岡野バルブ製造株式会社 原子力発電プラント用弁装置
US9528171B2 (en) * 2014-09-16 2016-12-27 Caterpillar Inc. Alloy for seal ring, seal ring, and method of making seal ring for seal assembly of machine
JP7558169B2 (ja) * 2018-12-19 2024-09-30 エリコン メテコ(ユーエス)インコーポレイテッド 仕切弁、ボール弁、弁棒、及び弁座用の高温低摩擦でコバルトを含まないコーティング・システム
JP7160694B2 (ja) * 2019-01-08 2022-10-25 日立Geニュークリア・エナジー株式会社 流体接触部材及び流体接触部材の製造方法
CN116772039A (zh) * 2019-03-25 2023-09-19 威兰有限公司 流体流动装置的绝热套管内衬及结合内衬的流体流动装置
JP2021055819A (ja) * 2019-10-02 2021-04-08 東芝エネルギーシステムズ株式会社
US11353117B1 (en) 2020-01-17 2022-06-07 Vulcan Industrial Holdings, LLC Valve seat insert system and method
US12049889B2 (en) 2020-06-30 2024-07-30 Vulcan Industrial Holdings, LLC Packing bore wear sleeve retainer system
US11421679B1 (en) 2020-06-30 2022-08-23 Vulcan Industrial Holdings, LLC Packing assembly with threaded sleeve for interaction with an installation tool
US11421680B1 (en) 2020-06-30 2022-08-23 Vulcan Industrial Holdings, LLC Packing bore wear sleeve retainer system
US11384756B1 (en) 2020-08-19 2022-07-12 Vulcan Industrial Holdings, LLC Composite valve seat system and method
USD980876S1 (en) 2020-08-21 2023-03-14 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
USD997992S1 (en) 2020-08-21 2023-09-05 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
USD986928S1 (en) 2020-08-21 2023-05-23 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
US12055221B2 (en) 2021-01-14 2024-08-06 Vulcan Industrial Holdings, LLC Dual ring stuffing box
US11391374B1 (en) 2021-01-14 2022-07-19 Vulcan Industrial Holdings, LLC Dual ring stuffing box
US11434900B1 (en) * 2022-04-25 2022-09-06 Vulcan Industrial Holdings, LLC Spring controlling valve
US11920684B1 (en) 2022-05-17 2024-03-05 Vulcan Industrial Holdings, LLC Mechanically or hybrid mounted valve seat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678570A (en) * 1971-04-01 1972-07-25 United Aircraft Corp Diffusion bonding utilizing transient liquid phase
US4754950A (en) * 1984-10-30 1988-07-05 Kabushiki Kaisha Toshiba Valve
JPH1163251A (ja) * 1997-08-28 1999-03-05 Toshiba Corp
US6200688B1 (en) * 1998-04-20 2001-03-13 Winsert, Inc. Nickel-iron base wear resistant alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621837A (ja) 1985-06-26 1987-01-07 Toshiba Corp
US5633094A (en) 1994-10-28 1997-05-27 Hitachi, Ltd. Valve having facing layers of co-free Ni-base Alloy
CA2333933C (en) 2000-02-04 2004-09-21 Hitachi, Ltd. Valve bonded with corrosion and wear proof alloy and apparatuses using said valve
JP3978004B2 (ja) 2000-08-28 2007-09-19 株式会社日立製作所 耐蝕・耐摩耗性合金とそれを用いた機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678570A (en) * 1971-04-01 1972-07-25 United Aircraft Corp Diffusion bonding utilizing transient liquid phase
US4754950A (en) * 1984-10-30 1988-07-05 Kabushiki Kaisha Toshiba Valve
JPH1163251A (ja) * 1997-08-28 1999-03-05 Toshiba Corp
US6200688B1 (en) * 1998-04-20 2001-03-13 Winsert, Inc. Nickel-iron base wear resistant alloy

Also Published As

Publication number Publication date
JP2003207059A (ja) 2003-07-25
US6959916B2 (en) 2005-11-01
CA2409441A1 (en) 2003-07-11
CN1431416A (zh) 2003-07-23
CA2409441C (en) 2007-08-14
DE60208867T2 (de) 2006-07-20
KR20030061340A (ko) 2003-07-18
EP1327806A3 (en) 2003-12-03
EP1584851A3 (en) 2005-12-07
EP1327806A2 (en) 2003-07-16
EP1584851A2 (en) 2005-10-12
US20030132415A1 (en) 2003-07-17
EP1327806B1 (en) 2006-01-25
DE60208867D1 (de) 2006-04-13

Similar Documents

Publication Publication Date Title
CN1307380C (zh) 阀及其制造方法
US7087318B2 (en) Copper based sintered contact material and double-layered sintered contact member
JP6297545B2 (ja) 高熱伝導バルブシートリング
US5819839A (en) Apparatus for processing corrosive molten metals
US8404356B2 (en) Contact material, composite sintered contact component and method of producing same
EP2524749B1 (en) Metallurgical composition of particulate materials, self-lubricating sintered product and process for obtaining self-lubricating sintered products
EP2048253A1 (en) Lead-free copper alloy sliding material
CA2377159C (en) Joint construction of cobalt-based alloy
US20200216935A1 (en) Hard powder particles with improved compressibility and green strength
JP2010215951A (ja) 焼結複合摺動部品およびその製造方法
US10619229B2 (en) Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
EP2561940A1 (en) Copper-based sliding material
JP2001500567A (ja) 成形材料、殊に高い耐摩耗性を有する弁座環または弁案内部材を粉末冶金的に製造するための材料
CN101109294A (zh) 汽轮机进汽阀
Robertson et al. Design of titanium alloy for efficient sintering to low porosity
US20040247477A1 (en) Production of the metallic parts with the alloyed layer containing dispersed compound particles, and the wear-proof parts
JP2001288521A (ja) 耐食・耐摩耗合金を接合した弁
Tavakoli Development of tin-bronze and copper based journal bearing materials with tribaloy alloy additives
Ning Effects of Sintering Process and the Coating of the Reinforcement on the Microstructure and Performance of Co-based Superalloy Composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070328