CN1299527A - InP-基多量子阱激光器 - Google Patents

InP-基多量子阱激光器 Download PDF

Info

Publication number
CN1299527A
CN1299527A CN99805881A CN99805881A CN1299527A CN 1299527 A CN1299527 A CN 1299527A CN 99805881 A CN99805881 A CN 99805881A CN 99805881 A CN99805881 A CN 99805881A CN 1299527 A CN1299527 A CN 1299527A
Authority
CN
China
Prior art keywords
quantum well
multiple quantum
described multiple
laser
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN99805881A
Other languages
English (en)
Inventor
G·兰德格伦
C·斯尔夫文朱斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of CN1299527A publication Critical patent/CN1299527A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3434Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer comprising at least both As and P as V-compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2302/00Amplification / lasing wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

1.3μm波段的InP-基多量子阱激光器具有至少一个,最好几个,夹持在具有更大带隙的势垒层之间的阱层。阱层和势垒层都具有大体相同的Ⅲ族元素组份,但V族元素组份不同。阱层与衬底的晶格常数的差别在可能的电压极限之内,即所谓的失配,其中阱层具有较小的失配。

Description

InP-基多量子阱激光器
本发明涉及到一种在权利要求1前序部分中定义的类型的半导体激光器。
这种普通类型的半导体激光器为人类所知已有相当长的时间,从G.P.Agrawal和N.K.Dutta的专著“长波长半导体激光器”(NewYork,1986)中可以清楚地了解到该类激光器的基本原理,这里声明该专著将构成本描述的一部分。
目前已可以生产1.5μm波段的多量子阱型半导体激光器,该波段是通讯领域(光纤)的兴趣所在。不过,在同样感兴趣的1.3μm波段,却没有报道过能够无冷却工作的实用型激光器。本发明的目的就是填补这个空白。
这种激光器需要在无冷却的条件下,以相对高的功率和调制率工作。这意味着低的阈值电流值最好不随环境温度的上升而升高。这需要无辐射跃迁,俄歇跃迁在这一方面是正常的。这个考虑中的一个因素是不同阱层应该能够容纳相同数目的空穴和电子,而且不会造成空穴在最靠近P-接触的阱中过分聚集而将电子吸引到这些阱中。无辐射复合(例如俄歇复合)作为电荷载流子密度的函数,其增长远快于线性增长,而在该密度下光放大的增加却低于线性增长(其机制尚不清楚)。因此,应该努力使阱分布均匀化。
这个考虑中涉及到的单晶物质是一种包括Ⅲ族原子和V族原子的混合物:In1-xGaxAsyP1-y和In1-x-xGaxAlxAsyP1-x。图1是前一种组合的示意图,其中点划线是以波长为度量单位显示的、作为x和y的函数的体合金能带隙(对于多量子阱激光器,在相关结构的薄层中,由于阱中导带和价带里存在量子化的能态,波长将稍短一些)。
图1中的实线表示等晶格常数线,即通过原点和1m(晶格匹配)的线表示具有与磷化铟(InP)衬底相同的晶格常数的组份。这条线左侧的线,标有1%cs和2%cs,显示的是减小的晶格常数,相对于衬底也称作压缩性的(收缩性的),而上述该线左侧的线显示的是对应于扩展或增加的晶格常数,称之为拉伸性的常数。可以认识到,这也是众所周知的,如果层之间晶格常数的差很大(称为失配)但又保持单晶性的外延晶体生长是不可能,粗略的计算方法是差不能超过20nm%,换言之,以nm度量的层厚与以百分比度量的失配(张力)之积应低于该值。不再坚持晶格匹配线的原因在于,由于价带中重和轻空穴的分离和空穴质量的改变,导致价带中的态密度接近导带中的态密度,而这正是降低反转所需要的,所以具有晶格失配阱的多量子阱激光器具有改善了的理论激光器特性。
对于1.55μm波段的多量子阱激光器,一个众所周知的解决方法是将阱层和势垒层放在图1中的一条水平线上,且具有相反的1%失配。试验证明,在较低的砷水平上,相应的布置是不成功的,主要原因是不能用X-光衍射检测任何层,因此也就排除了将这样的材料用于多量子阱激光器的可能。
本发明通过依据权利要求1中特征部分布置上述类型InP-基多量子阱激光器阱层和势垒层解决了上述问题。从独立权利要求中可清晰地了解本发明更进一步的实施例。
应该理解,目前使用和可用的生产方法普遍受到与精确相关的各种困难的困扰。这里引用的量的幅度不应认为比本文件中使用的语“基本上”或“普遍地”的解释和定义具有更多的含义。
附图简述
如上所述,图1是InGaAsP系统的示意图,其中显示了在体合金中晶格常数和能隙分别随不同组份的变化情况。
图2是大概并部分地显示了具有x轴显示的厚度和y轴显示的能带隙的多量子阱激光器。
图3显示的是有效重阱深对激射阈值电流和光功率输出的影响。
优选实施例的详细描述
现在结合示范例子,更详细地描述本发明。
这里所说类型外延层的生产是众所周知的,并无必要对其做更详细的描述。各种物质的气相混合物在低压下(一般为20-100mbar,在本发明中为50mbar)从单晶InP衬底上穿过,衬底取向为<100>面,并加热到大约700℃(标准工艺的温度为600-700C),其中气体已被分解,并释放出相关原子,以便建立一个延续已有的单晶晶格的层。根据MOVPE(金属有机化合物气相外延),在氢气流中夹带有磷烷(PH3),砷烷(AsH3)和TMIn,TMGa,以及可能有的TMAl。
图2概略显示了这样一种外延结构,其中衬底1可为P型或N型,连续的势垒层2和阱层3用来和与衬底导电类型相反的电极层4相连接。尽管X-轴使用了长度单位,但该轴并不成比例。例如,阱可能很浅,举例来说,6.5nm,而垫垒层通常厚一些,举例来说,8nm。最外侧的势垒层2’可以具有更大的厚度,举例来说,厚度为100nm,并起穿过具有高的光学折射率的介质的光波导的作用,它将光场限制在阱区,即有源区中。示例
如上所述,依据本发明,使用了具有相同的Ⅲ族原子组份,而V族原子组份不同的阱和势垒的组合。在实验系列中使用了如图1所示的系统,其中阱的组份为x=0.10,y=0.52,而对于势垒,在几个阶段中,y的变化范围为0.08到0.22。
利用高分辨率X-光衍射和光荧光,在早期实验中便可以表明,V族原子组份固定不变而Ⅲ族原子组份变化(图1中水平分布的点)不可能得到好的结构,依据已知技术,这在1.55μm波段范围内得到了很好的验证。在另一种情况下,作了另一个实验,其中Ⅲ族原子组份为常数:对于阱,x=0.10,y=0.52,对于势垒x=0.10,y=0,尽管激光器的内量子效率仍很低,但在X-光衍射以及光荧光中阱的包络表明已建立了特别好的结构。
利用镀膜衬底可以制作宽50μm,长300-1200μm,解理面作镜子的激光器。对于阱中的重空穴,通过改变势垒组份,同时保持阱的组份不变,可使空穴限制能量在130到215meV之间变化。在空穴限制能量为130meV时,分别制作了具有5,8和12个阱层的激光器,其他情况下,制作了具有5个阱层的激光器。这些结果可从表1中得到证明。
在该表中,第一行和倒数第三行是同一个激光器。常数T0是根据二者的理想关系
I∝expT/T0从不同的温度范围计算得到的对阈值电流热漂移的度量,
                                表1空穴深度   阱层     内量子     内损耗    无限远处    T0     T0计算值     数目     效率                阈值密度    20-60℃  20-90℃[meV]             [%]        [%]     [A/cm2/      [K]     [K]well]130         5       85         9.7       65          83       67154         5       97         11.8      71          74       67186         5       77         7         85          66       63215         5       88         9         90          60       58130         5       85         9.7       65          83       67130         8       89         13        63          67       70130         12      98         23        60          77       79
很明显,势垒高度决定了计算得到的空穴阱深,它对结果是非常重要的,在实际应用中尽管势垒高度也不能太低,但最好尽可能地低,至少低于170mV,否则阱的优越性将消失,激光器开始类似于一个体激光器。在图3中用实心方块给出了激射的阈值密度,单位为Acm-2(左侧的单位),用圆圈给出了光功率输出,单位为mW(右侧的单位),从图3可明显地看出在相同测试条件下(mW)下它们与有效空穴深度的函数关系,其中有效空穴深度的单位为meV。
跨越阱包络的空穴输运时间可以按照Tessler等人在IEEE Journ.Of Selected Topics In Quant.Electron.,Vol.3,No.2,pp.315-319发表的文章“InGaAsP多量子阱激光器结构中的垂直载流子输运:P-掺杂的效果”中给出的方法来测量。众所周知,电荷载流子的总的迁移速率由空穴动力学决定。
已经发现,对于阱层和势垒层,通过本发明的多量子阱激光器的方法可以得到特别好的几何特性,也可以得到能够起到良好作用的势垒条件,它们都对无辐射跃迁,即所谓的俄歇效应有抑制趋势,还可以得到低的激射阈值电流密度,这些因素都对高效率和低损耗有贡献,从而使得既使在1.3μm左右的波段,也能不用特殊冷却而实现在可使用强度水平上驱动的可控激光源。假定这样好的结果来自于具有相对高的电子限制能量(相对于高的温度特性,这足够显著,在高的温度特性下,由于热逃逸,电子可以轻易地离去)的晶格失配阱的组合以及跨越阱包络的均匀电荷分布的优化,并且已通过可保证高的材料质量的实用实验达到。激光器的该结果具有低的内损耗,因而具有低的阈值电流,并且阈值电流不随温度变化。
应该理解,本发明不仅仅局限于这里给出的示范性范例,而且本发明的范围只受下述权利要求内容的限制。

Claims (8)

1.一种InP-基多量子阱激光器,包括Ⅲ族元素In,Ga以及可能有的Al和V族元素P和As,在1.3μm波段工作,并且建立在InP衬底上,具有至少一个与衬底晶格失配的、夹持在势垒层之间的外延阱层,势垒层的能隙大于上述的阱层,其中上述阱层具有一个对应于激光器波长的、从其导带中第一个量子态到其价带中第一个量子态的能量跃迁,上述阱层和势垒层具有大体相同的Ⅲ族元素组份,其特征在于势垒层的失配是拉伸性的,或者通过势垒层中V族元素组份的变化而实现的晶格自适应,从而使有效空穴势垒小于170meV,最好小于150meV。
2.权利要求1所述的多量子阱激光器,其特征在于Ⅲ族元素Ga的组份为5-20%。
3.权利要求1或2所述的多量子阱激光器,其特征在于Ⅲ族元素Ga和/或Al的组份为5-20%。
4.权利要求1或2所述的多量子阱激光器,其特征在于Ⅲ族元素Ga的组份为10%。
5.权利要求1或2所述的多量子阱激光器,其特征在于Ⅲ族元素Ga和/或Al的组份为10%。
6.上述权利要求中任何一条所述的多量子阱激光器,其特征在于势垒中V族元素As的组份介于8-22%。
7.上述权利要求中任何一条所述的多量子阱激光器,其特征在于它包括多个阱层。
8.上述权利要求中任何一条所述的多量子阱激光器,其特征在于上述阱层和衬底之间的失配大于0.5%。
CN99805881A 1998-05-08 1999-05-07 InP-基多量子阱激光器 Pending CN1299527A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9801608-2 1998-05-08
SE9801608A SE514431C2 (sv) 1998-05-08 1998-05-08 InP-baserad MQW-laser

Publications (1)

Publication Number Publication Date
CN1299527A true CN1299527A (zh) 2001-06-13

Family

ID=20411229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99805881A Pending CN1299527A (zh) 1998-05-08 1999-05-07 InP-基多量子阱激光器

Country Status (9)

Country Link
EP (1) EP1075716B1 (zh)
JP (1) JP2002517102A (zh)
KR (1) KR20010043401A (zh)
CN (1) CN1299527A (zh)
AU (1) AU4305899A (zh)
CA (1) CA2331504A1 (zh)
DE (1) DE69918975T2 (zh)
SE (1) SE514431C2 (zh)
WO (1) WO1999062153A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104096A (zh) * 2011-01-14 2011-06-22 映瑞光电科技(上海)有限公司 多量子阱结构、发光二极管和发光二极管封装件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104096A (zh) * 2011-01-14 2011-06-22 映瑞光电科技(上海)有限公司 多量子阱结构、发光二极管和发光二极管封装件

Also Published As

Publication number Publication date
EP1075716A1 (en) 2001-02-14
SE9801608L (sv) 1999-11-09
SE514431C2 (sv) 2001-02-26
CA2331504A1 (en) 1999-12-02
KR20010043401A (ko) 2001-05-25
EP1075716B1 (en) 2004-07-28
JP2002517102A (ja) 2002-06-11
AU4305899A (en) 1999-12-13
DE69918975D1 (de) 2004-09-02
WO1999062153A1 (en) 1999-12-02
SE9801608D0 (sv) 1998-05-08
DE69918975T2 (de) 2005-01-05

Similar Documents

Publication Publication Date Title
US5381434A (en) High-temperature, uncooled diode laser
JPH0745908A (ja) 半導体レーザー
JPH0418476B2 (zh)
JP2724827B2 (ja) 赤外発光素子
EP0383943B1 (en) Light emitting device and method of producing the same
US5751753A (en) Semiconductor laser with lattice mismatch
US4661175A (en) Method of making InGaAsP and InGaAs double hetero-structure lasers and LEDs
EP1505699B1 (en) Semiconductor optical device on an indium phosphide substrate for long operating wavelengths
EP0701309B1 (en) Semiconductor laser diode
CN1299527A (zh) InP-基多量子阱激光器
Thijs et al. Low-pressure MOVPE growth and characterization of strained-layer InGaAs-InGaAsP quantum well lasers
EP0700138B1 (en) Strained quantum well semiconducteur laser device and method for fabricating the same
JPH04350988A (ja) 量子井戸構造発光素子
JP2003017813A (ja) 半導体レーザ装置
JPH04363086A (ja) 半導体発光装置
JP3191669B2 (ja) 半導体分布帰還型レーザ装置及びその製造方法
US5491709A (en) Semiconductor laser device
Kito et al. Enhanced relaxation oscillation frequency of 1.3 μm strained-layer multiquantum well lasers
Lane et al. High-power electrically injected mid-infrared interband lasers grown by LP-MOCVD
Jin et al. Improved performance of 1.3 µm InGaAsP–InP lasers with an AlInAs electron stopper layer
JPH0529715A (ja) 歪量子井戸構造半導体素子
JP3385985B2 (ja) 歪量子井戸結晶の製造方法
Coleman Semiconductor lasers
JP2905123B2 (ja) 半導体レーザ及びその製造方法ならびに歪量子井戸結晶
KR900000021B1 (ko) 반도체 레이저

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1038107

Country of ref document: HK