CN1277271A - 双掺铌酸锂晶体 - Google Patents

双掺铌酸锂晶体 Download PDF

Info

Publication number
CN1277271A
CN1277271A CN00121092.0A CN00121092A CN1277271A CN 1277271 A CN1277271 A CN 1277271A CN 00121092 A CN00121092 A CN 00121092A CN 1277271 A CN1277271 A CN 1277271A
Authority
CN
China
Prior art keywords
lithium niobate
double
doped lithium
crystal
mix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00121092.0A
Other languages
English (en)
Other versions
CN1091176C (zh
Inventor
孔勇发
许京军
李冠告
孙骞
张国权
黄晖
黄自恒
陈绍林
陈晓军
张光寅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN00121092A priority Critical patent/CN1091176C/zh
Publication of CN1277271A publication Critical patent/CN1277271A/zh
Priority to US09/881,836 priority patent/US6835368B2/en
Application granted granted Critical
Publication of CN1091176C publication Critical patent/CN1091176C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/04Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam
    • G11C13/041Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam using photochromic storage elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Holo Graphy (AREA)

Abstract

本发明属光折变晶体材料领域。它的组成是:Li1-xNb1+yO3∶Fem,Mn,其中M是镁、铟或锌中的一种,用q来表示M离子的价态(M为镁、锌时q=2,M为铟时q=3),则x,y,m,n的取值范围分别是:0.05≤x≤0.13,0.00≤y≤0.01,5.0×10-5≤m≤7.5×10-4,0.02≤qn≤0.13。本发明大幅提高了铌酸锂晶体的光折变特性,使其具有高衍射效率(68%以上)、快光折变响应比掺铁铌酸锂晶体缩短了一个数量级和强抗光散射能力,光折变扇形光散射光强阈值比掺铁铌酸锂晶体提高近两个数量级。本发明是优良的三维全息光盘材料,具有巨大的市场前景。

