CN1262337A - One-step process for producing SiCaAlBaFe alloy with ore roaster - Google Patents

One-step process for producing SiCaAlBaFe alloy with ore roaster Download PDF

Info

Publication number
CN1262337A
CN1262337A CN 00101497 CN00101497A CN1262337A CN 1262337 A CN1262337 A CN 1262337A CN 00101497 CN00101497 CN 00101497 CN 00101497 A CN00101497 A CN 00101497A CN 1262337 A CN1262337 A CN 1262337A
Authority
CN
China
Prior art keywords
coke
ore deposit
barium
alloy
sicaalbafe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 00101497
Other languages
Chinese (zh)
Inventor
王忠英
于桂玲
刘来君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN 00101497 priority Critical patent/CN1262337A/en
Publication of CN1262337A publication Critical patent/CN1262337A/en
Pending legal-status Critical Current

Links

Abstract

An one-step process for producing SiCaAlBaFe alloy with ore heater features that the silica rock, lime, aluminium ore (bauxite or aluminium gangue), barium ore (barite or barium carbonate), steel bits or iron ore and coke are proportionally and sequentially added to ore heater. The obtained alloy can be used for final deozygenation of molten steel, inoculating cast iron and modifying impurities to obtain superpure steel.

Description

The hot stove single stage method in ore deposit is produced SiCaAlBaFe alloy technology
The production technique of the present invention and a kind of iron alloy, particularly single stage method are produced the production technique of SiCaAlBaFe alloy composite deoxidant in the hot stove in ore deposit.
Along with development of modern industry, more and more higher requirement has been proposed steel product quality.The principal element that influences steel product quality is steel inclusion amount and distribution thereof, along with the continuous removal to inclusion, has proposed the notion of Clean Steel, ultra clean steel.For adapting to the needs of producing ultra clean steel, reductor is also in continuous evolution.Original adoption aluminium, ferrosilicon, silicomanganese etc. carry out deoxidation, adopt ferrosilicoaluminum the end of the seventies, and the eighties be used widely since aluminium have with the oxygen binding ability strong, characteristics such as can in molten steel, dissolve each other fully, generally be used for steel-making and carry out bulk deoxidation, but because aluminum ratio is heavy little, scaling loss is serious when deoxidation, shortcomings such as the lower and deoxidation products of the utilization ratio of aluminium is difficult for discharging from molten steel have seriously limited the use of aluminium as the reductor of Clean Steel.
Show by the deoxidation comparative experimental research to reductors such as aluminium, calcium, magnesium, barium: calcium has very strong deoxidizing capacity and inclusion modification ability, but the high-vapor-pressure of calcium and lower boiling have limited its widespread use, and barium has the deoxidizing capacity stronger than aluminium, density than calcium, magnesium is big, the boiling point height, low-steam pressure, thus help improving yield of alloy and deoxidation efficient.Because the special performance of calcium, barium, on the basis of silicon, aluminium complex deoxidization, adopting the compound gold of silico-calcium aluminium barium to handle molten steel can obtain: (1) reduces gas and the inclusion content in the steel; (2) make Al 2O 3For the oxide inclusion sex change of base is that tiny, uniform spherical is mingled with, the inclusion pollution level in the steel is significantly reduced; (3) carbide in the change steel and attribute, pattern, quantity, size and the distribution of non-metallic inclusion are strengthened crystal boundary or are played the microalloying effect, improve the performance of material; (4) reduce Al in the steel 2O 3Be mingled with and the aluminium amount, help eliminating the continous casting sprue dross; (5) joint aluminium consumption reduction is increased economic efficiency.
At present, the main method of producing silico-calcium aluminium barium composite alloy is: Si-Ba alloy and silicocalcium and aluminium melt convert, Alsimin and silicon barium and silicocalcium melt and convert and silicon-aluminium-barium alloy and silicocalcium melt method such as convert, all these are molten converts method and all has the raw materials cost height, shortcomings such as the big and energy consumption height of melting loss of elements.
The purpose of this invention is to provide a kind of is main raw material with lime, silica, barium ore deposit, bauxitic clay and steel cuttings or iron ore and coke, adds the production technique that a step is smelted into the SiCaAlBaFe alloy composite deoxidant in the hot stove in ore deposit by layering is reinforced.
The object of the present invention is achieved like this: the present invention is a main raw material with silica, lime, aluminium stone (bauxitic clay or aluminum anhydride stone), barium ore deposit (barite or barium carbonate), steel cuttings or iron ore and coke, is composite deoxidant by proportioning by smelting into SiCaAlBaFe alloy in the hot stove in layering reinforced method adding ore deposit.
Because the present invention adopts is that original mineral such as silica is as raw material, so its production cost is low, also can overcome the big and high shortcoming of energy consumption of melting loss of elements in the production process, prepared SiCaAlBaFe alloy constant product quality, alloy content is: Si:25-55%; Ca:5-25%; Al:10-25%; Ba:5-25%; P, S≤0.05%; Surplus is an iron.Alloys such as the alternative aluminium of product, ferrosilicoaluminum, silicon barium, silico-calcium, sial barium and silico-calcium barium are as molten steel final deoxygenation and inclusion modification and Preparation of Castiron processing, and the final deoxygenation and the inclusion modification that are particularly suitable for ultra-clean steel are handled.
Further specifying the hot stove single stage method in ore deposit of the present invention below in conjunction with embodiment produces SiCaAlBaFe alloy technology and how to realize: feature of the present invention is to be main raw material with silica, lime, aluminium stone (bauxitic clay or aluminum anhydride stone), barium ore deposit (barite or barium carbonate), steel cuttings or iron ore and coke, adds in the hot stove in ore deposit by the reinforced method of layering and smelts into the SiCaAlBaFe alloy composite deoxidant; The weight proportion of main raw material of the present invention is (Kg/ part): silica 100-230Kg/ part, lime 30-80Kg/ part, aluminium stone (bauxitic clay or aluminum anhydride stone) 20-180Kg/ part, barium ore deposit (barite or barium carbonate) 30-80Kg/ part, coke (grain) 80-180Kg/ part; Its raw material grade is (%): the SiO in the silica 2≤ 90%, the CaO in the Wingdale 〉=90%, the SiO in the silica (bauxitic clay or aluminum anhydride stone) 2Be 15-35%, Al 2O 3Be 60-85%, the BaSO in barium ore deposit (barite or barium carbonate) 4And BaCO 2Content is greater than 80%, the iron level in the steel cuttings 〉=95% (in the iron ore with iron grade 〉=50%), and the fixed carbon content in burnt (grain) carbon is greater than 80%.When the raw material grade is lower than above-mentioned value, can suitably adjust proportioning raw materials according to the actual grade of each raw material.
Concrete implementing process of the present invention is:
One, raw material is prepared: by the raw material grade of above-mentioned requirements with various raw material crushings to following granularity, and raw material cleaned up (except the coke), guarantee that raw material drying does not have other impurity, use in order to smelting
Raw material granularity is: bauxitic clay: 50-120mm; Silica: 50-120mm; Wingdale: 50-120mm; Barite: 50-120mm; Steel cuttings: 50-1000mm (the iron ore granularity is 50-100mm); Coke 5-50mm.
Two, smelting technology: the various raw materials that will choose are prepared burden according to the requirement of alloy smelting composition, and smelting in the good hot stove in ore deposit has been dried by the fire in adding in the following manner.
Embodiment 1: the mode that silica and coke, bauxitic clay and coke, lime and coke and barium ore deposit (or lime and coke, barium ore deposit and coke also layering add) added with layering adds drying by the fire in the good hot stove in ore deposit energising and smelts, fed in raw material once in general 20-90 minute, according to going out one time alloy, tapping temperature 1000-2000 ℃ in the every 2-8 of the working of a furnace hour.In smelting process, utilize coke and the silicon that restores, aluminium to make reductive agent, and by suitably adjusting CaO, BaO, SiO 2And Al 2O 3Ratio, improve the reduction ratio of barium and calcium.
Embodiment 2: the mode that bauxitic clay and coke, silica and coke, lime and coke and barium ore deposit (or lime and coke, barium ore deposit and coke also layering add) added with layering adds drying by the fire in the good hot stove in ore deposit energising and smelts, added a defective material in general 20-90 minute, go out a stove alloy according to the every 2-8 of the working of a furnace hour, tapping temperature is 1000-2000 ℃.In smelting process, utilize coke and the silicon that restores, aluminium to make reductive agent, and by suitably adjusting CaO, BaO, SiO 2And Al 2O 3Ratio, improve the reduction ratio of barium and calcium.
Embodiment 3: the mode that the mixing of silica and bauxitic clay and coke, lime and coke and barium ore deposit (or lime and coke, barium ore deposit and coke also layering add) added with layering adds drying by the fire in the good hot stove in ore deposit energising and smelts, added a defective material in general 20-90 minute, go out a stove alloy according to the every 2-8 of the working of a furnace hour, tapping temperature is 1000-2000 ℃.In smelting process, utilize coke, and the silicon that restores, aluminium is as reductive agent, and by suitably adjusting CaO, BaO, SiO 2And Al 2O 3Ratio, improve the reduction ratio of barium and calcium.
The hot stove single stage method in ore deposit of the present invention is produced silico-calcium barium ferroaluminium processing method, also can produce silico-calcium barium-ferrum alloy (cancelling bauxitic clay in batching), sial barium (cancelling lime in batching), ferrosilicoaluminum (at batching cancellation barium ore deposit and lime) and Si-Ba alloy (cancellation bauxitic clay and lime in batching) according to customer requirements
The hot stove single stage method in ore deposit of the present invention is produced SiCaAlBaFe alloy technology and is applicable to 560KVA, 1000KVA, the hot stove of 1800KVA and 3200KVA ore deposit, especially with the hot stove of 500KVA, 1000KVA and 1800KVA ore deposit for well, it is easy to operate, technology is reliable.

