CN1279713C - 一种三级克洛斯矩阵无阻塞扩展方法 - Google Patents

一种三级克洛斯矩阵无阻塞扩展方法 Download PDF

Info

Publication number
CN1279713C
CN1279713C CN 03153582 CN03153582A CN1279713C CN 1279713 C CN1279713 C CN 1279713C CN 03153582 CN03153582 CN 03153582 CN 03153582 A CN03153582 A CN 03153582A CN 1279713 C CN1279713 C CN 1279713C
Authority
CN
China
Prior art keywords
module
port
input
output
intergrade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 03153582
Other languages
English (en)
Other versions
CN1486012A (zh
Inventor
魏学勤
邵成思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fiberhome Telecommunication Technologies Co Ltd
Original Assignee
Fiberhome Telecommunication Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fiberhome Telecommunication Technologies Co Ltd filed Critical Fiberhome Telecommunication Technologies Co Ltd
Priority to CN 03153582 priority Critical patent/CN1279713C/zh
Publication of CN1486012A publication Critical patent/CN1486012A/zh
Application granted granted Critical
Publication of CN1279713C publication Critical patent/CN1279713C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Time-Division Multiplex Systems (AREA)
  • Logic Circuits (AREA)

Abstract

本发明涉及一种三级克洛斯矩阵无阻塞扩展方法,该方法对传统三级克洛斯(Clos)矩阵进行扩展、以实现无阻塞大交叉容量交叉矩阵,该方法包括选择输入/输出端口速率高于交叉连接数据粒度的交叉模块作为克洛斯矩阵的输入级模块、中间级模块和输出级模块,输入级模块的输出端口连接到中间级模块的输入端口,中间级模块的输出端口连接到输出级模块的输入端口,将输入级模块的输入端口作为整个矩阵的输入端口,将输出级模块的输出端口作为整个矩阵的输出端口,该方法可应用于光交叉连接设备、同步数字系列/同步光网络设备以及数字交叉连接设备等有交叉连接应用的场合。

Description

一种三级克洛斯矩阵无阻塞扩展方法
技术领域
本发明涉及一种三级克洛斯矩阵无阻塞扩展方法。更确切地说,本发明涉及一种用于对传统三级克洛斯(Clos)矩阵进行扩展、以实现无阻塞大交叉容量交叉矩阵的方法。
背景技术
随着多媒体、高清晰度电视(HDTV)、视频点播、宽带上网等业务的开展,人们对带宽的需求越来越高。密集波分复用(DWDM)系统的应用,解决了大容量光传输问题。但是节点交叉容量小的问题依然没有解决,从而成为网络中的瓶颈问题。
在光交叉连接设备和光分插复用设备中,有大量的交叉连接需求。本发明所提供的交叉连接矩阵,可以应用于光交叉连接(OXC)设备、同步数字系列/同步光网络(SDH/SONET)设备、数字交叉连接(DXC)设备甚至交换机设备等有交叉连接矩阵应用的场合。
交叉连接矩阵是光交叉连接(OXC)设备、同步数字系列/同步光网络(SDH/SONET)设备、数字交叉连接(DXC)设备甚至交换机设备的核心。目前主要有两种常用矩阵类型,即平方矩阵和克洛斯(Clos)矩阵。平方矩阵采用N×N结构,对任何业务都能实现100%无阻塞,且交叉连接时间较短,但随着容量N增长,所需交叉矩阵数量也按其平方增长,所以平方矩阵不适合大容量系统。而克洛斯(Clos)矩阵具有容量大,所需交叉连接芯片少的特点,经济性较高的优点。图1给出了三级克洛斯(Clos)矩阵的配置原理。如图1所示,标准的克洛斯(Clos)分三级,输入级、中间级和输出级。输入级为n×m的交叉矩阵10,中间级为r×r的交叉矩阵20,输出级为m×n的交叉矩阵30。
常规克洛斯(Clos)矩阵各级交叉模块输出与输入端口之间仅有一路信道,信道速率等于交叉矩阵的交叉粒度。详细描述见图1所示:输入级的#i(1≤i≤r)模块与中间级的各模块之间、中间级的#j(1≤i≤m)模块与输出级的各模块#h(1≤h≤r)之间只有一路信道相连,其中信道速率等于单元交叉模块交叉粒度。
目前通信系统容量的不断增长,对交叉连接设备提出了更高的要求,即:以更快的速度交换更多的数据,同时要求巨大的单节点交叉容量。目前业界开发的交叉芯片在交叉容量上满足不了这一要求,需要通过其他方法来扩展通信设备节点的总交叉容量。而且,目前业界高速光通信系统所采用的高阶交叉芯片的交叉粒度一般为VC-4或VC-3,输入端口速率在兆(M)或千兆(G)比特等级,芯片输入/输出端口速率远高于交叉连接的数据粒度,故无法采用常规的克洛斯(Clos)矩阵来扩展其交叉矩阵交叉容量。当利用小交叉容量的交叉矩阵扩展至更高交叉容量的交叉矩阵时,由于小交叉容量交叉矩阵端口速率不等于交叉粒度,常规克洛斯(Clos)方法无法实现严格无阻塞的问题。
发明内容:
本发明目的在于提供一种三级克洛斯矩阵无阻塞扩展方法,该方法改进了常规的三级克洛斯(Clos)矩阵,以实现无阻塞大交叉容量交叉矩阵。本发明方法包括第一方法、第二方法和第三方法。
采用本发明的第一方法所形成的三级克洛斯矩阵如图2所示。该第一方法包括:利用芯片输入/输出端口速率高于交叉连接数据粒度数倍的交叉模块作为三级克洛斯矩阵中的输入级、中间级和输出级模块;选择r个具有n个输入端口和m个输出端口的输入级模块,选择m个具有r个输入端口和r个输出端口的中间级模块,选择r个具有m个输入端口和n个输出端口的输出级模块;将r个输入级模块的每个所具有的n个输入端口作为克洛斯矩阵的n乘r个输入端;将r个输入级模块的每个所具有的m个输出端口分别连接到m个中间级模块的每个所具有的r个输入端口之一,每个输入级模块的输出端对应一个中间级模块的输入端;将m个中间级模块的每个所具有的r个输出端口分别连接到r个输出级模块的一个输入端口,每个中间级模块的输出端对应一个输出级模块的输入端;将r个输出级模块的每个所具有的n个输出端口作为矩阵的n乘r个输出端口。该第一方法形成了图2所示的克洛斯矩阵。
图2所示的输入级单元交叉矩阵模块100、中间级单元交叉矩阵模块200和输出级单元交叉矩阵模块300的输入和输出端口速率是交叉粒度的K倍,故输入级和中间级以及中间级和输出级之间端口连接不再是标准克洛斯(Clos)矩阵的单条信道,而是等价于K个交叉粒度等级信道的互连。
如图2所示,输入级单元交叉矩阵模块100为n×m,n和m均指端口。因为端口速率为交叉粒度的K倍,故输入级单元交叉矩阵模块100的真实交叉容量为nK×mK。同样,中间级单元交叉矩阵模块200为r个输入和输出端口,其真实的交叉容量为rK×rK。输出级单元交叉矩阵模块300为m个输入端口,n个输出端口,其真实的交叉容量为mK×nK。三级之间通过信道总线400互连,但此时和标准克洛斯(Clos)矩阵不同的是各级单元交叉矩阵模块之间互连为多条信道,每个信道总线400含K个子信道,子信道速率等于单元交叉矩阵模块100、200和300的交叉粒度。从中可以看到,对于端口速率为交叉粒度的倍数的情况下,只需要将端口级粒度的交叉实现标准克洛斯(Clos)交叉矩阵的无阻塞条件即可。对于图2中的情况,在单元交叉矩阵模块交叉粒度上其阻塞特性如下:
1)如果m>2n-1,则网络是无阻塞的;
2)如果m>n,则网络是有阻塞的,但允许重新安排;
3)如果m>n+1,则网络是有阻塞的,但允许作无损伤重新安排;
4)如果m<n,则网络是有阻塞的。
采用本发明的第二方法所形成的三级克洛斯矩阵如图3所示。该第二方法包括:利用芯片输入/输出端口速率高于交叉连接数据粒度数倍的交叉模块作为三级克洛斯矩阵中的输入级、中间级和输出级模块;选择r/L个具有Ln个输入端口和Lm个输出端口的输入级模块,选择m个具有r个输入端口和r个输出端口的中间级模块,选择r/L个具有Lm个输入端口和Ln个输出端口的输出级模块;将r/L个输入级模块的每个所具有的Ln个输入端口作为克洛斯矩阵的Ln乘r/L个输入端;将r/L个输入级模块的每个所具有的Lm个输出端口分成m组,其中每组有L个输出端口,将每个输入级模块的m组输出端口分别连接到m个中间级模块输入端口,使得每个输入级模块均有一组L个输出端口与每个中间级模块的一组L个输入端口连接;将m个中间级模块的每个所具有的r个输出端口分成r/L组,其中每组有L个输出端口,将每个中间级模块的r/L组输出端口分别连接到的r/L个输出级模块,使得每个中间级模块均有一组L个输出端口与每个输出级模块的一组L个输入端口连接;将r/L个输出级模块的每个所具有的Ln个输出端口作为矩阵的Ln乘r个输出端口。该第二方法形成了图3所示的克洛斯矩阵。和第一方法形成的图2所示的克洛斯矩阵相比,第二方法所用的输入和输出级模块的交叉容量要比第一方法所用的输入和输出级模块的交叉容量要大L倍。
图3所示的输入级单元交叉矩阵模块700、中间级单元交叉矩阵模块200和输出级单元交叉矩阵模块800的输入和输出端口速率是交叉粒度的K倍,故输入级和中间级以及中间级和输出级之间端口连接不再是标准克洛斯(Clos)矩阵的单条信道,而是等价于L个端口速率的子信道,每个端口速率的子信道又包含K个交叉粒度等级的子信道。
如图3所示,输入级单元交叉矩阵模块700为Ln×Lm,Ln和Lm均指端口数。因为端口速率为交叉粒度的K倍,故输入级单元交叉矩阵模块700的真实交叉容量为LnK×LmK。同样,中间级单元交叉矩阵模块200为r个输入和输出端口,其真实的交叉容量为rK×rK。输出级单元交叉矩阵模块800为Lm个输入端口,Ln个输出端口,其真实的交叉容量为LmK×LnK。三级之间通过信道总线600互连,但此时和标准克洛斯(Clos)矩阵不同的是各级单元交叉矩阵模块之间互连为多条信道,每个信道总线600包含L个端口速率的子信道,每个端口速率的子信道又包含K个交叉粒度速率的子信道。对于图3中的情况,在单元交叉矩阵模块交叉粒度上其阻塞特性如下:
1)如果m>2n-1,则网络是无阻塞的;
2)如果m>n,则网络是有阻塞的,但允许重新安排;
3)如果m>n+1,则网络是有阻塞的,但允许作无损伤重新安排;
4)如果m<n,则网络是有阻塞的。
采用本发明的第三方法所形成的三级克洛斯矩阵如图4所示。该第三方法包括:利用芯片输入/输出端口速率高于交叉连接数据粒度数倍的交叉模块作为三级克洛斯矩阵中的输入级、中间级和输出级模块;选择m个具有r/2个输入端口和r个输出端口的输入级模块,选择m个具有r个输入端口和r个输出端口的中间级模块,选择m个具有r个输入端口和r/2个输出端口的输出级模块;将m个输入级模块的每个所具有的r个输出端口分成m组,每组为L=r/m个输出端口,将每个输入级模块的m组输出端口分别连接到m个中间级模块,使得每个输入级模块均有一组L个输出端口对应每个中间级模块的一组L个输入端口;
将m个中间级模块的每个所具有的r个输出端口分成m组,每组为L=r/m个输出端口,将每个中间级模块的m组输出端口分别连接到m个输出级模块,使得每个中间级模块均有一组L个输出端口对应每个输出级模块的一组L个输入端口;将m个输出级模块的每个所具有的r/2个输出端口作为矩阵的m乘r/2个输出端口。图4所示的方法中,输入和输出模块也可以用r×r单元交叉模块,只是用做输入级模块时有一半的输入端口不用,作为输出级模块时有一半的输出端口不用。该第三方法形成了图4所示的克洛斯矩阵。
图4中输入级单元交叉矩阵模块700用r/2×r;中间级为单元交叉矩阵模块200为r×r;输出级单元交叉矩阵模块800为r×r/2。输入级、中间级和输出级分别含m个单元交叉模块700、200和800。其中m≤r,r是m的2q倍关系(q=0,1,2,3…),例如r=m,r=2m,r=4m,r=8m等。采用这种方式也可以实现大容量交叉矩阵,且其阻塞特定得到更好的保证。如图4所示,这时每个输入级和输出级单元交叉模块与每个中间级单元交叉模块之间的连接可能是2q条总线(总线传输速率等于单元交叉模块的端口速率,q=0,1,2,3…)。
以上图2、图3和图4中的配置方案对于大容量的数据交叉连接能够实现严格无阻塞。
本发明方法简单可行,以成熟的克洛斯(Clos)矩阵技术为基础,对输入级和输出级矩阵进行改进即可实现。容量配置灵活,可实现不同速率等级的交叉连接。交叉粒度可细化至VC-4/VC-3,甚至可以细化到VC-12粒度或更小的64kb/s粒度。克服了小交叉容量芯片向大交叉容量交叉矩阵扩展时芯片端口速率不等于交叉粒度的情况下无法用常规克洛斯(Clos)矩阵实现严格无阻塞扩展的问题。本发明方法可应用于光交叉连接设备(OXC)、同步数字系列/同步光网络(SDH/SONET)设备以及数字交叉连接(DXC)设备等有交叉连接应用的场合。
附图说明
图1为常规三级克洛斯(Clos)配置原理;
图2为采用本发明第一方法形成一种三级克洛斯(Clos)矩阵配置的原理图;
图3为采用本发明第二方法形成第二种三级克洛斯(Clos)矩阵配置的原理图;
图4为采用本发明第三方法形成第三种三级克洛斯(Clos)矩阵配置的原理图;
图5为采用本发明第一方法的第一实施例,是在622M端口速率、VC4/VC3交叉粒度情况下320G交叉容量的实例(单元交叉模块最大40G交叉容量);
图6为采用本发明第二方法的第二实施例,是在622M端口速率、VC4/VC3交叉粒度情况下320G交叉容量的实例(单元交叉模块最大40G交叉容量);
图7为采用本发明第一方法的第三实施例,是在622M端口速率、VC4/VC3交叉粒度情况下1.28T交叉容量的实例(单元交叉模块最大40G交叉容量);
图8为采用本发明第一方法的第四实施例,是在2.5G端口速率、VC4/VC3交叉粒度情况下1.28T交叉容量的实例(单元交叉模块最大160G交叉容量);
图10为采用本发明第一方法的第六实施例,是在2.5G端口速率、VC4/VC3交叉粒度情况下5.12T交叉容量的实例(单元交叉模块最大160G交叉容量)。
具体实施方式
下面结合图5至图10所示的实施例对本发明方法作进一步说明。值得一提的是,这些实施例仅为了说明本发明,而不是限制本发明。
图5为采用本发明第一方法的第一实施例。其中利用64个8×16输入级单元交叉矩阵模块110、16个64×64中间级单元交叉矩阵模块210、64个16×8输出级单元交叉矩阵模块310芯片建立三级克洛斯(Clos)矩阵(以上数字均指端口数,图中所用的芯片端口速率为622M,交叉粒度为VC3或VC4)。每个端口数据速率为622Mb/s(如果采用了8B/10B编码,则为778Mb/s)。每个输入/输出芯片与中间级每个芯片连接的622Mb/s信道数为1条,如图中信道410所示。每条622Mb/s信道采用TDM将4个VC-4(155Mb/s,见图中510)或12个VC-3复用成一个622Mb/s码流传送,交叉粒度为VC-4/VC-3。经过扩展后总容量为622M×32×16=320G。此方案实现了严格无阻塞。
图6为采用本发明第二方法的第二实施例。其中利用16个32×64输入级单元交叉矩阵模块710、16个64×64中间级单元交叉矩阵模块210、16个32×16输出级单元交叉矩阵模块810芯片建立三级克洛斯(Clos)矩阵(以上数字均指端口数,图中所用的芯片端口速率为622M,为64×64端口交叉容量,交叉粒度为VC3或VC4)。其中,为了避免阻塞,第1级的输入端口和第三级的输出端口只用到了芯片有效容量的一半,即32个端口,形成32×64结构,每个端口数据速率为622Mb/s。每个输入/输出芯片与中间级每个芯片连接的622Mb/s信道数为4条610,每条622Mb/s信道采用TDM将4个VC-4速率155Mb/s附图标记510或12个VC-3复用成一个622Mb/s码流传送。经过扩展后总容量为622M×32×16=320G。此方案实现了严格无阻塞。
图7为采用本发明第一方法的第三实施例。其中利用64个32×64输入级单元交叉矩阵模块710、64个64×64中间级单元交叉矩阵模块210、64个64×32输出级单元交叉矩阵模块810芯片建立三级克洛斯(Clos)矩阵(以上数字均指端口数,图中所用的芯片端口速率为622M,交叉粒度为VC3或VC4)。每个端口数据速率为622Mb/s。每个输入/输出芯片与中间级每个芯片连接的622Mb/s信道数为4条,如图中信道410所示。每条622Mb/s信道采用TDM将4个VC-4速率155Mb/s附图标记510或12个VC-3复用成一个622Mb/s码流传送,交叉粒度为VC-4/VC-3。经过扩展后总容量为622M×32×64=1.28T。此方案实现了严格无阻塞。
图8为采用本发明第一方法的第四实施例。其中利用64个8×16输入级单元交叉矩阵模块120、16个64×64中间级单元交叉矩阵模块220、64个16×8输出级单元交叉矩阵模块320芯片建立三级克洛斯(Clos)矩阵(以上数字均指端口数,图中所用的芯片端口速率为2.5Gb/s,交叉粒度为VC3或VC4)。每个端口数据速率为2.5Gb/s。每个输入/输出芯片与中间级每个芯片连接的2.5Gb/s信道数为1条,如图中信道420所示。每条2.5Gb/s信道420采用TDM将16个VC-4速率155Mb/s附图标记510或48个VC-3复用成一个2.5Gb/s码流传送,交叉粒度为VC-4/VC-3。经过扩展后总容量为2.5Gb/s×32×16=1.28T。此方案实现了严格无阻塞。
图9为采用本发明第二方法的第五实施例。其中利用16个32×64输入级单元交叉矩阵模块720、16个64×64中间级单元交叉矩阵模块220、16个32×16输出级单元交叉矩阵模块820芯片建立三级克洛斯(Clos)矩阵(以上数字均指端口数,图中所用的芯片端口速率为2.5Gb/s,交叉粒度为VC3或VC4)。其中,为了避免阻塞,第1级的输入端口和第三级的输出端口只用到了芯片有效容量的一半,即32个端口,形成32×64结构,每个端口数据速率为2.5Gb/s。每个输入/输出芯片与中间级每个芯片连接的2.5Gb/s信道数为4条,如图中信道620所示。其中每条2.5Gb/s信道采用TDM将16个VC-4速率155Mb/s附图标记510或48个VC-3复用成一个2.5Gb/s码流传送。经过扩展后总容量为2.5Gb/s×32×16=1.28T。此方案实现了严格无阻塞。
图10为采用本发明第一方法的第六实施例。其中利用64个32×64输入级单元交叉矩阵模块720、64个64×64中间级单元交叉矩阵模块220、64个64×32输出级单元交叉矩阵模块820芯片建立三级克洛斯(Clos)矩阵(以上数字均指端口数,图中所用的芯片端口速率为2.5Gb/s,交叉粒度为VC3或VC4)。每个端口数据速率为2.5Gb/s。每个输入/输出芯片与中间级每个芯片连接的2.5Gb/s信道数为1条,如图中信道420所示。每条2.5Gb/s信道中采用TDM将16个VC-4速率155Mb/s附图标记510或48个VC-3复用成一个2.5Gb/s码流传送,交叉粒度为VC-4/VC-3。经过扩展后总容量为2.5G×32×64=5.12T。此方案实现了严格无阻塞。

Claims (12)

1.一种三级克洛斯矩阵无阻塞扩展方法,包括步骤:
选择芯片输入/输出端口速率高于交叉粒度数倍的交叉模块作为三级克洛斯矩阵中的输入级、中间级和输出级模块,其中
选择r个具有n个输入端口和m个输出端口的输入级模块,选择m个具有r个输入端口和r个输出端口的中间级模块,选择r个具有m个输入端口和n个输出端口的输出级模块;
将r个输入级模块的每个所具有的n个输入端口作为克洛斯矩阵的n乘r个输入端;
将r个输入级模块的每个所具有的m个输出端口分别连接到m个中间级模块的每个所具有的r个输入端口之一,每个输入级模块的输出端对应一个中间级模块的输入端;
将m个中间级模块的每个所具有的r个输出端口分别连接到r个输出级模块的每个所具有的m个输入端口之一,每个中间级模块的一个输出端对应一个输出级模块的输入端;
将r个输出级模块的每个所具有的n个输出端口作为矩阵的n乘r个输出端口;
其特征在于:
输入级模块、中间级模块、输出级模块的各个端口的速率均为交叉粒度的K倍,并且输入级模块与中间级模块、中间级模块与输出级模块之间端口连接信道的速率等于K倍交叉粒度;
为实现严格无阻塞,上述参数满足m>2n-1且K、m、n、r均为整数。
2.根据权利要求1的方法,其中n等于8、m等于16、r等于64。
3.根据权利要求2的方法,其中输入级模块、中间级模块、输出级模块每个端口之间信道的速率为4倍155Mb/s交叉粒度或12倍52Mb/s交叉粒度。
4.根据权利要求2的方法,其中输入级模块、中间级模块、输出级模块的之间每个端口的速率为16倍155Mb/s交叉粒度或48倍52Mb/s交叉粒度。
5.一种三级克洛斯矩阵无阻塞扩展方法,包括步骤:
选择芯片输入/输出端口速率高于交叉粒度数倍的交叉模块作为三级克洛斯矩阵中的输入级、中间级和输出级模块,其中
选择r/L个具有Ln个输入端口和Lm个输出端口的输入级模块,选择m个具有r个输入端口和r个输出端口的中间级模块,选择r/L个具有Lm个输入端口和Ln个输出端口的输出级模块;
将r/L个输入级模块的每个所具有的Ln个输入端口作为克洛斯矩阵的Ln乘r/L个输入端;
将r/L个输入级模块的每个所具有的Lm个输出端口分成m组,其中每组有L个输出端口,将每个输入级模块的m组输出端口分别连接到m个中间级模块输入端口,使得每个输入级模块均有一组L个输出端口与每个中间级模块的一组L个输入端口连接;
将m个中间级模块的每个所具有的r个输出端口分成r/L组,其中每组有L个输出端口,将每个中间级模块的r/L组输出端口分别连接到的r/L个输出级模块,使得每个中间级模块均有一组L个输出端口与每个输出级模块的一组L个输入端口连接;
将r/L个输出级模块的每个所具有的Ln个输出端口作为矩阵的Ln乘r/L个输出端口;
其特征在于:
输入级模块、中间级模块、输出级模块各个端口的速率均为交叉粒度的K倍,并且每个输入级模块与每个中间级模块之间、每个中间级模块与每个输出级模块之间均有L个端口连接,每个端口连接的速率为K倍交叉粒度;
为实现严格无阻塞,上述选择参数满足m>2n-1且K、L、m、n、r、r/L均为整数。
6.根据权利要求5的方法,其中n等于8、m等于16、r等于64。
7.根据权利要求6的方法,其中输入级模块、中间级模块、输出级模块之间每个端口的速率为4倍155Mb/s交叉粒度或12倍52Mb/s交叉粒度,每个输入级模块与每个中间级模块之间、每个中间级模块与每个输出级模块之间均有4个端口连接。
8.根据权利要求6的方法,其中输入级模块、中间级模块、输出级模块之间每个端口的速率为16倍155Mb/s交叉粒度或48倍52Mb/s交叉粒度,每个输入级模块与每个中间级模块之间、每个中间级模块与每个输出级模块之间均有4个端口连接。
9.一种三级克洛斯矩阵无阻塞扩展方法,包括步骤:
选择芯片输入/输出端口速率高于交叉粒度数倍的交叉模块作为三级克洛斯矩阵中的输入级、中间级和输出级模块,其中
选择m个具有r/2个输入端口和r个输出端口的输入级模块,选择m个具有r个输入端口和r个输出端口的中间级模块,选择m个具有r个输入端口和r/2个输出端口的输出级模块;
将m个输入级模块的每个所具有的r/2个输入端口作为克洛斯矩阵的m乘r/2个输入端;
将m个输入级模块的每个所具有的r个输出端口分成m组,每组为L=r/m个输出端口,将每个输入级模块的m组输出端口分别连接到m个中间级模块,使得每个输入级模块均有一组L个输出端口对应每个中间级模块的一组L个输入端口;
将m个中间级模块的每个所具有的r个输出端口分成m组,每组为L=r/m个输出端口,将每个中间级模块的m组输出端口分别连接到m个输出级模块,使得每个中间级模块均有一组L个输出端口对应每个输出级模块的一组L个输入端口;
将m个输出级模块的每个所具有的r/2个输出端口作为克洛斯矩阵的m乘r/2个输出端口;
其特征在于:
输入级模块、中间级模块、输出级模块的各个端口速率均为交叉粒度的K倍,并且每个输入级模块与每个中间级模块之间、每个中间级模块与每个输出级模块之间均有L个端口连接,此L个端口的速率均为K倍交叉粒度;
为实现严格无阻塞,上述选择参数满足m>2n-1,且K、L、m、n、r、r/2均为整数,且r是m的2q倍关系,q=0,1,2,3…。
10.根据权利要求9的方法,其中m等于16、r等于64。
11.根据权利要求10的方法,其中每个输入级模块的输入端口和每个输出级模块的输出端口速率为为4倍155Mb/s交叉粒度或12倍52Mb/s交叉粒度、每个中间级模块与各个输入级模块和各个输出级模块之间分别有4个622Mb/s速率的端口相连接。
12.根据权利要求10的方法,其中每个输入级模块的输入端口和每个输出级模块的输出端口速率为为16倍155Mb/s交叉粒度或48倍52Mb/s交叉粒度、每个中间级模块与各个输入级模块和各个输出级模块分别有4个2.5Gb/s速率的端口相连接。
CN 03153582 2003-08-18 2003-08-18 一种三级克洛斯矩阵无阻塞扩展方法 Expired - Fee Related CN1279713C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03153582 CN1279713C (zh) 2003-08-18 2003-08-18 一种三级克洛斯矩阵无阻塞扩展方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03153582 CN1279713C (zh) 2003-08-18 2003-08-18 一种三级克洛斯矩阵无阻塞扩展方法

Publications (2)

Publication Number Publication Date
CN1486012A CN1486012A (zh) 2004-03-31
CN1279713C true CN1279713C (zh) 2006-10-11

Family

ID=34156725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03153582 Expired - Fee Related CN1279713C (zh) 2003-08-18 2003-08-18 一种三级克洛斯矩阵无阻塞扩展方法

Country Status (1)

Country Link
CN (1) CN1279713C (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417136C (zh) * 2005-07-27 2008-09-03 华为技术有限公司 一种基于三级交换网的下行队列快速反压传送装置及方法
CN101001122B (zh) * 2006-06-22 2011-01-19 华为技术有限公司 一种在sdh系统中无阻塞高阶交叉扩展的方法和装置
CN101170485B (zh) * 2006-10-27 2011-05-11 中兴通讯股份有限公司 在三级clos交叉网络中配置多层粒度业务路由的方法
CN101981844B (zh) * 2008-02-04 2013-09-11 中兴通讯股份有限公司 有阻交叉网络实现源路由的方法和装置
CN102740177B (zh) * 2012-07-17 2014-08-27 上海汇珏网络通信设备有限公司 一种无阻塞可拓展多级光开关阵列及其工作方法
CN107078945B (zh) * 2014-09-30 2021-02-23 上海诺基亚贝尔股份有限公司 用于多入口与多出口之间的交叉并行数据的方法和装置
CN107743101B (zh) * 2017-09-26 2020-10-09 杭州迪普科技股份有限公司 一种数据的转发方法及装置
CN108761652B (zh) * 2018-05-30 2020-09-15 中国科学院半导体研究所 用于链路内模式交换和链路交换的多模光开关架构
WO2022094956A1 (en) * 2020-11-06 2022-05-12 Huawei Technologies Co., Ltd. Connection management method for high degree optical cross-connect cluster node

Also Published As

Publication number Publication date
CN1486012A (zh) 2004-03-31

Similar Documents

Publication Publication Date Title
AU672398B2 (en) Cross-connection architecture for SDH-signals comprising time- and space division switch groups
DE69328340T2 (de) Hierarchische Wegesuche für Verbindungen mit verschiedenen Übertragungsgeschwindigkeiten
EP0903959A2 (de) Verfahren zum Übertragen von Datenpaketen und zur Durchführung des Verfahrens geeignetes Netzelement
CN1279713C (zh) 一种三级克洛斯矩阵无阻塞扩展方法
US7948975B2 (en) Transparent switching fabric for multi-gigabit transport
CN1035927A (zh) 混合式分组交换的方法和设备
JPH03185941A (ja) デイジタル広帯域信号の伝送方法
US20050232310A1 (en) Time division multiplexed link connections between a switching matrix and a port in a network element
CN1317842C (zh) 用于同步数字传输系统的超大规模交叉连接装置
CN1820537A (zh) 交换网络
CN1310449C (zh) 在sonet/sdh上传输通道化以太网的系统和方法
CN100562177C (zh) 一种大容量多播严格无阻塞交叉矩阵器件
US20040042462A1 (en) Synchonous transmission network node
CN1081054A (zh) 方形交换体系
CN1187992C (zh) 高低双速率等级严格无阻塞扩展的三级交换结构
EP1596612A1 (en) Network element with multistage lower order switching matrix
CN1521975A (zh) 在同步数字体系设备中的交叉连接方法
US7304988B2 (en) Technique for building a large single-stage cross-connect using multiple devices without interleaving
WO2010028572A1 (zh) 一种光信道数据单元的大容量交叉的方法及装置
CN1652504A (zh) 准同步数字系列上具有分帧功能的虚级联通信方法
Hou Hierarchical path hunt in a broadband multirate circuit switching fabric
CN1283058C (zh) 基于可调波长变换器共享的光包交换节点结构
CN1166136C (zh) 在时分多址网与基于分组或信元的网之间提供透明传输的方法和设备
Murakami et al. High-speed time division switching technique for broadband ISDN
CN86108234A (zh) 电信转换系统或诸如此类系统的操作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061011

Termination date: 20190818