Description

双掺铌酸锂晶体
本发明属光折变晶体材料领域。
三维全息光学存储器即将面世,但这并不意味着产品已成熟,其主要问题是还未得到理想的三维光全息存储材料。实际上,世界上的科学家一直在寻找理想的三维全息存储材料。到目前为止,掺铁铌酸锂晶体还被认为是首选材料,但它存在明显的缺点,即响应时间长、抗光散射能力差(A.Hellemans,Holograms can storage terabytes,butwhere?Science 286(1999)1502)。改良与优化掺铁铌酸锂晶体(抑制其中光生伏特效应,同时保持它的优良光折变特性等)仍是当前的首要任务。
本发明目的是提供一种双掺铌酸锂晶体,它是优化改良的掺铁铌酸锂晶体,具有光强阈值效应、光区膨胀效应,具有优良的光折变存储性能,可以作为高性能的理想三维全息光存储材料。
本发明双掺铌酸锂晶体是在铌酸锂晶体中掺铁并且同时选择掺入了半径合适的第二种金属离子,其组成可表示为:Li1-xNb1+yO3:Fem,Mn,其中M是镁、铟或锌中的一种,用q来表示M离子的价态(M为镁、锌时q=2,M为铟时q=3),则x,y,m,n的取值范围分别是:0.05≤x≤0.13,0.00≤y≤0.01,5.0×10-5≤m≤7.5×10-4,0.02≤qn≤0.13。
双掺铌酸锂晶体的组成可以是:
掺铁0.007~0.03wt%与掺镁1.0~5.5mol.%、
掺铁0.01~0.05wt.%与掺铟0.75~3.0mol.%或
掺铁0.02~0.06wt.%与掺锌1.5~6.5mol.%,
其中同成分配比为[Li]/[Nb]=0.87~0.95。
本发明具体的实施步骤是:
(1)称取计量组成金属元素的Li2CO3、Nb2O5、Fe2O3及MgO(In2O3或ZnO),在150℃下恒温2小时将粉料烘干,然后在混料机上充分混合24小时,在850℃恒温2小时,使Li2CO3充分分解,在1100℃煅烧2小时成双掺杂铌酸锂粉料。(2)将该粉料压实,放于白金坩埚内,用中频炉加热,Czochralski提拉法沿c轴方向按拉脖、放肩、等径、收尾等过程生长双掺铌酸锂晶体,拉速1~3mm,转速15~30rpm,气液温差20℃,熔体内温度梯度1.5℃/mm,熔体上方温梯为1.0℃/mm。(3)生长后的晶体在1200℃单畴化、退火,可得掺铁掺镁铌酸锂晶体。
本发明双掺铌酸锂晶体具有高衍射效率,光折变三维全息光栅衍射效率在68%以上;光折变响应时间为3-5秒,在相同的工作光强的情况下,比掺铁铌酸锂晶体缩短了一个数量级;强的抗光散射能力,即光折变扇形光散射光强阈值比掺铁铌酸锂晶体提高近两个数量级。与国际上的同类指标相比,该晶体的响应时间提高了1至2个数量级,是一种高性能的三维全息光存储材料。在三维全息光盘、集成光学、军事对抗、民用导航、金融证券等方面有着非常广泛的应用前景。
本发明的突出的实质性的特点和积极效果可从下述实施例中得以体现,但是它们并不是对本发明作任何限制。
实施例1:
(1)称取0.01wt.%Fe2O3及3mol%MgO,[Li2CO3]/[Nb2O5]=0.94。在150℃下恒温2小时将粉料烘干,然后在混料机上充分混合24小时,在850℃恒温2小时,使Li2CO3充分分解,在1100℃煅烧2小时成双掺杂铌酸锂粉料。(2)将该粉料压实,放于白金坩埚内,用中频炉加热,Czochralski提拉法沿c轴方向按拉脖、放肩、等径、收尾等过程生长双掺铌酸锂晶体,拉速3mm,转速27rpm,气液温差20℃,熔体内温度梯度1.5℃/mm,熔体上方温梯为1.0℃/mm。(3)生长后的晶体在1200℃单畴化、退火,经定向、切割、磨抛等工序,可得掺铁掺镁铌酸锂晶体。其最大衍射效率为70%,光散射光强阈值大于20mW,存储器平均写入时间为5s(I~1W/cm2)。
实施例2:
(1)称取0.015wt.%Fe2O3及0.5mol%In2O3,[Li2CO3]/[Nb2O5]=0.945。在150℃下恒温2小时将粉料烘干,然后在混料机上充分混合24小时,在850℃恒温2小时,使Li2CO3充分分解,在1100℃煅烧2小时成双掺杂铌酸锂粉料。(2)将该粉料压实,放于白金坩埚内,用中频炉加热,Czochralski提拉法沿c轴方向按拉脖、放肩、等径、收尾等过程生长双掺铌酸锂晶体,拉速2mm,转速25rpm,气液温差20℃,熔体内温度梯度1.5℃/mm,熔体上方温梯为1.0℃/mm。(3)生长后的晶体在1200℃单畴化、退火,经定向、切割、磨抛等工序,可得掺铁掺铟铌酸锂晶体。其最大衍射效率为72%,光散射光强阈值大于30mW,存储器平均写入时间为3s(I~1W/cm2)。
实施例3:
(1)称取0.025wt.%Fe2O3及6mol%ZnO,[Li2CO3]/[Nb2O5]=0.88。在150℃下恒温2小时将粉料烘干,然后在混料机上充分混合24小时,在850℃恒温2小时,使Li2CO3充分分解,在1100℃煅烧2小时双掺杂铌酸锂粉料。(2)将该粉料压实,放于白金坩埚内,用中频炉加热,Czochralski提拉法沿c轴方向按拉脖、放肩、等径、收尾等过程生长双掺铌酸锂晶体,拉速1.5mm,转速20rpm,气液温差20℃,熔体内温度梯度1.5℃/mm,熔体上方温梯为1.0℃/mm。(3)生长后的晶体在1200℃单畴化、退火,经定向、切割、磨抛等工序,可得掺铁掺锌铌酸锂晶体。其最大衍射效率为68%,光散射光强阈值大于50mW,存储器平均写入时间为3s(I~1W/cm2)。

Claims (4)

1、一种双掺铌酸锂晶体,其特征在于它包括掺铁并且同时选择掺入了半径匹配的第二种金属离子,其组成可表示为:Li1-xNb1+yO3:Fem,Mn,其中M是镁、铟或锌中的一种,用q来表示M离子的价态(M为镁、锌时q=2,M为铟时q=3),则x,y,m,n的取值范围分别是:0.05≤x≤0.13,0.00≤y≤0.01,5.0×10-5≤m≤7.5×10-4,0.02≤qn≤0.13。
2、按照权利要求1所说的双掺铌酸锂晶体,其特征在于它的组成是:
     掺铁0.007~0.03wt%与掺镁1.0~5.5mol.%、
     掺铁0.01~0.05wt.%与掺铟0.75~3.0mol.%或
     掺铁0.02~0.06wt.%与掺锌1.5~6.5mol.%,
     其中同成分配比为[Li]/[Nb]=0.87~0.95。
3、权利要求1或2所说的双掺铌酸锂晶体的制备方法,其特征在于它包括下述步骤:
(1)称取计量组成金属元素的Li2CO3、Nb2O5、Fe2O3及MgO、In2O3或ZnO,在
   150℃下烘干,充分混合24小时,在850℃恒温2小时,使Li2CO3分解,
   在1100℃煅烧2小时得到掺杂铌酸锂粉料。
(2)将粉料压实放于白金坩埚内,用中频炉加热,Czochralski提拉法沿c轴方向
   按拉脖、放肩、等径、收尾即可得到双掺铌酸锂晶体,其中,拉速1~3mm,
   转速15~30rpm,气液温差20℃,熔体内温度梯度1.5℃/mm,熔体上方温梯
   为1.0℃/mm。
(3)将晶体在1200℃单畴化、退火,可得双掺铌酸锂晶体。
4、权利要求1所说的双掺铌酸锂晶体的应用,其特征在于它可以用于三维光全息存储材料。
CN00121092A 2000-07-20 2000-07-20 双掺铌酸锂晶体 Expired - Fee Related CN1091176C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN00121092A CN1091176C (zh) 2000-07-20 2000-07-20 双掺铌酸锂晶体
US09/881,836 US6835368B2 (en) 2000-07-20 2001-06-18 Doubly doped lithium niobate crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN00121092A CN1091176C (zh) 2000-07-20 2000-07-20 双掺铌酸锂晶体

Publications (2)

Publication Number Publication Date
CN1277271A true CN1277271A (zh) 2000-12-20
CN1091176C CN1091176C (zh) 2002-09-18

Family

ID=4588581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00121092A Expired - Fee Related CN1091176C (zh) 2000-07-20 2000-07-20 双掺铌酸锂晶体

Country Status (2)

Country Link
US (1) US6835368B2 (zh)
CN (1) CN1091176C (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101876086A (zh) * 2010-07-23 2010-11-03 哈尔滨工业大学 Zr、Mg共掺铁铌酸锂晶体的制备方法
CN102140692A (zh) * 2011-03-11 2011-08-03 哈尔滨工业大学 钬镱双掺铌酸钾锂单晶及其制备方法
CN101550598B (zh) * 2009-05-13 2012-01-25 南开大学 掺锡铌酸锂晶体
CN102797038A (zh) * 2012-08-10 2012-11-28 中国科学院上海光学精密机械研究所 镁镱铒三掺杂铌酸锂激光晶体及其制备方法
CN106544734A (zh) * 2016-11-08 2017-03-29 黑龙江科技大学 光折变双掺钾钠铌酸锶钡单晶体及其制备方法
CN112899781A (zh) * 2021-01-20 2021-06-04 南开大学 一种铋锌双掺铌酸锂晶体及其制备方法和用途
CN117276522A (zh) * 2023-11-22 2023-12-22 天津润光恒科技开发有限公司 纳米铌酸锂包覆的三元正极材料及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109056076A (zh) * 2018-07-03 2018-12-21 江南石墨烯研究院 一种掺杂铌酸锂前驱体及掺杂铌酸锂多晶料的制备方法
JP7275674B2 (ja) * 2019-03-12 2023-05-18 住友金属鉱山株式会社 ニオブ酸リチウム単結晶の育成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199598A (ja) * 1984-10-22 1986-05-17 Nippon Steel Corp 低温用鋼の溶接用心線
DE4006602C2 (de) * 1989-04-04 1994-04-28 Hitachi Metals Ltd Optisches Element zur Erzeugung von Harmonischen höherer Ordnung

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550598B (zh) * 2009-05-13 2012-01-25 南开大学 掺锡铌酸锂晶体
CN101876086A (zh) * 2010-07-23 2010-11-03 哈尔滨工业大学 Zr、Mg共掺铁铌酸锂晶体的制备方法
CN102140692A (zh) * 2011-03-11 2011-08-03 哈尔滨工业大学 钬镱双掺铌酸钾锂单晶及其制备方法
CN102140692B (zh) * 2011-03-11 2013-02-13 哈尔滨工业大学 钬镱双掺铌酸钾锂单晶及其制备方法
CN102797038A (zh) * 2012-08-10 2012-11-28 中国科学院上海光学精密机械研究所 镁镱铒三掺杂铌酸锂激光晶体及其制备方法
CN106544734A (zh) * 2016-11-08 2017-03-29 黑龙江科技大学 光折变双掺钾钠铌酸锶钡单晶体及其制备方法
CN106544734B (zh) * 2016-11-08 2019-05-17 黑龙江科技大学 光折变双掺钾钠铌酸锶钡单晶体及其制备方法
CN112899781A (zh) * 2021-01-20 2021-06-04 南开大学 一种铋锌双掺铌酸锂晶体及其制备方法和用途
CN117276522A (zh) * 2023-11-22 2023-12-22 天津润光恒科技开发有限公司 纳米铌酸锂包覆的三元正极材料及其制备方法和应用
CN117276522B (zh) * 2023-11-22 2024-01-26 天津润光恒科技开发有限公司 纳米铌酸锂包覆的三元正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN1091176C (zh) 2002-09-18
US20020009405A1 (en) 2002-01-24
US6835368B2 (en) 2004-12-28

Similar Documents

Publication Publication Date Title
CN1091176C (zh) 双掺铌酸锂晶体
Whittingham Lithium batteries and cathode materials
US5614129A (en) Potassium lithium tantalate niobate photorefractive crystals
CN105624790A (zh) 铋镁双掺铌酸锂晶体
US5359452A (en) Lithium tantalate monocrystal, monocrystal substrate, and photo element
CN100487171C (zh) 一种双掺铌酸锂晶体及其制备方法
CN101225545B (zh) 一种近化学计量比钽酸锂晶体的制备方法
CN101169569A (zh) 双掺铌酸锂晶体
CN101768780A (zh) 铟铈铁三掺铌酸锂晶体及其制备方法
Orlova et al. Structure and physical properties of Mg-containing oxymolybdates La 2 MoO 6
CN1151318C (zh) 近化学计量比铌酸锂晶体及其生长方法
CN101319392B (zh) 铪铁锰三掺铌酸锂晶体及其制备方法
CN101597801A (zh) 一种锆铜铈三掺铌酸锂晶体及其制备方法
CN1958881A (zh) 硼酸盐激光晶体Li6R (1-x) REx(BO3)3及其制备方法和用途
Zhen et al. Holographic properties of double-doped Zn: Fe: LiNbO3 crystals
CN112899781B (zh) 一种铋锌双掺铌酸锂晶体及其制备方法和用途
CN101550598B (zh) 掺锡铌酸锂晶体
Gallagher Applications of thermal analysis to the study of inorganic materials
CN101597800A (zh) 一种锆铁锰三掺铌酸锂晶体及其制备方法
CN114645315B (zh) 一种准相位匹配器件ppktp用ktp晶体及其制备方法
CN1093172A (zh) 一种制备高掺杂浓度钽铌酸钾的方法
Zhang et al. Growth and photorefractive properties of an Fe-doped near-stoichiometric LiNbO3 crystal
Sun et al. Studies of photorefractive fields of MnO doped near stoichiometric LiNbO3 crystals
Wang et al. Optical properties of Ce: Mn: LiNbO3 crystals with various [Li]/[Nb] ratios
Xie et al. Effects of thermal treatment on the optical constants of GeTe, Sb2Te3, Ge2Sb2Te5 systems

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee