CN1297953C - Dual-vertical spin valve - Google Patents

Dual-vertical spin valve Download PDF

Info

Publication number
CN1297953C
CN1297953C CN 200410101847 CN200410101847A CN1297953C CN 1297953 C CN1297953 C CN 1297953C CN 200410101847 CN200410101847 CN 200410101847 CN 200410101847 A CN200410101847 A CN 200410101847A CN 1297953 C CN1297953 C CN 1297953C
Authority
CN
China
Prior art keywords
layer
metal
platinum
spin valve
cobalt
Prior art date
Application number
CN 200410101847
Other languages
Chinese (zh)
Other versions
CN1641750A (en
Inventor
于广华
姜勇
腾蛟
王立锦
张辉
朱逢吾
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Priority to CN 200410101847 priority Critical patent/CN1297953C/en
Publication of CN1641750A publication Critical patent/CN1641750A/en
Application granted granted Critical
Publication of CN1297953C publication Critical patent/CN1297953C/en

Links

Abstract

一种制备双垂直自旋阀的方法及其结构,采用玻璃或单晶硅基片,通过等离子体溅射、磁控溅射或者分子束外延生长手段制备而成的一种金属多层膜结构,然后通过照相平版印刷或电子束印刷、离子刻蚀的手段分别在金属多层膜的顶层和底层膜面制作出两个电极,使该自旋阀在工作时,信号电流的流动方向垂直于金属多层膜膜面。 A method and structure for preparing a dual vertical spin valve, glass, or a monocrystalline silicon substrate, by plasma sputtering, magnetron sputtering of a metal or a molecular beam epitaxial multilayer film means prepared from structure and then by photolithography or electron-beam printing, ion etching means, respectively top and bottom surface of the metal film to produce a multilayer film of two electrodes, so that the spin valve is in operation, the flow direction is perpendicular to the signal current metal multilayer film membrane surface. 本发明的优点在于将电流垂直薄膜平面与磁各向异性易轴垂直薄膜面两个特征完美结合在一起大幅度的提高自旋阀的磁电阻效应;有效的改善了自旋阀的磁均匀性,使这种自旋阀材料加工到纳米级时,仍可保持单磁畴结构。 Advantage of the present invention is that a current perpendicular to the film plane magnetic anisotropy easy axis perpendicular to the film plane wherein two perfect combination of greatly improved spin valve magnetoresistance effect; effectively improve the uniformity of the magnetic spin valve when the material is processed to such a spin valve nanoscale single domain structure can be maintained.

Description

一种双垂直自旋阀 A dual spin valve Vertical

技术领域 FIELD

本发明属于磁性存储技术领域,特别是提供了一种制备双垂直自旋阀的方法及其结构。 The present invention belongs to the field of magnetic storage technology, in particular to provide a method and structure for preparing a dual vertical spin valve. 该自旋阀用作计算机硬盘读出磁头,或用在磁随机存储器、传感器等设备中。 The spin valve read head for computer hard disk, or a magnetic random access memory, sensors and other devices.

技术背景当今时代是信息时代,各行业的信息交流对信息的存储密度和稳定性提出了越来越高的要求。 BACKGROUND present era is the era of information, the exchange of information on the various sectors of the information storage density and stability of the increasingly high demand. 在过去的十几年中,信息存储技术尤其是磁记录技术得到了飞速的发展,特别是应用了巨磁电阻自旋阀薄膜材料制作的磁头,使得硬盘的面记录密度大幅提高。 In the past decade, magnetic information storage technology, especially the rapid development of technology has, in particular, application of a spin valve head giant magnetoresistance thin film material such that the surface recording density of the hard disk greatly improved. 目前实验室纵向磁记录密度已经达到150Gb/in2,并向着下一个目标1Tb/in2进军。 Currently the lab longitudinal magnetic recording density has reached 150Gb / in2, and toward the next target 1Tb / in2 march. 目前读出磁头主要是采用电流平行于平面构型的巨磁电阻(GMR)自旋阀薄膜器件(即CIP-SPV)。 Currently the read head is used mainly parallel to the plane of the current configuration of giant magnetoresistance (GMR) spin valve film device (i.e., CIP-SPV). 由于理论研究表明,如果继续使用CIP-SPV磁头的话,计算机硬盘的存储密度最多只能达到200-250Gb/in2就会趋向饱和。 Since the theoretical study shows that, if continued use of CIP-SPV head, then the computer hard disk storage density can only reach a maximum of 200-250Gb / in2 will becoming saturated. 所以,电流垂直于平面巨磁电阻自旋阀(CPP-SPV)成为最具潜力的下一代读出磁头材料。 Therefore, a current perpendicular to the plane giant magnetoresistive spin valve (CPP-SPV) has become the most promising next generation of read head material. 相对于CIP-SPV,CPP-SPV的关键优势在于:随着存储密度的提高,存储元件的尺寸大幅度减小,CIP-SPV的GMR输出信号也将随之减小,而CPP-SPV则正好相反,GMR输出信号反而增加,读出灵敏度进一步得到提高。 With respect to the CIP-SPV, a key advantage is that the CPP-SPV: with increasing storage density, greatly reduced size of the storage element, CIP-SPV the GMR output signal will also decrease, whereas CPP-SPV is just In contrast, the output signal of the GMR actually increased, the read sensitivity is further improved. 尽管如此,通常结构的CPP-SPV薄膜材料磁各向异性的易轴方向都是平行于膜面,当把它们加工成小尺寸元件时,总希望薄膜具有单磁畴结构;然而,当进一步把元件做到亚微米甚至更小尺寸时,将带来一系列问题:在薄膜的边缘出现磁化卷缩(magnetization curling),从而导致薄膜涡流磁化(Vortex magnetization),出现涡流磁畴结构。 Nevertheless, the easy axis direction of the film material CPP-SPV general structure of magnetic anisotropy is parallel to the film plane, when they are processed into small size of the device, a thin film having a desired total single magnetic domain structure; however, when the further element to achieve sub-micron or smaller dimensions, will bring a series of problems: crimp occurs magnetization (magnetization curling) at the edges of the film, causing the film vortex magnetization (vortex magnetization), vortex magnetic domain structure occurs. 如果用来做器件时,将导致存储信息的丢失,从而限制了高信息存储技术的进一步发展。 If it used to make the device will result in loss of stored information, thereby limiting the further development of high information storage technology.

发明内容 SUMMARY

本发明目的在于提供一种制备双垂直自旋阀的方法及其结构,即电流垂直于平面构型、并且磁各向异性易轴垂直膜面的自旋阀薄膜材料及其制备方法。 Object of the present invention to provide a method and structure for preparing spin-valve dual vertical, i.e. perpendicular to the plane of the current configuration, and the spin valve film material and method for the magnetic anisotropy easy axis perpendicular to the film surface.

本发明中的双垂直自旋阀系采用玻璃或单晶硅基片,通过等离子体溅射、磁控溅射或者分子束外延生长手段制备而成的一种金属多层膜结构,然后通过照相平版印刷或电子束印刷、离子刻蚀的手段分别在金属多层膜的顶层和底层膜面制作出两个电极,使该自旋阀在工作时,信号电流的流动方向垂直于金属多层膜膜面。 The dual vertical spin valve train of the present invention, monocrystalline silicon or glass substrate by plasma sputtering, magnetron sputtering or molecular beam of a metal multilayer film structure formed by means of epitaxial growth prepared, and then photographically means of electron beam lithography or printing, ion etching, respectively top and bottom surface of the metal film to produce a multilayer film of two electrodes, so that the spin valve is in operation, the signal current flowing direction perpendicular to the metal multilayer film membrane surface.

本发明中的双垂直自旋阀是一种金属多层膜结构,具体结构如下:双垂直自旋阀的最底层为1~20纳米厚的金属铂,称为底电极层。 The present invention is a dual vertical spin valve metal multilayer film structure, the specific structure is as follows: the bottom of the spin valve is dual vertical metallic platinum of 1 to 20 nm thick, referred to as the bottom electrode layer.

从底往上第二层为一个钴/铂复合结构,它是由2~20层的金属钴和金属铂交替重叠而成(底层为金属钴,顶层为金属铂),其中金属钴层的厚度为0.1~0.4纳米,金属铂层的厚度为1~3纳米。 Up from the bottom of the second layer is a cobalt / platinum composite structure, which is composed of 2 to 20 metallic cobalt and platinum layers alternately laminated together (for the underlying metallic cobalt, the top layer of metallic platinum), wherein the metallic cobalt layer has a thickness 0.1 to 0.4 nm, the thickness of the platinum layer is 1 to 3 nm. 称为底复合层。 Called a bottom composite layer.

从底往上第三层为金属钴,厚度为0.1~1纳米。 Up from the bottom of the third layer is a metal cobalt, a thickness of 0.1 to 1 nm. 第三层与第二层合并称为自由层。 The combined third and second layers is called a free layer. 因为它们的磁矩在外加磁场下可以自由旋转。 Because their magnetic moment is free to rotate under an applied magnetic field.

从底往上第四层为金属铜,厚度为1~10纳米,称为隔离层。 Up from the bottom of the fourth layer is metallic copper, having a thickness of 110 nm, referred to as an isolation layer. 该隔离层也可以用1~4纳米厚的金属铂或三氧化二铝代替。 1 to 4, the spacer layer thickness or a platinum nano metal oxide can also be used in place of aluminum.

从底往上第五层为金属钴,厚度为0.1~2纳米。 From bottom up the fifth layer is a metal cobalt, a thickness of 0.1 to 2 nanometers.

从底往上第六层为另一个铂/钴复合结构,被称为顶复合层。 The sixth layer from the bottom up with another platinum / cobalt composite structure, referred to as a top composite layer. 它是由2~20层的金属铂和金属钴交替重叠而成(底层为金属铂,顶层为金属钴),其中金属铂的厚度为1~3纳米,金属钴的厚度为0.1~0.4纳米。 It is made of metallic platinum and cobalt from 2 to 20 layers formed by alternately overlapping (platinum metal underlayer, the top layer is metallic cobalt), wherein the thickness of the platinum metal is 1 to 3 nm, the thickness of the metallic cobalt is 0.1 to 0.4 nm. 该复合结构(即第六层)与第五层的磁矩均被反铁磁层钉扎,因而被称为钉扎层。 The composite structure (i.e., the sixth layer) and the magnetic moment of the fifth layer are antiferromagnetic pinning, which is called a pinned layer.

从底往上第七层为反铁磁性的铁锰合金或其他锰合金层,厚度为5~40纳米。 The seventh layer from the bottom up as Fe, Mn alloy or another antiferromagnetic manganese alloy layer, a thickness of 5 to 40 nanometers.

从底往上第八层为1~10纳米的金属铂,为顶电极层。 Eighth layers from the bottom upwards of 1 to 10 nm platinum metal, a top electrode layer.

本发明的优点在于:巧妙地将电流垂直薄膜平面与磁各向异性易轴垂直薄膜面两个特征完美结合在一起。 Advantage of the present invention is that: the current skillfully perpendicular magnetic anisotropy perpendicular to the film plane and the film plane two easy axes characterized in perfect combination. 通过电流垂直于薄膜平面构型,大幅度的提高自旋阀的磁电阻效应;由于自旋阀的钉扎层和自由层均采用极薄的金属铂和金属钴交替重叠的复合结构,使得钉扎层和自由层磁各向异性的易轴均垂直于膜面,有效的改善了自旋阀的磁均匀性,使这种自旋阀材料加工到纳米级时,仍可保持单磁畴结构。 Perpendicular to the film plane by the current configuration, greatly improved spin valve magnetoresistance effect; spin valve because the pinned layer and the free layer are made of very thin composite metallic cobalt and metallic platinum stacked alternately, such that the staples pinning layer and the free layer easy axis magnetic anisotropy perpendicular to the film surface are effectively improves the uniformity of the magnetic spin valve, the spin valve such that the material is machined into the nanoscale, single domain structure can be maintained .

具体实施方式 Detailed ways

实施例1:利用磁控溅射仪制备了两种自旋阀材料:其中一种是普通自旋阀结构,其多层膜由底层往上分别为金属钽(6nm)/镍铁合金(7nm)/金属铜(2.6nm)/镍铁合金(4nm)/铁锰合金(15nm)/金属钽(6nm)(括号内数据为薄膜的厚度,nm表示纳米),其特点是电流平行于平面构型、并且磁各向异性易轴平行膜面;另外一种是本发明的双垂直自旋阀结构,为金属铂(6nm)/[金属钴(0.4nm)/金属铂(2nm)]5/金属钴(0.8nm)/金属铜(3nm)/Co(0.8nm)[Pt(2nm)/Co(0.4nm)]5/FeMn(15nm)/Pt(2nm)(下标数字为复合结构的重复层数),其特点是电流垂直于平面构型、并且磁各向异性易轴垂直膜面。 Example 1: Preparation of two spin valve magnetic sputtering material: One is an ordinary spin valve structure, which multilayer film from the bottom upwards, respectively (of 6 nm) of tantalum metal / nickel-iron alloy (7nm) / copper (2.6nm) / nickel-iron alloy (of 4 nm) / iron manganese alloy (15nm) / tantalum (of 6 nm) (data in parenthesis as a film thickness, nm represents nanometer), which is characterized by a current parallel to the planar configuration, and the magnetic anisotropy easy axis parallel to the film surface; the other is a vertical double spin valve structure of the present invention, the platinum metal / [metallic cobalt (0.4nm) / platinum (2nm)] (6nm) 5 / metallic cobalt (0.8nm) / copper (3nm) / Co (0.8nm) [Pt (2nm) / Co (0.4nm)] 5 / FeMn (15nm) / Pt (2nm) (the subscript number of repeating layers of a composite structure ), which is characterized by a planar configuration perpendicular to the current, and the magnetic easy axis anisotropy perpendicular to the film surface. 上述两种自旋阀的详细制备工艺为:溅射室本底真空度为2×10-5Pa,溅射时氩气(99.99%)压为0.5Pa;基片用循环水冷却,对于结构一材料平行于基片方向加有250Oe的磁场,以诱发平行的易磁化方向;对于结构二材料垂直于基片方向加有50Oe的磁场,以诱发垂直的易磁化方向。 Details of the preparation process of the two spin valves: a sputtering chamber is a vacuum of 2 × 10-5Pa, sputtering argon (99.99%) pressure of 0.5 Pa; substrate circulating cooling water, a structure for a direction parallel to the substrate material applied magnetic field of 250Oe to induce the easy magnetization direction parallel; two for structural direction perpendicular to the substrate material applied magnetic field 50Oe to induce vertical direction of easy magnetization. 溅射出的两种金属多层膜通过电子束印刷和离子刻蚀的手段被加工成300nm×300nm的元件。 Two sputtered metal multilayer film is processed to 300nm × 300nm element by means of an electron beam ion etching and printing. 测试结果表明,双垂直自旋阀器件的室温磁电阻效应比普通自旋阀增加30%左右。 The test results show that, at room temperature magnetoresistance dual vertical spin valve device is increased about 30% than the average spin valve. 另外,普通自旋阀器件周围出现涡流磁畴结构,而垂直自旋阀则呈现出单磁畴结构。 Further, ordinary spin valve device appears around the magnetic domain structure of the swirl, the vertical spin-valve exhibits a single magnetic domain structure.

实施例2:实验制备出十种结构的双垂直自旋阀器件,结构如下表表示: Example 2: Experimental dual vertical spin valve device prepared ten kinds of structures, the structure represented by the following table:

本发明分别用等离子体溅射、磁控溅射和分子束外延生长等三种方法制备出上述十种结构的双垂直自旋阀器件共计三十个,器件的尺寸均为300纳米×300纳米。 The method of the present invention were prepared three kinds of vertical epitaxial growth and the like of a dual spin valve structure device having the above ten kinds in total thirty plasma sputtering, magnetron sputtering and molecular beam, the device dimensions are 300 nm × 300 nanometers . 通过测试,发现上述所有这些自旋阀在室温下的磁电阻效应比通常结构的自旋阀要提高30%以上。 By tested magnetoresistance all of these spin valve than at room temperature to a spin valve structures typically more than 30%. 磁力显微镜测试显示,这些双垂直自旋阀器件均显示出良好的单磁畴特征。 MFM tests show that these dual vertical spin valve devices showed good characteristics of a single magnetic domain.

Claims (2)

1.一种双垂直自旋阀,其特征在于:结构为:a、双垂直自旋阀的最底层为1~20纳米厚的金属铂,称为底电极层;b、从底往上第二层为一个钴/铂复合结构,它是由金属钴和金属铂各2~20层交替重叠而成,底层为金属钴,顶层为金属铂,其中金属钴层的厚度为0.1~0.4纳米,金属铂层的厚度为1~3纳米,称为底复合层;c、从底往上第三层为金属钴,厚度为0.1~1纳米;d、从底往上第四层为金属铜,厚度为1~10纳米,称为隔离层;e、从底往上第五层为金属钴,厚度为0.1~2纳米;f、从底往上第六层为另一个铂/钴复合结构,被称为顶复合层;它是由2~20层的金属铂和金属钴交替重叠而成,底层为金属铂,顶层为金属钴,其中金属铂的厚度为1~3纳米,金属钴的厚度为0.1~0.4纳米;g、从底往上第七层为反铁磁性的铁锰合金或锰合金层,厚度为5~40纳米;h、从 A spin-valve dual vertical, characterized in that: structure: a, the bottom spin valve is dual vertical metallic platinum of 1 to 20 nm thick, referred to as the bottom electrode layer; B, from the bottom up section layer of a cobalt / platinum composite structure, which is composed of metallic cobalt and platinum alternately 2 to 20 by superimposing respective layers, the bottom layer of metallic cobalt, platinum metal top layer, wherein the thickness of the metal layer of cobalt is 0.1 to 0.4 nm, the thickness of the metal of the platinum layer is 1-3 nanometers, referred to as a bottom composite layer; C, up from the bottom of the third layer is a metal cobalt, a thickness of 0.1 to 1 nm; D, the fourth layer from the bottom up to metallic copper, thickness of 1 to 10 nanometers, called isolation layer; E, from the bottom upwards the fifth layer is a metal cobalt, a thickness of 0.1 to 2 nanometers; F, the sixth layer from the bottom up with another platinum / cobalt composite structure, is called a top composite layer; it is made of metallic platinum and from 2 to 20 metallic cobalt layer is formed by alternately overlapping, platinum metal underlayer, the top layer is metallic cobalt, wherein the thickness of the platinum metal is 1 to 3 nm, the thickness of the metallic cobalt 0.1 to 0.4 nm; G, from the bottom up to the seventh layer of antiferromagnetic alloy ferromanganese or manganese alloy layer, a thickness of 5 to 40 nanometers; H, from 往上第八层为1~10纳米的金属铂,为顶电极层。 Up eighth layer is 1 to 10 nm platinum metal, a top electrode layer.
2.按照权利要求1所述的双垂直自旋阀,其特征在于:隔离层为1~4纳米厚的金属铂或三氧化二铝。 2. The dual vertical spin valve as claimed in claim 1, wherein: the barrier layer is a platinum metal or 1-4 nm thick aluminum oxide.
CN 200410101847 2004-12-28 2004-12-28 Dual-vertical spin valve CN1297953C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410101847 CN1297953C (en) 2004-12-28 2004-12-28 Dual-vertical spin valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410101847 CN1297953C (en) 2004-12-28 2004-12-28 Dual-vertical spin valve

Publications (2)

Publication Number Publication Date
CN1641750A CN1641750A (en) 2005-07-20
CN1297953C true CN1297953C (en) 2007-01-31

Family

ID=34869645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410101847 CN1297953C (en) 2004-12-28 2004-12-28 Dual-vertical spin valve

Country Status (1)

Country Link
CN (1) CN1297953C (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356559A (en) * 2001-11-13 2002-07-03 北京科大天宇微电子材料技术开发有限公司 Tester with magnetic tunnel junction and magnetioelectric resistance material for 3D weak magnetic field
CN1479387A (en) * 2002-07-24 2004-03-03 富士通株式会社 Magnetic reluctance element with 'current perpendicular to plane' structure
CN1534605A (en) * 2002-12-26 2004-10-06 株式会社东芝 Magnetic resistance element, magnetic reproducing head and magnetic reproducing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356559A (en) * 2001-11-13 2002-07-03 北京科大天宇微电子材料技术开发有限公司 Tester with magnetic tunnel junction and magnetioelectric resistance material for 3D weak magnetic field
CN1479387A (en) * 2002-07-24 2004-03-03 富士通株式会社 Magnetic reluctance element with 'current perpendicular to plane' structure
CN1534605A (en) * 2002-12-26 2004-10-06 株式会社东芝 Magnetic resistance element, magnetic reproducing head and magnetic reproducing apparatus

Also Published As

Publication number Publication date
CN1641750A (en) 2005-07-20

Similar Documents

Publication Publication Date Title
US7116532B2 (en) Stability-enhancing underlayer for exchange-coupled magnetic structures, magnetoresistive sensors, and magnetic disk drive systems
JP5279384B2 (en) Stt-mtj-MRAM cell and manufacturing method thereof
US7026063B2 (en) Spin-valve type magnetoresistance sensor and thin-film magnetic head
JP3293437B2 (en) The magnetoresistive element, a magnetoresistive head and memory element
US7663171B2 (en) Magneto-resistance effect element and magnetic memory
CN100533589C (en) Magnetic unit and memory
JP5433284B2 (en) Mtj element and method of forming, method for producing stt-ram
KR100207805B1 (en) Magnetoresistive transducer, method for forming magnetic film and magnetic recording/reproducing drive
JP4292128B2 (en) Method for manufacturing a magneto-resistance effect element
KR100334837B1 (en) Spin-valve magnetoresistive thin film element and method of manufacturing the same
US7630232B2 (en) Synthetic anti-ferromagnetic structure with non-magnetic spacer for MRAM applications
JP3291208B2 (en) Magnetoresistive sensor and a magnetic head having its manufacturing method and its sensor
US9437268B2 (en) Free layer with out-of-plane anisotropy for magnetic device applications
JP3625199B2 (en) Magnetoresistive element
US9472752B2 (en) High thermal stability reference structure with out-of-plane anisotropy for magnetic device applications
JP5868491B2 (en) Magnetic tunnel junction and its formation method for a magnetic random access memory
US7106561B2 (en) Current-perpendicular-to-plane magnetoresistive sensor with free layer stabilized by in-stack orthogonal magnetic coupling to an antiparallel pinned biasing layer
US8184411B2 (en) MTJ incorporating CoFe/Ni multilayer film with perpendicular magnetic anisotropy for MRAM application
US6731473B2 (en) Dual pseudo spin valve heads
JP4568152B2 (en) Magnetic recording element and a magnetic recording apparatus using the same
JP4382333B2 (en) The magnetoresistive element, a magnetic head and a magnetic reproducing apparatus
CN1210818C (en) Magnetic component and magnetic head and magnetic memory using this magnetic component
CN100369116C (en) Magnetic head and magnetic recording/reproducing device
US20120126905A1 (en) Assisting FGL oscillations with perpendicular anisotropy for MAMR
CN1310212C (en) Magnetic device and magnetic memory

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right