CN1299338C - Forming method of silicon oxynitride - Google Patents

Forming method of silicon oxynitride Download PDF

Info

Publication number
CN1299338C
CN1299338C CN 200310108409 CN200310108409A CN1299338C CN 1299338 C CN1299338 C CN 1299338C CN 200310108409 CN200310108409 CN 200310108409 CN 200310108409 A CN200310108409 A CN 200310108409A CN 1299338 C CN1299338 C CN 1299338C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
forming
method
silicon
oxynitride
forming method
Prior art date
Application number
CN 200310108409
Other languages
Chinese (zh)
Other versions
CN1614754A (en )
Inventor
汪钉崇
Original Assignee
中芯国际集成电路制造(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

一种形成氮氧化硅的方法,特别是形成具有稳定薄膜特性的氮氧化硅DARC(dielectric antireflective coating)薄膜的方法,其特征在于包含下列步骤:步骤1.通入N A method of forming a silicon oxynitride, especially a silicon oxynitride DARC (dielectric antireflective coating) film method, characterized by comprising the steps of a thin film having stable characteristics: Step 1. into N

Description

形成氮氧化硅的方法 A method of forming silicon oxynitride

技术领域 FIELD

本发明涉及一种制作半导体薄膜的方法,特别是一种形成具有稳定薄膜特性的氮氧化硅作为绝缘抗反射层(dielectric antireflectivecoating,DARC)的方法。 The present invention relates to a method of making a semiconductor thin film, in particular a silicon oxynitride is formed as an insulating anti-reflection layer (dielectric antireflectivecoating, DARC) method has stable film characteristics.

背景技术 Background technique

半导体组件利用高密度集成电路技术已有相当大的进展。 Considerable progress has been using the high-density semiconductor components integrated circuit technology. 利用步进机、高分辨率光刻(lithography)设备、以及蚀刻技术的开发,使得半导体更加速演进。 Using a stepper, high resolution lithography (Lithography) equipment, and the development of etching techniques, so that the semiconductor is more accelerated evolution. 通常,制造集成电路的步骤包含有数百道制作工序,因此不但制造过程复杂,而且如何有效地派任制作工艺所用机台的工作量以及工作性质以增进资源的利用亦是一项复杂的工作。 Typically, step fabrication of integrated circuits containing several hundred manufacturing processes, so the manufacturing process is not only complicated, but also how to effectively send any production process as well as the nature of the work machine with to improve the use of resources is also a complex task. 在制造过程中,制造瓶颈经常随时发生在许多制造工艺步骤中而影响到产品品质或合格率。 In the manufacturing process, manufacturing bottlenecks often occur at any time in a number of steps in the manufacturing process and affect product quality or yield. 由于技术的演进,光刻(lithography)分辨率更为重要,膜层通常利用光刻胶以及显影技术来制作图案。 Due to technical evolution, lithography (Lithography) resolution is more important, with the photoresist film and developing generally patterning techniques. 光刻胶为一光敏材料,可见光或UV直接透过光掩模(photo mask)照射在光刻胶上,以制作出图案(pattern)。 The photoresist is a photosensitive material, visible light or UV (photo mask) directly irradiated on the resist through a photomask, to produce a pattern (pattern). 为了建造具有非常细微图案的半导体组件,因此需要一种具备次微米分辨率能力的光刻制作工艺。 In order to build a semiconductor device having a very fine pattern, photolithography is needed is a process comprising sub-micron resolution capability. 而在任何光学投影系统中,包括半导体光刻技术,限制分辨率的主要关键在于此光学系统中所用透镜的数值孔径(NA)。 In any of the optical projection system, the main key comprises a semiconductor photolithographic technique, the resolution limit of the optical system in this lens numerical aperture (NA) with. 对一特定波长而言,较大的NA提供了较佳的分辨率。 For a specific wavelength, the larger NA provides a better resolution. 然而,为了得到此优势,却也付出极大的代价,即当NA增加时,焦距深度会明显的缩减。 However, in order to obtain this benefit, but also pay a terrible price, that is, when increasing the NA, the depth of focus will be significantly reduced. 而光学光刻系统中光掩模扮演极重要的角色。 The optical lithography system of the photomask plays a very important role. 而抗反射层ARC(antireflectivecoating),如有机抗反射层,通常被涂布在上方以减少光反射提升分辨率。 The antireflection layer ARC (antireflectivecoating), as organic anti-reflective layer is typically applied to reduce the light reflection at the top to enhance resolution. 比较常见的光源波长有所谓g线以及i线,波长分别为4360埃以及3650埃的紫外线。 The more common light source wavelength so-called g-line and i-line, a wavelength of 4360 angstroms and 3650 respectively ultraviolet Å. 对于更小线宽的制作工艺而言,必须使用KrF激光所发波长为2480埃的深紫外线为曝光光源。 Process for the production of smaller width, must be made using a KrF laser having a wavelength of 2480 angstroms is deep ultraviolet light exposure. 事实上,使用波长更短的光源,则必须开发新的光刻胶材料配合。 In fact, the use of shorter wavelength light, the development of new photoresist material must fit.

但是,以目前的制作工艺发现以现今制程所沉积的氮氧化硅DARC的反射系数不论是n或是k值均会在沉积数小时后漂移,而导致氮氧化硅的光学特性不稳定。 However, the current production process of silicon oxynitride reflection coefficients found in the current process of the deposited DARC whether n or k value will drift for several hours after deposition, resulting in the optical properties of silicon oxynitride unstable. 目前的制作工艺约可以包含下述步骤:步骤1.通入SiH4170sccm、N2O 370seem以及He 3800sccm;步骤2.持续通入SiH4170sccm、N2O 370sccm以及He 3800sccm;步骤3.进行薄膜沉积,持续通入SiH4170seem、N2O 370sccm以及He 3800seem;步骤4.开启N2O等离子体(plasma),通入N2O 2000sccm以及He 2000sccm;步骤5.将气体排出,SiH4-2sccm、N2O-1sccm以及He-1sccm。 The present production process may contain about the following steps: Step 1 into SiH4170sccm, N2O 370seem and He 3800sccm; Step 2. Length into SiH4170sccm, N2O 370sccm and He 3800sccm; Step 3. The thin film deposition, continuously into SiH4170seem, N2O 370sccm and He 3800seem; step 4. turn on the N2O plasma (plasma), and 2000 sccm N2O into He 2000sccm; step 5. a gas discharge, SiH4-2sccm, N2O-1sccm and He-1sccm.

请参阅图1以及图2的实验数据,其分别显示现有技术沉积的氮氧化硅,其n或是k值产生漂移,而呈现不稳定现象。 See the experimental data of FIG. 1 and FIG. 2, which show the prior art deposition of silicon oxynitride, or its n-k drift, instability presented. 因此目前急需一种可以回收再生利用控片(reclaim control/dummy wafer)的方法。 Thus the current urgent need for a method of recycling can be recovered control sheet (reclaim control / dummy wafer) is.

发明内容 SUMMARY

本发明的主要目的在于提供一种形成具有稳定薄膜特性的氮氧化硅作为绝缘抗反射层(dielectric antireflective coating,DARC)的方法。 The main object of the present invention is to provide a method for stabilizing a silicon oxynitride film having an insulating property is formed as the antireflection layer (dielectric antireflective coating, DARC) is.

本发明揭露一种形成具有稳定薄膜特性的氮氧化硅DARC(dielectricantireflective coating)薄膜的方法,其特征在于包含下列步骤:步骤1.通入N2O以及通入He;步骤2.通入SiH4、N2O以及He;步骤3.进行薄膜沉积,持续通入SiH4、N2O以及He;步骤4.将SiH4气体排出;步骤5.通入N2O以及通入He;步骤6.开启N2O等离子体(plasma),通入N2O以及He;步骤7.将N2O以及He气体排出。 The present invention discloses a method of forming a silicon oxynitride DARC (dielectricantireflective coating) a thin film having a stable film quality, characterized by comprising the following steps: Step 1, and passed into N2O of He; Step 2. Preparation of SiH4 into, N2O and of He; step 3. the thin film deposition, SiH4 continuously fed, of He and N2O; step 4. SiH4 gas is discharged; step 5. fed into N2O and of He; step 6. turn N2O plasma (plasma), into N2O and He; step 7. N2O and He gas is discharged.

其中上述步骤1的N2O以流量为370sccm通入;He以流量为3800sccm通入。 Wherein the above step 1 N2O at a flow rate of 370sccm into; He at a flow rate of 3800sccm passed.

其中上述步骤2的N2O以流量为370sccm通入:He以流量为3800sccm通入;SiH4以流量为370sccm通入。 Wherein N2O above step 2 at a flow rate of 370sccm into: He at a flow rate of 3800sccm fed; of SiH4 at a flow rate of 370sccm into.

其中上述步骤3的N2O以流量为370sccm通入;He以流量为3800sccm通入;SiH4以流量为370sccm通入。 Wherein step 3 above N2O at a flow rate of 370sccm into; He at a flow rate of 3800sccm fed; of SiH4 at a flow rate of 370sccm into.

其中上述步骤4的SiH4流量为-2sccm排出。 Step 4 wherein said flow rate of SiH4 is -2sccm discharged.

其中上述步骤5的N2O以流量为2000sccm通入;He以流量为2000sccm通入。 Wherein said step of N2O 5 to flow into 2000sccm; He at a flow rate of 2000sccm passed.

其中上述步骤6的N2O以流量为2000sccm通入;He以流量为2000sccm通入。 Wherein N2O in the above step 6 2000sccm flow into; He at a flow rate of 2000sccm passed.

其中上述步骤7的N2O以流量为-1sccm排出;He以流量为-1sccm排出。 Wherein said step of N2O 7 to the discharge flow -1sccm; He flow rate is discharged -1sccm.

附图说明 BRIEF DESCRIPTION

图1为本发明以及现有技术的n值实验数据图。 Figure 1 is a n-value and the test data prior art of the present invention of FIG.

图2为本发明以及现有技术的k值实验数据图。 K 2 of the present invention, the value of the experimental data and the prior art FIG.

具体实施方式 detailed description

以现有技术制造过程所沉积的氮氧化硅DARC的反射系数不论是n或是k值均会在沉积数小时后漂移,而导致氮氧化硅的光学特性不稳定。 The reflection coefficient of silicon oxynitride prior art in the manufacturing process of the DARC deposited either n or k value will drift for several hours after deposition, resulting in the optical properties of silicon oxynitride unstable. 因此,本发明为了改进上述技术的缺点,而提出一种崭新的制作工艺,以利于形成具有稳定薄膜特性的氮氧化硅DARC(dielectric antireflectivecoating)薄膜。 Accordingly, the present invention is to improve disadvantages of the above techniques, but provides a new manufacturing process, to facilitate the formation of the silicon oxynitride DARC (dielectric antireflectivecoating) thin film having stable characteristics.

本发明的制造步骤约可以包含下述步骤:步骤1.以流量为370sccm通入N2O以及流量为3800sccm通入He;步骤2.通入SiH4170sccm、N2O 370sccm以及He 3800sccm;步骤3.进行薄膜沉积,持续通入SiH4,流量为170sccm、N2O 370sccm以及He 3800sccm;步骤4.将SiH4气体排出,流量为-2sccm;步骤5.以流量2000sccm通入N2O以及2000sccm通入He;步骤6.开启N2O等离子体(plasma)以提供等离子体能量加速进行气相沉积,通入N2O 2000sccm以及He 2000sccm; The manufacturing steps of the present invention may comprise approximately the following steps: Step 1. N2O flow into 370sccm and a flow rate of He is passed 3800sccm; Step 2 into SiH4170sccm, N2O 370sccm and He 3800sccm; 3. film deposition step, continuously into SiH4 flow rate of 170sccm, N2O 370sccm and He 3800sccm; step 4. SiH4 gas discharge flow rate of -2sccm; 5. in step 2000sccm flow into and N2O into 2000sccm of He; step 6. turn N2O plasma (plasma) plasma energy to provide accelerated vapor deposition, into N2O 2000sccm and He 2000sccm;

步骤7.将气体排出,N2O流量为-1sccm以及He流量为-1sccm。 7. The gas discharge step, N2O and He flow -1sccm flow -1sccm.

请参阅图1以及图2的实验数据,其分别显示以本发明所沉积的氮氧化硅有稳定的n或是k值,不产生漂移现象。 See the experimental data of FIG. 1 and FIG. 2, according to the present invention, which are shown deposited silicon oxynitride or a stable n-k, no drift. 因此,可以大幅度改进现有技术的缺点。 Thus, it is possible to greatly improve the disadvantages of the prior art.

本发明以较佳实施例说明如上,而熟悉此领域技艺者,在不脱离本发明的精神范围内,自当可作些许更动润饰,但其仍属本发明范围之内。 In preferred embodiments of the present invention described above, the person skilled in this field of the art, without departing from the spirit and scope of the present invention, since minor modifications can be made to polish, but it is still within the scope of the present invention.

Claims (16)

  1. 1.一种形成氮氧化硅的方法,是形成具有稳定薄膜特性的氮氧化硅绝缘抗反射层薄膜的方法,其特征在于包含下列步骤:步骤1.通入N2O以及通入He;步骤2.通入SiH4、N2O以及He;步骤3.进行薄膜沉积,持续通入SiH4、N2O以及He;步骤4.将SiH4气体排出;步骤5.通入N2O以及通入He;步骤6.开启N2O等离子体,通入N2O以及He;步骤7.将N2O以及He气体排出。 A method of forming a silicon oxynitride, is formed a silicon oxynitride film having stable characteristics antireflective layer insulating film, characterized by comprising the following steps: Step 1, and passed into N2O of He; Step 2. into SiH4, N2O and of He; step 3. the thin film deposition, SiH4 continuously fed, of He and N2O; step 4. SiH4 gas is discharged; step 5. fed into N2O and of He; step 6. turn N2O plasma , into N2O and He; step 7. N2O and He gas is discharged.
  2. 2.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤1的N2O以流量为370sccm通入。 2. The method of forming the silicon oxynitride as claimed in claim 1, wherein the above step 1 N2O at a flow rate of 370sccm into.
  3. 3.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤1的He以流量为3800sccm通入。 The method of forming the silicon oxynitride as claimed in claim 1, wherein said step of He at a flow rate of 1 into 3800sccm.
  4. 4.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤2的N2O以流量为370sccm通入。 The method of forming the silicon oxynitride as claimed in claim 1, wherein the above step 2 N2O at a flow rate of 370sccm into.
  5. 5.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤2的He以流量为3800sccm通入。 5. The method of forming the silicon oxynitride as claimed in claim 1, wherein the above step 2 He at a flow rate of 3800sccm passed.
  6. 6.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤2的SiH4以流量为370sccm通入。 6. The method of forming the silicon oxynitride as claimed in claim 1, wherein in step 2 above SiH4 flow rate 370sccm into.
  7. 7.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤3的N2O以流量为370sccm通入。 7. The method of forming the silicon oxynitride as claimed in claim 1, wherein step 3 above N2O at a flow rate of 370sccm into.
  8. 8.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤3的He以流量为3800sccm通入。 8. A method of forming a silicon oxynitride according to claim 1, wherein said step of He 3 to flow into 3800sccm.
  9. 9.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤3的SiH4以流量为370sccm通入。 9. The method of forming the silicon oxynitride claimed in claim 1, wherein said step of SiH4 3 at a flow rate of 370sccm into.
  10. 10.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤4的SiH4以流量为-2sccm排出。 10. The method of forming the silicon oxynitride as claimed in claim 1, wherein said step at a flow rate of SiH4 4 -2sccm discharged.
  11. 11.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤5的N2O以流量为2000sccm通入。 11. The method of forming the silicon oxynitride as claimed in claim 1, wherein said step of N2O 5 to flow into 2000sccm.
  12. 12.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤5的He以流量为2000sccm通入。 12. The method of forming the silicon oxynitride as claimed in claim 1, wherein said step of He 5 to flow into 2000sccm.
  13. 13.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤6的N2O以流量为2000sccm通入。 13. The method of forming the silicon oxynitride as claimed in claim 1, characterized in that the above-described steps 6 to N2O flow into 2000sccm.
  14. 14.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤6的He以流量为2000sccm通入。 14. The method of forming the silicon oxynitride as claimed in claim 1, wherein the above step 6 in He flow into 2000sccm.
  15. 15.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤7的N2O以流量为-1sccm排出。 15. The method of forming the silicon oxynitride as claimed in claim 1, wherein said step of N2O 7 to the discharge flow -1sccm.
  16. 16.如权利要求1所述的形成氮氧化硅的方法,其特征在于上述步骤7的He以流量为-1sccm排出。 16. The method of forming the silicon oxynitride as claimed in claim 1, wherein said step of He 7 to the discharge flow -1sccm.
CN 200310108409 2003-11-05 2003-11-05 Forming method of silicon oxynitride CN1299338C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200310108409 CN1299338C (en) 2003-11-05 2003-11-05 Forming method of silicon oxynitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200310108409 CN1299338C (en) 2003-11-05 2003-11-05 Forming method of silicon oxynitride

Publications (2)

Publication Number Publication Date
CN1614754A true CN1614754A (en) 2005-05-11
CN1299338C true CN1299338C (en) 2007-02-07

Family

ID=34758582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200310108409 CN1299338C (en) 2003-11-05 2003-11-05 Forming method of silicon oxynitride

Country Status (1)

Country Link
CN (1) CN1299338C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094072B (en) * 2011-11-01 2016-03-30 无锡华润上华科技有限公司 Method for improving the uniformity of the critical dimension of the gate on the wafer lithography
US20140117511A1 (en) * 2012-10-30 2014-05-01 Infineon Technologies Ag Passivation Layer and Method of Making a Passivation Layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372668B1 (en) *
US6153541A (en) * 1999-02-23 2000-11-28 Vanguard International Semiconductor Corporation Method for fabricating an oxynitride layer having anti-reflective properties and low leakage current
US6372668B2 (en) * 2000-01-18 2002-04-16 Advanced Micro Devices, Inc. Method of forming silicon oxynitride films
US6410461B1 (en) * 2001-05-07 2002-06-25 Advanced Micro Devices, Inc. Method of depositing sion with reduced defects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372668B1 (en) *
US6153541A (en) * 1999-02-23 2000-11-28 Vanguard International Semiconductor Corporation Method for fabricating an oxynitride layer having anti-reflective properties and low leakage current
US6372668B2 (en) * 2000-01-18 2002-04-16 Advanced Micro Devices, Inc. Method of forming silicon oxynitride films
US6410461B1 (en) * 2001-05-07 2002-06-25 Advanced Micro Devices, Inc. Method of depositing sion with reduced defects

Also Published As

Publication number Publication date Type
CN1614754A (en) 2005-05-11 application

Similar Documents

Publication Publication Date Title
US5244759A (en) Single-alignment-level lithographic technique for achieving self-aligned features
US5275896A (en) Single-alignment-level lithographic technique for achieving self-aligned features
US4504574A (en) Method of forming a resist mask resistant to plasma etching
US6096661A (en) Method for depositing silicon dioxide using low temperatures
US20080292991A1 (en) High fidelity multiple resist patterning
US6140255A (en) Method for depositing silicon nitride using low temperatures
US5815247A (en) Avoidance of pattern shortening by using off axis illumination with dipole and polarizing apertures
US20030118920A1 (en) Multi-tone photomask and method for manufacturing the same
US20100068656A1 (en) High etch resistant material for double patterning
US5126220A (en) Reticle for photolithographic patterning
US6485869B2 (en) Photomask frame modification to eliminate process induced critical dimension control variation
US8765330B2 (en) Phase shift mask for extreme ultraviolet lithography and method of fabricating same
US8679707B2 (en) Method of fabricating a lithography mask
US6869899B2 (en) Lateral-only photoresist trimming for sub-80 nm gate stack
Bowden A perspective on resist materials for fine-line lithography
US5338626A (en) Fabrication of phase-shifting lithographic masks
US6569778B2 (en) Method for forming fine pattern in semiconductor device
US5858591A (en) Optical proximity correction during wafer processing through subfile bias modification with subsequent subfile merging
US5925578A (en) Method for forming fine patterns of a semiconductor device
US20090011374A1 (en) Method and material for forming high etch resistant double exposure patterns
US5380608A (en) Phase shift photomask comprising a layer of aluminum oxide with magnesium oxide
Mimura et al. Deep-UV photolithography
JPH05289307A (en) Reticle and its production
US20060019178A1 (en) Method of repairing phase shift mask
US6218057B1 (en) Lithographic process having sub-wavelength resolution

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C41 Transfer of the right of patent application or the patent right
ASS Succession or assignment of patent right

Owner name: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING

Effective date: 20111205