Claims (8)

1, the invention discloses the hot stove single stage method in a kind of ore deposit and produce SiCaAlBaFe alloy technology, it is characterized in that: SiCaAlBaFe alloy of the present invention is main raw material, adds in the hot stove in ore deposit by the reinforced method of layering and smelt into SiCaAlBaFe alloy with silica, lime, aluminium stone (bauxitic clay or aluminum anhydride stone), barium ore deposit (barite or barium carbonate), steel cuttings or iron ore and coke.
2, the hot stove single stage method in ore deposit according to claim 1 is produced SiCaAlBaFe alloy technology, it is characterized in that: the weight proportion of SiCaAlBaFe alloy main raw material of the present invention (Kg/ part): silica 100-230Kg/ part, lime 30-80Kg/ part, aluminium stone (bauxitic clay or aluminum anhydride stone) 20-180Kg/ part, barium ore deposit (barite or barium carbonate) 30-80Kg/ part, burnt (grain) carbon 80-180Kg/ part.
3, the hot stove single stage method in ore deposit according to claim 2 is produced SiCaAlBaFe alloy technology, it is characterized in that: the grade of SiCaAlBaFe alloy main raw material of the present invention is (%): the SiO in the silica 2〉=90%; CaO in the Wingdale 〉=90%, the SiO in the aluminium stone (bauxitic clay or aluminum anhydride stone) 2Be 15-35%, Al 2O 3Be 65-35%; BaSO in the barium ore deposit (barite or barium carbonate) 2And BaCO 2Content is greater than 80%, the iron level in the steel cuttings 〉=95% (iron grade 〉=50% in the iron ore), and the fixed carbon content in the coke (grain) is greater than 80%.
4, the hot stove single stage method in ore deposit according to claim 1 is produced the SiCaAlBaFe alloy production technique, it is characterized in that: described production technique is to requiring granularity with described raw material crushing, and by behind the described proportion ingredient, with silica and coke, bauxitic clay and coke, the mode that Wingdale and coke and barium ore deposit (or lime and the also layering adding of coke, barium ore deposit and coke) add with layering adds drying by the fire energising smelting in the good hot stove in ore deposit, added a defective material in every 20-90 minute, went out a stove alloy in every 2-3 hour, tapping temperature is 1000-2000 ℃; In smelting process, utilize coke and the silicon that restores, aluminium to make reductive agent, and by suitably adjusting CaO, BaO, SiO 2And Al 2O 3Ratio, improve the reduction ratio of barium and calcium.
5, the hot stove single stage method in ore deposit according to claim 4 is produced SiCaAlBaFe alloy technology, it is characterized in that: described production technique is the mode that described bauxite raw material and coke, silica and coke, lime and coke and barium ore deposit (or lime and coke, barium ore deposit and coke also layering add) adds with layering to be added drying by the fire in the good hot stove in ore deposit energising and smelt, added a defective material in every 20-90 minute, went out a stove alloy in every 2-8 hour, tapping temperature is 1000-2000 ℃; In smelting process, utilize coke and the silicon that restores, aluminium as reductive agent, and by suitably adjusting CaO, BaO, SiO 2And Al 2O 3Ratio, improve the reduction ratio of barium and calcium.
6, the hot stove single stage method in ore deposit according to claim 4 is produced SiCaAlBaFe alloy technology, it is characterized in that: described production technique is the mode that the mixing of described material silex and bauxitic clay and coke, lime and coke and barium ore deposit (or lime and coke, barium ore deposit and coke also layering add) adds with layering to be added drying by the fire in the good hot stove in ore deposit energising and smelt, and adds that a defective material, every 2-3 hour go out a stove alloy, tapping temperature is 1000-2000 ℃ in every 20-90 minute; The sial that utilizes coke and restore in smelting process is as reductive agent, and by suitably adjusting CaO, BaO, SiO 2And Al 2O 3Ratio, improve the reduction ratio of barium and calcium.
7, the hot stove single stage method in ore deposit according to claim 4 is produced SiCaAlBaFe alloy technology, it is characterized in that: the granularity of described various raw material crushings is: bauxitic clay 50-120mm, silica 50-120mm, Wingdale 50-120mm, barite 50-120mm, steel cuttings 50-1000mm (the iron ore granularity is 50-100mm), coke 5-50mm.
8, produce SiCaAlBaFe alloy technology according to the hot stove single stage method of claim 1 and 4 described ore deposits, it is characterized in that: the hot stove single stage method in ore deposit of the present invention is produced SiCaAlBaFe alloy technology and also be can be used for producing silico-calcium barium-ferrum alloy (cancelling bauxitic clay in batching), sial barium (cancelling lime in batching), ferrosilicoaluminum (cancellation barium ore deposit and lime in batching) and Si-Ba alloy (cancellation bauxitic clay and lime in batching).
CN 00101497 2000-02-02 2000-02-02 One-step process for producing SiCaAlBaFe alloy with ore roaster Pending CN1262337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 00101497 CN1262337A (en) 2000-02-02 2000-02-02 One-step process for producing SiCaAlBaFe alloy with ore roaster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 00101497 CN1262337A (en) 2000-02-02 2000-02-02 One-step process for producing SiCaAlBaFe alloy with ore roaster

Publications (1)

Publication Number Publication Date
CN1262337A true CN1262337A (en) 2000-08-09

Family

ID=4576005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 00101497 Pending CN1262337A (en) 2000-02-02 2000-02-02 One-step process for producing SiCaAlBaFe alloy with ore roaster

Country Status (1)

Country Link
CN (1) CN1262337A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327007C (en) * 2005-10-26 2007-07-18 李兴有 Al-Mg-Ca-Fe alloy contg. micro-carbon, low silicon, low phosphorous, low-sulphur used for steelmaking
CN102559996A (en) * 2011-12-31 2012-07-11 淅川县森丽钢铁炉料有限公司 New silicon-aluminum-barium-calcium multicomponent deoxidation alloy for steelmaking and preparation technology thereof
CN104226983A (en) * 2014-09-28 2014-12-24 四川德胜集团钒钛有限公司 Ferrovanadium smelting raw material homogenizing method and equipment
CN109837387A (en) * 2017-11-28 2019-06-04 丹阳市延陵镇优越合金厂 A kind of water pipe alloy material and preparation method thereof
CN113061689A (en) * 2021-03-24 2021-07-02 宁夏科通新材料科技有限公司 Method for preparing silicon-calcium-barium-aluminum alloy from ore raw material
CN116287554A (en) * 2023-02-16 2023-06-23 马鞍山市九鹏嘉腾机械实业有限公司 Silicon-calcium aluminum alloy and production process thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327007C (en) * 2005-10-26 2007-07-18 李兴有 Al-Mg-Ca-Fe alloy contg. micro-carbon, low silicon, low phosphorous, low-sulphur used for steelmaking
CN102559996A (en) * 2011-12-31 2012-07-11 淅川县森丽钢铁炉料有限公司 New silicon-aluminum-barium-calcium multicomponent deoxidation alloy for steelmaking and preparation technology thereof
CN104226983A (en) * 2014-09-28 2014-12-24 四川德胜集团钒钛有限公司 Ferrovanadium smelting raw material homogenizing method and equipment
CN109837387A (en) * 2017-11-28 2019-06-04 丹阳市延陵镇优越合金厂 A kind of water pipe alloy material and preparation method thereof
CN113061689A (en) * 2021-03-24 2021-07-02 宁夏科通新材料科技有限公司 Method for preparing silicon-calcium-barium-aluminum alloy from ore raw material
CN113061689B (en) * 2021-03-24 2022-05-17 宁夏科通新材料科技有限公司 Method for preparing silicon-calcium-barium-aluminum alloy from ore raw material
CN116287554A (en) * 2023-02-16 2023-06-23 马鞍山市九鹏嘉腾机械实业有限公司 Silicon-calcium aluminum alloy and production process thereof

Similar Documents

Publication Publication Date Title
CN102321846A (en) 12.9 the level fastening piece is with titaniferous The cold heading steel and working method thereof
CN101172635A (en) Method for producing calcium aluminate with waste aluminum gray
CN106702087A (en) Deoxidation process for H08 steel-grade silicon
CN101956122A (en) Smelting process for manufacturing gray cast iron
WO1994011540A1 (en) Process for producing alloy utilizing aluminum dross
CN106086314A (en) A kind of method of refining of low-cost production potassium steel
CN1262337A (en) One-step process for producing SiCaAlBaFe alloy with ore roaster
CN101451177A (en) Deoxidizing agent and deoxidizing method for non-metal composite steel-smelting
CN102559996A (en) New silicon-aluminum-barium-calcium multicomponent deoxidation alloy for steelmaking and preparation technology thereof
CN1382822A (en) Al-Si-Mn alloy and its preparing process
CN1260375C (en) Production process of silicon calcium barium liquid steel cleaning agent and its equipment
CN103031409B (en) Novel process of steelmaking deoxidization by utilizing precipitator dust of refining furnace
CN115572783A (en) Barium-containing composite nodulizer and preparation method thereof
CN1006811B (en) Rare-earth low-chrome cast iron for making grinding ball and its technique of production
CN1082117A (en) Strong multicomponent deoxidant, additive
CN100507021C (en) LF composite deoxidization reducer
CN101265117A (en) Magnesium dolomite brick
CN1227375C (en) Production process and equipment for Si-Ca-Mg agent for purifying molten steel
CN1441066A (en) Slagging aluminium ball and its making process
CN1043249C (en) Process for production of compound deoxidizer of Si-Al-Ba-Fe alloy in one-step in blast furnace
CN101289723B (en) Novel composite modifier for austenitic manganese steel
CN1227374C (en) Production process of silicon calcium barium magnesium liquid steel cleaning agent and its production equipment
CN1042750C (en) Method for producing ultra low-carbon duriron
CN1031868C (en) Process method for producing steel ingot mould by blowing nitrogen to treat blast furnace molten iron
CN1150340C (en) Compound Si-Ca-Ba-Mg deoxidant producing process and equipment

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication