CN1295659C - 利用半边数据结构实现三维网格模型的简化方法 - Google Patents

利用半边数据结构实现三维网格模型的简化方法 Download PDF

Info

Publication number
CN1295659C
CN1295659C CNB011386630A CN01138663A CN1295659C CN 1295659 C CN1295659 C CN 1295659C CN B011386630 A CNB011386630 A CN B011386630A CN 01138663 A CN01138663 A CN 01138663A CN 1295659 C CN1295659 C CN 1295659C
Authority
CN
China
Prior art keywords
limit
face
model
summit
data structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB011386630A
Other languages
English (en)
Other versions
CN1430184A (zh
Inventor
田捷
常红星
张晓鹏
蒋永实
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNB011386630A priority Critical patent/CN1295659C/zh
Publication of CN1430184A publication Critical patent/CN1430184A/zh
Application granted granted Critical
Publication of CN1295659C publication Critical patent/CN1295659C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)

Abstract

一种利用半边数据结构实现三维网格模型的简化方法,包括步骤:(1)获取三维模型的网格信息并构建半边结构;(2)初始化:计算每条边的折叠代价;(3)化简。本发明利用半边结构与二次误差准则进行网格简化的算法,不仅能够提高化简的速度,同时还具有广泛的适应性,是一种快速高效的面片化简算法。在计算机辅助设计,医学图像系统等领域有着重要的应用价值。

Description

利用半边数据结构实现三维网格模型的简化方法
技术领域
本发明涉及数据结构,特别涉及结合半边结构和二次误差准则来进行面片化简的方法。
背景技术
在计算机图形学中,用三角形网格来表示三维模型是最通用的形式,其绘制速度也将直接影响到整个图形系统的性能。随着数据采集技术的提高以及更复杂的计算机仿真建模技术的出现,在计算机图形学、计算机辅助设计技术、地理信息系统、医学图像系统等领域所构造和使用的模型越来越复杂,数据量也越来越大。例如通过等值面提取能够得到上百万个三角片,而航拍得到的地形图通常含有上千万个面片。斯坦福大学的数字米开朗基罗计划(The Digital Michelangelo Project)中著名的大卫(David)雕像的三角面片则高达20亿。尽管一般图形硬件的实时绘制能力已经有了很大提高,但它仍然跟不上三维数据量的急剧增长,从而很难达到实时交互的目的。
然而在实际应用中,很多情况下并不需要十分精细的高分辨率模型。例如在虚拟现实中,背景以及比较远的物体,可以用比较粗糙的分辨率来表示;而对于较近的物体,则可用精细的模型来表达。由于处理模型所要耗费的时间与该模型的精确程度是一对矛盾,因而为了获得可接受的运算时间,我们必须用一些相对简单的模型来代替原始模型,也就是对模型进行简化。这种简化不是简单的删除模型中的三角形,而是根据实际要求,删除那些对模型影响相对较小的三角形,保留那些能反映模型几何特征的三角形。网格简化对于三维几何模型的存储、传输、计算和显示有着重要的意义。它可以减少磁盘和内存的需求,加速网络的传输,加速形状信息的计算如有限元分析,碰撞检测、可见性判断、形状识别,和实时显示等,同时也是多分辨率分析、层次细节模型LOD的基础。
最近几年,面片化简包括多分辨率模型的问题得到了广泛的重视,也陆续提出了一些典型的算法,主要可分为顶点删除、顶点聚类和边折叠三类。
Schroeder采用顶点删除然后再重新三角化的方法进行网格简化,这是首次提出通过几何元素删除来实现网格简化的方法。在三角网格中,若一点与其周围三角面片的距离小于某个设定的阈值,且这一点的删除不会带来拓扑结构的改变,那么就可将这点删除,同时所有与该顶点相连的面均被从原始模型中删除,然后对其邻域重新三角化来填补由于这一点被删除所带来的空洞。这种算法只适用于流体结构,速度较快,也不需要占用太多的内存,但在保持表面的光滑性方面存在困难。随后又陆续提出了一些更精确的误差测度。但这些算法在生成较高质量模型的同时,也需要花费更多的时间。
Rossignac提出了顶点聚类的化简方法。该算法首先用一个包围盒将原始模型包围起来,再把包围盒划分为若干区域,将同一区域内的点合并为一个顶点,然后根据原始网格的拓扑关系对新顶点重新三角化,从而得到简化模型。这是一种通用的不保持拓扑结构的化简方法,而且速度较快。但它没有较好的误差控制,所以生成模型的质量不高。后来PeterLindstrom又拓展了此方法,使它能够简化无法一次调入内存的超大规模网格模型。
Hoppe在Siggraph’93上提出了一种基于边折叠的面片化简方法,采用能量优化的方式来确定折叠次序和新顶点的位置,将网格简化问题归结为通过边折叠、边交换使能量函数最小的问题。后来Hoppe在1996年对此能量函数加以了改进,并且通过边折叠和点分裂构造了多分辨率的LoD模型。此方法计算复杂,所需时间较长,但是生成模型的效果却是在所有化简方法中最好的。Garland和Heckbert在97年提出了一种基于二次误差测度的化简算法(Quadric Error Metric,简称QEM),它以点到平面距离的平方和作为误差测度。该算法首先为原始网格中的每个顶点分配一个4×4的误差矩阵,根据误差矩阵计算网格中边折叠的代价和新顶点的位置;然后按照折叠代价从小到大的顺序进行折叠操作,折叠生成的新点的误差矩阵为折叠边的两个顶点的误差矩阵之和。QEM算法速度快,简化生成的模型质量也比较高,是一种非常有效的化简算法。后来Hoppe又对QEM进行了改进,将法向量、颜色及纹理等信息加入到误差矩阵中,采用翼边(Wedge-based)的数据结构,也得到了较好的效果。
除了这三类以外,还有其他一些网格简化的方法。Greg Turk在1992年的Siggraph年会上提出了重采样方法(Re-Tiling)。Hinker和Hansen于下一年提出了一种区域合并的算法,即首先将法向差异较小的平面合并为一个大的平面,然后再重新三角化;后来Kalvin和Taylor又提出了基于区域生长的简化方法(超面法),这也是一个比较典型的区域合并方法;Michael Lounsbery和Tony DeRose将小波技术用于模型简化;Lindstrom在98年用化简前后体积的变化以及面积的变化作为误差测度,提高了化简速度并减少了内存占用。
在网格简化这一类问题的研究中,不仅要考虑简化后的精度,还要尽可能的提高化简速度。原因在于如果简化速度过慢,将不能弥补直接绘制高分辨率模型所带来的时间损失,从而简化也就失去了意义,特别是在多分辨率分析及LOD模型中,这点显得尤为重要。
发明内容
本发明的目的是提供一种高效的面片化简方法,能够对各种三角网格模型进行快速的简化,同时保持简化后模型的质量。
为实现上述目的,一种利用半边数据结构实现三维网格模型的简化方法,包括步骤:
(1)获取三维模型网格顶点和面的信息并构建半边结构,将边e分为两个具有相同端点但方向相反的边e1、e2,同时e1、e2构成一组邻居半边,面的三条半边构成一组循环;
(2)初始化:先对原始网格中的每个顶点计算误差矩阵,然后通过误差矩阵计算每条边的折叠误查,并按从小到大的顺序进行堆排序;
(3)化简,从堆中取出折叠误差最小的边并按如下规则检查折叠操作是否合法:
如果每一部分的所有点都位于垂直于平均平面的面的同一侧,并且这两部分的点位于平面的两侧,则认为是合法的折叠,如果合法转步骤(4),如果不合法转步骤(5);
(4)对该边进行折叠操作并更新相关信息,然后转步骤(6);
(5)不对该边进行操作,取堆中的下一条边,转步骤(3);
(6)若堆已为空或三角片数目已达到要求,则结束,否则转到步骤(3)继续。
本发明利用半边结构与二次误差准则进行网格简化的算法,不仅能够提高化简的速度,同时还具有广泛的适应性,是一种快速高效的面片化简算法。在计算机辅助设计,医学图像系统等领域有着重要的应用价值。
附图说明
图1利用半边数据结构与改进的二次误差准则进行网格简化的结构框图;
图2半边结构的概念及用其表示的网格模型;
图3半边折叠;
图4不合法的折叠;
图5边折叠合法性检查;
图6地形模型的简化;
图7兔子模型的简化;
图8牛模型的简化;
图9膝盖模型的简化,Garland算法与本文算法效果的对比。
具体实施方式
本发明的核心思想是将半边数据结构与改进的二次误差准则(QEM)结合起来进行网格简化。由于半边结构在点、线、面邻接关系查询方面有着优良的特性,因而特别适用于网格简化操作。同时由于QEM在处理一类已知法向量信息的三维模型时效果不是太好(如用MarchingCubes重建出的三维医学模型,其视觉效果严重依赖于通过梯度计算出的法向量,直接用QEM化简这类模型效果很差),本发明对其进行了一定的改进,将重建过程中的法向量信息融入到顶点的误差矩阵中,从而提高了简化模型的质量。
下面结合附图详细描述本发明的网格简化算法。作为一种具体的实现方案,结构框图见图1。主要包括三个步骤:构建半边结构,初始化和化简。其中第三步还包括合法性检查、边界处理等方面。下面对其逐一介绍。
构建半边结构
图2给出了半边结构的基本概念以及用其表示的网格模型。如图中所示,边e被分为两个具有相同端点但方向相反的边e1、e2,e1、e2就称为边e的两个半边,同时e1、e2构成一组邻居半边。发出半边的顶点称为半边的起点,半边指向的顶点称为半边的终点。如半边e1的起点为v2,终点为v1。边e两侧为它的两个邻面,每个邻面包含三条半边。采用半边数据结构时,我们将模型中边的信息存储在半边表中,而不是边表中。
由图2可以看出,模型中每个面的三条半边构成了一组循环,其方向既可以是顺时针也可以是逆时针,但所有的面中半边循环的方向必须一致。显然,半边结构只适用于流体结构,因为非流体结构中会出现一条边的邻面超过两个的情况,这时其半边的邻居半边不唯一。
半边数据结构的灵活性很强,可以根据不同的需要构建不同的顶点表、面表和半边表。事实上,半边结构的优点就在于它能方便的进行点、线、面之间邻接关系的查询而无需记录太多的信息。在我们将半边结构应用于面片化简当中时,采用下面几个简单的结构即可得到所需要的一切信息,同时边折叠后点、线、面之间邻接关系的更新也相当简单。
在半边表中,每条半边所要记录的信息可用如下的结构来表示:
Struct HalfEdge
{
       Vertex*vert;//该半边的起始点
       HalfEdge*pair;//该半边的邻居半边
       HalfEdge*next;//该半边的下一半边(在同一面内)
       Face*face;//该半边所在的面
};
在顶点表中,无需记录顶点的邻边、邻面。除了必不可少的顶点坐标和法向量外,只需要记录由该顶点发出的所有半边中的任意一条即可。顶点结构如下所示:
Struct Vertex
{
       float vcoord[3];//顶点坐标
       float ncoord[3];//顶点法向量
       HalfEdge*he;//由该顶点发出的任意一条半边
};
在面表中,每个面只需记录其所包含的半边循环中的任意一条半边。面结构如下所示:
Struct Face
{
       HalfEdge*he;//该面所包含半边循环中任意一条半边
};
采用上述结构,我们可以很方便的查询点、边和面之间的邻接关系。如某条边的两个端点及两个邻接面可用如下方式得到:
Vertex*vert1=he->vert;//端点1
Vertex*vert2=he->pair->vert;//端点2
Face*face1=he->face;//邻接面1
Face*face2=he->pair->face;//邻接面2
由于一个面内的三条半边构成一组循环,因而在对一个面的边进行操作时可用如下简单的循环来完成:
HalfEdge*the=face->he;
do{
      //对半边进行操作
      the=the->next;
}while(the!=face->he);
由图2还可知,由一个顶点发出的半边也能够构成一组循环,因而与该顶点有关的信息可用与上类似的方法来得到。如通过下面的循环就可得到该点的邻接边、邻接点和邻接面。
HalfEdge*the=Vert->he;
Vertex*VertNb;
Face*face;
do{
the=the->pair->next;//the为顶点Vert的一个邻接边
  VertNb=the->next->vert;//VertNb为顶点Vert的一个相邻点
  face=the->face;//face为顶点Vert的一个邻接面
  }while(the!=vert->he);
三维网格模型一般只包含顶点表和面表,顶点表反映模型的几何信息,面表反映模型的拓扑信息。我们可以很方便的在读入数据的同时构建半边数据结构。需要说明的一点是半边表中邻居半边pair的查询,通过整个半边表进行查询显然会耗费太多的时间。这里我们首先为每个顶点开辟一块内存用于存放该顶点的邻接面,在查询pair时只在该邻域范围内进行查询,等整个半边结构构建完毕后再将这些内存释放掉以为后面的处理节省内存空间。
初始化
初始化的目的一是计算每条边折叠后的代价,二是计算边折叠后新点的位置。对于第一点,下面有详细的描述;而对于第二点,由于我们采用无需计算新点位置的半边折叠作为拓扑操作,因而这一步可以忽略。图3为半边折叠的示意图。由图可知,半边折叠类似于边折叠,所不同的只是在半边折叠中,终点即是新点,起点被“拉”到终点的位置。它可以看成是无需计算新点位置的边折叠操作,同时也可以看成是不用重新三角化的顶点删除操作。
为了计算边折叠的代价,我们采用Garland于1997年提出的二次误差准则并对其进行了一些改进。在读入网格数据时,我们首先判断原始数据中有无法向量信息。如果没有,则直接采用Garland提出的二次误差准则;如果有,则采用我们改进的二次误差准则。下面分别对其进行描述。
1.二次误差准则
根据解析几何理论,平面方程可表示为:nTv+d=0,其中n=[a b c]T为平面的法向量。如果n为归一化的法向量(a2+b2+c2=1),则空间中任意点v=[x y z]T到该平面的距离平方可表示为:
      D2(v)=(nTv+d)2=vT(nnT)v+2(dh)Tv+d2    (1)
定义一个4×4的误差矩阵Q=bTc,其中A=nnT为一3×3矩阵,b=dn为一3维列矢量,c=d2为常数。如果点的坐标采用齐次表示v=[x y z l]T,则(1)式等价为:
                D2(v)=vTQv=Q(v)
这种表示方法可以很容易推广到点到一组平面的距离:
E Q ( v ) = Σ i D i 2 ( v ) = Σ i Q i ( v ) = Q ( v ) . . . ( 2 )
由于Qi(v)+Qj(v)=(Qi+Qj)(v),其中 Q i + Q j = A i + A j b i + b j b i T + b j T c i + c j , 因而(2)式中最右端的Q可表示为Q=∑Qi。也就是说,如果要计算某个点到一组平面的距离,只需要先计算出每个平面的误差矩阵Q,相加得到该点的误差矩阵Q,再代入(2)式即可。对于要折叠的边(vi,vj),可先通过vi、vj各自周围的邻面计算出Qi、Qj,而折叠后新点vnew对应的Qnew只需将Qi与Qj相加,即Qnew=Qi+Qj。Qnew(vnew)就是将边(vi,vj)折叠到点vnew的代价。
2.改进的二次误差准则
我们对二次误差准则进行改进主要是针对一类已知精确法向量信息的三维模型。这类模型中顶点法向量的方向通常对模型的视觉效果起着重要的作用,且一般不是通过计算顶点周围邻面法向量的加权和来得到。例如通过Marching Cubes重建出的三维医学模型,其法向量是在重建过程中通过计算体素梯度来得到。在我们将QEM算法直接应用到这类模型时,效果不是太好。为此我们进行了下面的改进:
假设v=(x,y,z)T是模型中的一个顶点,n=(a,b,c)T是顶点v归一化的法向量。我们可以假想有一个平面P,它过顶点v且以n为法向量。也就是说,P是最能代表顶点v方向的平面。在构造顶点v的误差矩阵Qv时,我们不仅仅要考虑顶点v周围的邻面,还要将最能代表其方向的虚拟平面P所提供的信息考虑进去,即:
Q v = Σ i Q i + w Q P
其中Qi为顶点v周围第i个邻面所对应的误差矩阵,QP为虚拟平面P对应的误差矩阵,w为加权系数。
由公式(1)可知,一个平面的误差矩阵只和其平面方程有关(法向量必须归一化)。对于虚拟平面P,我们知道其归一化的法向量n以及该平面上的一个顶点v,因而很容易求出其平面方程中的第四个系数d=-ax-by-cz。然后就能构建出虚拟平面P对应的误差矩阵QP,既而得到顶点v的误差矩阵Qv。这种方法虽然简单,但却能较好的提高这一类三维医学模型在简化后的质量。图9(c)说明了这一点。
在这种方法中,加权系数w可以由用户自己调节,实验证明w取得过小,对结果很难有影响;过大,在提高平坦区域化简效果的同时又可能降低模型的整体效果。我们在实际过程中取点v周围邻面的个数作为加权系数w,w的取值范围为1至10,结果证明这时的效果相对较好。
计算完每条边的代价后,还要将其按照代价值从小到大的顺序进行堆排序。在化简过程中,每次从堆中取出代价最小的边进行折叠。这里需要说明的一点是:由于一条半边被折叠后,其邻居半边也必将被折叠掉,因而没有必要把每条半边都放进代价堆中。只需按边的个数来设定堆的大小,每条边的折叠代价为构成该边的两个半边折叠代价中较小的值,而新点为折叠代价较小的半边的终点。
化简
化简过程主要包括以下几个步骤:
1.从代价堆中取出代价最小的边,进行合法性检查。如果不合法,则不进行折叠。
2.对于一条合法的边,判断其是否满足边界条件。如果满足,则要进行特殊处理。否则,按正常情况进行化简。
3.边折叠后,更新相应的点、边、面的邻接关系,重新计算相关的折叠代价,重新进行堆排序。
4.重复以上步骤,直至达到要求。
合法性检查
通常情况下,一次边折叠前后相邻平面的方向不会相差太多,因而对模型几何形状的影响也不会太大,但有时也会出现例外。如图4所示。当点v5折叠到v1时,边(v3,v5)变为(v3,v1),与(v2,v4)发生了交叉。这时将模型投影到屏幕上则有可能产生多边形空洞。
为了避免在折叠过程中出现这种情况,通常采用的方法是比较需要改变连接关系的平面在折叠前后法向量之间的差异,如果大于某个阈值,则认为不合法,不进行折叠。但这种方法的一个主要问题是很难选择合适的阈值。这里我们采用了一种更为有效的方法。
如图5所示,如果要折叠半边v0->v1,也就是说将v0折叠到v1,我们采用下面几个步骤进行合法性检查:
1.从v1开始找到v0周围所有的相邻点v1,v2,...,vn(如图5中(a),n=5),然后计算出v1,v2,...,vn的平均平面(图中没有画出)。
2.过线(v1,vi)(3≤i≤n-1)分别做n-3个垂直于平均平面的平面,记为Pi,如图5中(b)与(c)所示。
3.平面Pi将点集(v2,...vi-1,vi+1,...,vn)分为两部分:(v2,...vi-1)和(vi+1,...,vn)。如果每一部分的所有点都位于平面Pi的同一侧,并且这两部分的点位于平面的两侧,则认为是合法的折叠,否则是非法的。
边界处理
模型中的边分为两类,内部边和边界边。内部边有两个邻接面,并且对应着两条互为邻居的半边。边界边有一个邻接面,只对应一条半边,该半边没有邻居半边,表现在数据结构中就是其pair属性为空。相应的,模型中的顶点也可分为两类,内部点和边界点。内部点的所有邻边均为内部边,而边界点的邻边中至少有一条是边界边。
对于半边折叠,根据半边起点和终点的特性可分为四种情况:
1)两个点都是内部点;
2)起点是内部点,终点是边界点;
3)起点是边界点,终点是内部点;
4)两个点都是边界点;
其中前两种情况均可以按照正常的过程进行化简。第三种情况我们不化简,因为这种情况是将边界点折叠到内部点,对边界形状的影响较大。对于第四种情况,我们允许化简,这是由于当化简掉的三角片数目较多时,边界边占的比例会增大,如果完全禁止化简边界边,那么在进行进一步简化时,就只能化简模型中的其他部分,这样边界虽然保持较好,但其他部分效果就会差许多。我们在初始化的时候在边界边上作一个通过该边界边并与其所在三角形垂直的平面,在计算误差矩阵时把这些平面也考虑在内,这样能够有效的保证边界边不至于很快就被化简掉。而当面片数量较少时,则会适当的自动合并一些边界边。由于只是边界点之间的相互合并,而且数目不会太多,因而也可以较好的保持边界特征。这里需要注意的一点是,边界点发出的所有半边无法构成一个像内部点那样的循环,因此在程序实现时需要做特殊处理。
实现
每一次边折叠后邻接关系的更新,折叠代价的重新计算以及堆排序与其他方法相差不大,这里无需重复。所不同的一点采用半边数据结构在边折叠后对于面表的更新仅仅是将折叠掉的面从面表中去除而无需其他操作,同时顶点表和半边表的更新也相当简单,因而能够大大提高简化速度。
我们用C++语言实现了本发明所描述的算法,并且在几个不同的数据集上作了实验。所有的实验都是在一台PIII 800,128MB内存,操作系统为Windows 2000的PC机上完成的,显示部分使用了标准的OpenGL图形函数库,所用显卡为GeForce 2MX-400/32MB。
图6、7、8、9为几组实例。图6中的原始地形模型有将近200,000万个三角片,在化简了将近99%后(3,000个三角片)仍能保持较好的特征,并且边界保持的也很好。图7(b),(c)分别为将原始兔子模型简化96%,99%后的模型。图8为不含任何边界的流体模型,在简化了90%后仍然具有较好的效果。图9中(a)为重建后的人体膝盖模型,其法向量在重建过程中通过计算梯度来得到,(b)、(c)分别为用Garland的原始QEM算法及本文改进的QEM算法进行化简的结果,可以看出本发明的改进后的效果明显好于改进前的效果。
表1给出了Garland算法与我们的算法运行速度对比。由表中数据可以看出,我们算法的速度明显快于Garland算法的速度。
  原模型(三角面片数)   简化模型(三角面片数)     Garland算法所用时间       本文算法所用时间
  初始化(秒)   化简(秒)   初始化(秒)   化简(秒)
  地形(199,114) 3,000 11.837 21.992 5.257 5.998
  兔子(69,451)   800   3.094   8.012   1.632   1.842
  牛(5,804)   600   0.25   0.65   0.12   0.09
  膝盖(95,936)   15,000   3.675   8.863   2.003   2.083
                                     表1

Claims (5)

1.一种利用半边数据结构实现三维网格模型的简化方法,包括步骤:
(1)获取三维模型网格顶点和面的信息并构建半边结构,将边e分为两个具有相同端点但方向相反的边e1、e2,同时e1、e2构成一组邻居半边,面的三条半边构成一组循环;
(2)初始化:先对原始网格中的每个顶点计算误差矩阵,然后通过误差矩阵计算每条边的折叠误查,并按从小到大的顺序进行堆排序;
(3)化简,从堆中取出折叠误差最小的边并按如下规则检查折叠操作是否合法:
如果每一部分的所有点都位于垂直于平均平面的面的同一侧,并且这两部分的点位于平面的两侧,则认为是合法的折叠,如果合法转步骤(4),如果不合法转步骤(5);
(4)对该边进行折叠操作并更新相关信息,然后转步骤(6);
(5)不对该边进行操作,取堆中的下一条边,转步骤(3);
(6)若堆已为空或三角片数目已达到要求,则结束,否则转到步骤(3)继续。
2.按权利要求1所述的方法,其特征在于所述的构建半边结构包括为每个顶点提供一块临时内存,用于存放该顶点的邻接面,数据结构建完后即将其释放掉,为后面的处理节省内存空间。
3.按权利要求1所述的方法,其特征在于所述的计算每条边的折叠代价包括步骤:
如果网络模型没有法向量信息,则直接利用二次误差准则QEM计算代价;
如果输入的模型本身含有法向量信息,则用下式计算代价:
Q v = Σ i Q i + w Q P
其中,Qi为顶点v周围第i个邻面所对应的误差矩阵,Qp为虚拟平面P对应的误差矩阵,w为加权系数。
4.按权利要求3所述的方法,其特征在于加权系数w为1至10。
5.按权利要求1所述的方法,其特征在于所述的化简包括步骤:
采用半边数据结构在边折叠后对于面表的更新仅仅是将折叠掉的面从面表中取出而无需其它操作。
CNB011386630A 2001-12-29 2001-12-29 利用半边数据结构实现三维网格模型的简化方法 Expired - Fee Related CN1295659C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB011386630A CN1295659C (zh) 2001-12-29 2001-12-29 利用半边数据结构实现三维网格模型的简化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB011386630A CN1295659C (zh) 2001-12-29 2001-12-29 利用半边数据结构实现三维网格模型的简化方法

Publications (2)

Publication Number Publication Date
CN1430184A CN1430184A (zh) 2003-07-16
CN1295659C true CN1295659C (zh) 2007-01-17

Family

ID=4674653

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011386630A Expired - Fee Related CN1295659C (zh) 2001-12-29 2001-12-29 利用半边数据结构实现三维网格模型的简化方法

Country Status (1)

Country Link
CN (1) CN1295659C (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100399360C (zh) * 2006-08-22 2008-07-02 中国科学院计算技术研究所 一种三维人体模型的网格简化约束方法
CN101231761B (zh) * 2008-01-29 2010-06-09 南京大学 一种保持外观特征的网格模型简化方法
CN101377857B (zh) * 2008-07-30 2010-06-02 电子科技大学 一种基于八叉树空间划分和顶点删除的三维模型简化方法
CN101702237B (zh) * 2009-11-10 2011-11-23 南京大学 一种基于二次误差测度的层位面拟合方法
CN102214366B (zh) * 2011-07-20 2013-01-16 浙江万里学院 三维点采样数据高性能渲染方法
CN103295266B (zh) * 2013-05-31 2016-08-17 东莞中山大学研究院 一种基于距离加权最小折叠代价的三维模型边折叠简化的方法
CN103295267A (zh) * 2013-05-31 2013-09-11 东莞中山大学研究院 一种基于最小折叠代价的三维模型边折叠简化的方法
CN104574508A (zh) * 2015-01-14 2015-04-29 山东大学 一种面向虚拟现实技术的多分辨率模型简化方法
CN105006022A (zh) * 2015-08-11 2015-10-28 中山大学 一种三维几何图形的边折叠简化方法及其装置
CN105389851B (zh) * 2015-10-22 2018-07-27 北京航空航天大学 一种基于顶点和新边点统一调整的Loop细分实现方法
CN106204697B (zh) * 2016-07-14 2019-05-28 燕山大学 一种布料撕裂动态模拟系统
CN106296824B (zh) * 2016-08-18 2019-04-16 北京航空航天大学 一种基于半边数据结构的T-mesh局部细化实现方法
CN106530374A (zh) * 2016-10-25 2017-03-22 合肥东上多媒体科技有限公司 一种vr模型的层次细节处理方法
CN107688693B (zh) * 2017-08-04 2020-01-14 中国科学院自动化研究所 三维模型自动折叠的方法
CN107609268B (zh) * 2017-09-12 2020-06-05 上海同岩土木工程科技股份有限公司 一种基于tin的三维地质模型与bim模型耦合的方法
US20200401102A1 (en) * 2019-06-21 2020-12-24 Qiang Cui Frame Structure Optimization Method Based on 3D Printing
CN110796693B (zh) * 2019-09-11 2023-03-21 重庆大学 一种工业ct切片图像直接生成二维有限元模型的方法
CN112434356B (zh) * 2020-10-16 2024-06-14 杭州群核信息技术有限公司 一种基于半边模型的造型方法及系统
CN112506217B (zh) * 2020-11-19 2024-07-26 一飞(海南)科技有限公司 利用三维模型快速生成集群无人机表演立体画面的方法
CN114529632B (zh) * 2022-04-21 2022-09-02 广州中望龙腾软件股份有限公司 基于半边查环的面域生成方法、系统、设备及存储介质
CN117547825B (zh) * 2024-01-12 2024-03-22 腾讯科技(深圳)有限公司 碰撞数据的管理方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465323A (en) * 1989-09-20 1995-11-07 Association Scientifique Pour La Geologie Et De Ses Applications Method for modelling a surface and device for implementing same
US5488589A (en) * 1994-10-18 1996-01-30 The United States Of America As Represented By The Secretary Of The Navy Neural network based three dimensional ocean modeler
JP2000200363A (ja) * 1999-01-05 2000-07-18 Nec Corp 3次元モデリングシステム、方法及び記録媒体
JP2001084410A (ja) * 1999-09-01 2001-03-30 Mitsubishi Electric Inf Technol Center America Inc リンクされたサーフェスエレメントおよびリンクされていないサーフェスエレメントを使用してインタラクティブにグラフィックオブジェクトをモデリングする方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465323A (en) * 1989-09-20 1995-11-07 Association Scientifique Pour La Geologie Et De Ses Applications Method for modelling a surface and device for implementing same
US5488589A (en) * 1994-10-18 1996-01-30 The United States Of America As Represented By The Secretary Of The Navy Neural network based three dimensional ocean modeler
JP2000200363A (ja) * 1999-01-05 2000-07-18 Nec Corp 3次元モデリングシステム、方法及び記録媒体
JP2001084410A (ja) * 1999-09-01 2001-03-30 Mitsubishi Electric Inf Technol Center America Inc リンクされたサーフェスエレメントおよびリンクされていないサーフェスエレメントを使用してインタラクティブにグラフィックオブジェクトをモデリングする方法

Also Published As

Publication number Publication date
CN1430184A (zh) 2003-07-16

Similar Documents

Publication Publication Date Title
CN1295659C (zh) 利用半边数据结构实现三维网格模型的简化方法
Pajarola et al. Survey of semi-regular multiresolution models for interactive terrain rendering
US8175734B2 (en) Methods and system for enabling printing three-dimensional object models
US7561156B2 (en) Adaptive quadtree-based scalable surface rendering
Nishida et al. Example‐driven procedural urban roads
US20020030677A1 (en) Method and apparatus for generating atomic parts of graphic representation through skeletonization for interactive visualization applications
CN104966317B (zh) 一种基于矿体轮廓线的三维自动建模方法
Zhao et al. Mathematical morphology-based generalization of complex 3D building models incorporating semantic relationships
KR20090064239A (ko) 2차원 환경에서 3차원 모델의 텍스쳐 맵 제작 방법 및시스템
KR100959349B1 (ko) 그래픽스 처리 유닛을 이용한 사진트리 기반의 지형 렌더링 방법을 가속화하는 방법
CN1967596A (zh) 三维扫描系统中三维散乱点集的三角剖分构造方法
Zelinka et al. Permission grids: Practical, error-bounded simplification
KR100935886B1 (ko) 그래픽스 처리 유닛을 이용한 사진트리 기반의 지형 렌더링 방법
CN1926558A (zh) 对任意成三角形的表面应用精确三维体纹理的系统和方法
CN102831275B (zh) 一种3d流体的仿真方法及系统
CN112561788B (zh) 一种bim模型的二维展开方法及纹理贴图方法、装置
Ray et al. Hierarchical least squares conformal map
Doškář et al. Level-set based design of Wang tiles for modelling complex microstructures
Amiri et al. Connectivity maps for subdivision surfaces
Dey et al. Procedural feature generation for volumetric terrains using voxel grammars
Luebke View-dependent simplification of arbitrary polygonal environments
Taghavi Automatic Block Decomposition Using Fuzzy Logic Analysis.
Angelo et al. A fast mesh-growing algorithm for manifold surface reconstruction
Koca et al. A hybrid representation for modeling, interactive editing, and real-time visualization of terrains with volumetric features
Cruz-Matías et al. A new lossless orthogonal simplification method for 3D objects based on bounding structures

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070117

Termination date: 20111229