CN1280954A - 一种甲醇水蒸气重整制氢催化剂及其应用方法 - Google Patents

一种甲醇水蒸气重整制氢催化剂及其应用方法 Download PDF

Info

Publication number
CN1280954A
CN1280954A CN00121571A CN00121571A CN1280954A CN 1280954 A CN1280954 A CN 1280954A CN 00121571 A CN00121571 A CN 00121571A CN 00121571 A CN00121571 A CN 00121571A CN 1280954 A CN1280954 A CN 1280954A
Authority
CN
China
Prior art keywords
catalyst
methanol
water vapour
hydrogen
preparing hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00121571A
Other languages
English (en)
Other versions
CN1090998C (zh
Inventor
孙予罕
任杰
李永红
吴贵升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Institute of Coal Chemistry of CAS
Original Assignee
Shanxi Institute of Coal Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Institute of Coal Chemistry of CAS filed Critical Shanxi Institute of Coal Chemistry of CAS
Priority to CN00121571A priority Critical patent/CN1090998C/zh
Publication of CN1280954A publication Critical patent/CN1280954A/zh
Application granted granted Critical
Publication of CN1090998C publication Critical patent/CN1090998C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

一种甲醇水蒸气重整制氢催化剂的原子比组成为:Cu1.0,La0.02—0.5,Zr0.15—1.0,Fe0—0.5。该催化剂适用于常压下,以水醇摩尔比1—3的甲醇水溶液为原料,空速为1—2.5h-1,225—260℃的条件下反应。本发明具有甲醇水蒸气重整反应温度低,在230℃时,甲醇的转化率在98%以上,反应副产物少,稳定性好的优点。

Description

一种甲醇水蒸气重整制氢催化剂及其应用方法
本发明属于一种甲醇水蒸气重整制氢催化剂及其应用方法。
随着生产和科学技术的迅速发展,氢气的用途越来越广泛,从石油炼制、化工、治金工业,到电子、电力、建材、气象、航天等行业都得到广泛使用。氢气的需求量是较其他工业气体增长最快的气体之一。氢气既是一种功能材料,也是一种能源材料。在即将来临的下一世纪,人类面临能源危机和环境污染问题日益严峻,开发新能源,寻找代用燃料是当务之急。而以氢气为燃料的燃料电池,是一种可移动的、高效的动力源,具有起动方便、比功率大、污染小等优点,显示出重大的应用前景。
目前,工业上制氢的方法主要有:水电解法、烃类水蒸气转化法、氨分解法、水煤气转化法、甲醇裂解法等,其中甲醇水蒸气重整反应,是甲醇裂解制氢法中氢含量最高的反应,具有成本低、条件温和、无腐蚀、产物成分少、易分离等特点,可满足燃料电池和其它氢气用户对氢源的要求。特别是当燃料电池用于医院、机场、数据中心、军用设施和机动车辆独立提供电源时,以甲醇水蒸气重整制氢更具市场竞争力。目前,国内使用的甲醇水蒸气重整制氢催化剂,大多是合成甲醇用的Cu-Zn-Al催化剂,它们的使用温度都比较高,如近期文献报道的兰州化物所开发的MWC-610催化剂、齐鲁石化院开发的QMH-01双功能催化剂,其使用温度都在260-300℃。
本发明的目的在于提供一种使用温度低的甲醇水蒸气重整制氢催化剂及其应用方法。
本发明的催化剂原子比组成为:
Cu.1.0    La 0.02-0.5    Zr 0.15-1.0    Fe 0-0.5
本发明催化剂的制备方法:
(1)共沉淀法:即将一定浓度的硝酸铜、硝酸镧、硝酸铁、氧氯化锆的混合溶液与碳酸钠溶液或氨水,在80℃恒温、搅拌条件下,采用并流共沉淀法,将两者混合沉淀。沉淀过程中,pH值控制在11左右,待沉淀完毕后,老化2小时。将沉淀好的催化剂浆料过滤,用60℃的蒸馏水洗涤至无氯离子,120℃干燥,350℃煅烧2小时后,制得催化剂。
(2)共沉淀与浸渍相结合法:即将一定浓度的硝酸铜、硝酸镧、氧氯化锆的混合溶液与碳酸钠溶液或氨水,在80℃恒温、搅拌条件下,采用并流共沉淀法,将两者混合沉淀。沉淀过程中,PH值控制在11左右,待沉淀完毕后,老化2小时。将沉淀好的催化剂浆料过滤,用60℃的蒸馏水洗涤至无氯离子,120℃干燥,350℃煅烧2小时后,制得催化剂载体。将一定浓度的硝酸铁浸渍在催化剂载体上,制得催化剂。
本发明的催化剂是在常压下,以水醇摩尔比1-3的甲醇水溶液为原料,空速为1-2.5h-1,225-260℃的条件下反应。
本发明与现有技术相比具有如下优点:
1.甲醇水蒸气重整反应温度低,反应温度范围为225-260℃,在230℃时,甲醇的转化率在98%以上。
2.反应副产物少,稳定性好。
实施例1
(1)将硝酸铜、硝酸镧、氧氯化锆分别溶于蒸馏水配成0.2g/ml的溶液,按原子比Cu∶La∶Zr=1.0∶0.15∶1.0的比例称取各组分后,配成600ml硝酸铜、硝酸镧、氧氯化锆的混合液;
(2)将无水碳酸钠溶于蒸馏水配成0.2g/ml的溶液;
(3)在80℃恒温、搅拌下,采用并流共沉淀法,将(1)、(2)溶液混合沉淀。沉淀时,PH值控制在11左右,等沉淀完毕后,老化2小时,
(4)将上述沉淀好的催化剂浆料过滤,用60℃蒸馏水洗涤至无氯离子,120℃干燥12小时,350℃煅烧2小时,制得催化剂A。
实施例2
按原子比Cu∶La∶Zr∶Fe=1.0∶0.24∶0.15∶0.05的比例称取各组分后,配成600ml硝酸铜、硝酸镧、硝酸铁、氧氯化锆的混合液,其余同实施例1,制得催化剂B。
实施例3
(1)将硝酸铜、硝酸镧、硝酸铁、氧氯化锆分别溶于蒸馏水配成0.1g/ml的溶液,按原子比Cu∶La∶Zr∶Fe=1.0∶0.025∶0.67∶0.13的比例称取各组分后,配成600ml硝酸铜、硝酸镧、氧氯化锆的混合液;
(2)、(3)、(4)步骤同实施例1,制得催化剂载体:
(5)将按上述原子比称取的硝酸铁溶液浸渍在上述制备好的催化剂载体上,浸渍12小时后,烘干,350℃煅烧2小时,制得催化剂C。
实施例4
按原子比Cu∶La∶Zr∶Fe=1.0∶0.48∶1.0∶0.45的比例称取各组分后,配成600ml硝酸铜、硝酸镧、硝酸铁、氧氯化锆的混合液,其余同实施例1,制得催化剂D。
各实施例制得的催化剂评价:
催化剂活性评价是在常压固定床流动体系中进行,反应条件如表1。反应前用氢气在350℃下还原2小时,临氢降温至200℃,切物甲醇水溶液升温至230℃,反应1小时后,取样分析。反应尾气经冷井冷浴后,在炭分子筛柱上,用热导检测器进行在线分析;反应后液体在GDX-103柱上,用氢火焰检测器进行分析。反应结果如表1:
表1
    反应条件 催化剂 甲醇转化率%     气体组成(%)
    H2  CO2  CO
    反应温度230℃水醇比=1.5空速2h-1  A  98.71  75.75  23.79  0.46
 B  99.93  75.89  23.80  0.32
 C  99.01  76.02  23.41  0.47
 D  98.66  75.90  23.57  0.54
    反应温度230℃水醇比=3.0空速1.5h-1  A  99.79  76.01  23.86  0.23
 B  99.99  75.83  23.92  0.35
 C  99.89  75.81  23.48  0.19
 D  99.11  76.33  23.78  0.36

Claims (2)

1.一种甲醇水蒸气重整制氢催化剂其特征在于原子比组成为:
Cu 1.0 La 0.02-0.5 Zr 0.15-1.0 Fe 0-0.5。
2.根据权利要求1所述的一种甲醇水蒸气重整制氢催化剂的应用方法,其特征在于是在常压下,以水醇摩尔比1-3的甲醇水溶液为原料,空速为1-2.5h-1,225-260℃的条件下反应。
CN00121571A 2000-08-14 2000-08-14 一种甲醇水蒸气重整制氢催化剂及其应用方法 Expired - Fee Related CN1090998C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN00121571A CN1090998C (zh) 2000-08-14 2000-08-14 一种甲醇水蒸气重整制氢催化剂及其应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN00121571A CN1090998C (zh) 2000-08-14 2000-08-14 一种甲醇水蒸气重整制氢催化剂及其应用方法

Publications (2)

Publication Number Publication Date
CN1280954A true CN1280954A (zh) 2001-01-24
CN1090998C CN1090998C (zh) 2002-09-18

Family

ID=4588885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00121571A Expired - Fee Related CN1090998C (zh) 2000-08-14 2000-08-14 一种甲醇水蒸气重整制氢催化剂及其应用方法

Country Status (1)

Country Link
CN (1) CN1090998C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331599C (zh) * 2004-09-30 2007-08-15 中国科学院大连化学物理研究所 一种甲醇氧化重整制氢催化剂及制法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331599C (zh) * 2004-09-30 2007-08-15 中国科学院大连化学物理研究所 一种甲醇氧化重整制氢催化剂及制法和应用

Also Published As

Publication number Publication date
CN1090998C (zh) 2002-09-18

Similar Documents

Publication Publication Date Title
Bowker Methanol synthesis from CO2 hydrogenation
Alves et al. Overview of hydrogen production technologies from biogas and the applications in fuel cells
Sekine et al. Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field
CA2690980C (en) Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol
US8138380B2 (en) Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol
Samiee et al. Power to methanol technologies via CO2 recovery: CO2 hydrogenation and electrocatalytic routes
CN101880214A (zh) 一种非热等离子体与过渡金属协同催化co2加氢的方法
CN103566941A (zh) 一种甲醇水蒸气催化重整制氢催化剂及其制备方法
CN1850331A (zh) 一种CuZnAl复合氧化物催化剂、制备及其用途
Rakhmatov et al. Technology for the production of ethylene by catalytic oxycondensation of methane
Khani et al. Production of clean hydrogen fuel on a bifunctional iron catalyst via chemical loop reforming of methanol
CN1090998C (zh) 一种甲醇水蒸气重整制氢催化剂及其应用方法
T-Raissi et al. Hydrogen from solar via light-assisted high-temperature water splitting cycles
Gallucci et al. Methanol as an energy source and/or energy carrier in membrane processes
CN1112242C (zh) 甲醇水蒸气重整制氢催化剂的使用方法
Rodríguez et al. A fundamental level understanding of the oxidative steam reforming of ethanol (OSRE) reaction: a review
Alsaffar et al. Competitiveness of hydrogen production by glycerol reforming in fixed-bed reactor: An overview of the catalytic performance, product distribution and reactant conversions
Al Hashar Renewable Methanol Production Using Captured Carbon Dioxide and Hydrogen Generated through Water-Splitting
CN100413581C (zh) 乙苯脱氢制备苯乙烯的催化剂
Patel et al. Production of hydrogen with low carbon monoxide formation via catalytic steam reforming of methanol
Dang et al. Production of synthetic methanol from air and water using controlled thermonuclear reactor power—II. Capital investment and production costs
Graça et al. Electrochemical ammonia synthesis: Mechanism, recent developments, and challenges in catalyst design
Furusawa et al. Development of a Ba–Ni/SiO2 Catalyst for the Simultaneous Decomposition of Ammonia and Naphthalene/Benzene Formed as Byproducts in the Steam Gasification of Woody Biomass
Qi et al. CeO2 supported MOFs derived LaBxFeyO3 (B= Mn, Co) perovskite catalysts for degradation of toluene
CN1203919C (zh) 丙烷部分氧化制氢催化剂及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020918

Termination date: 20170814