CN1253617A - 空调系统 - Google Patents

空调系统 Download PDF

Info

Publication number
CN1253617A
CN1253617A CN98804613A CN98804613A CN1253617A CN 1253617 A CN1253617 A CN 1253617A CN 98804613 A CN98804613 A CN 98804613A CN 98804613 A CN98804613 A CN 98804613A CN 1253617 A CN1253617 A CN 1253617A
Authority
CN
China
Prior art keywords
air
heat
refrigerant
regeneration air
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98804613A
Other languages
English (en)
Other versions
CN1117961C (zh
Inventor
前田健作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of CN1253617A publication Critical patent/CN1253617A/zh
Application granted granted Critical
Publication of CN1117961C publication Critical patent/CN1117961C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F12/003Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators
    • F24F2003/1464Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators using rotating regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1028Rotary wheel combined with a spraying device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Abstract

本发明提供通过增强对再生空气的加热能力以及提高对处理空气的冷却性能而具有优越的除湿和显热处理能力并节省能源的空调系统,包括用于从处理空气吸收湿气的干燥剂;和包括有压缩机的热泵,采用处理空气作为低温热源和再生空气作为高温热源运行以便供热给再生空气来再生干燥剂;其中,高温热源热交换器包括多个沿空气流方向划分的区段,而再生空气以与致冷剂相反的次序通过这些区段以便使致冷剂一旦在热泵中冷凝被进一步冷却。

Description

空调系统
本发明是关于空调系统,而具体说是关于一能连续地运行由干燥剂进行空气除湿处理和由热泵再生此干燥剂的空调系统。
图5表示一依据US专利4430864中所揭示的惯常技术的系统,它包括:处理空气通道A;再生空气通道B;二干燥剂槽103A、103B;用于再生干燥剂和冷却处理空气的热泵200。热泵200采用分别作为高温和低温热源被埋置于二干燥剂槽103A、103B中的热交换器220、210,其中,一干燥剂槽以令处理空气通过的方式进行除湿,而另一干燥剂槽以令再生空气通过的方式进行干燥剂槽的再生。在进行空调一定的时间间隔后,四路转换阀105、106被操作来在各干燥剂槽中进行逆处理,这是通过令再生空气和处理空气在相对的干燥剂槽中流过而完成的。
在上述的惯常技术中,热泵200的高、低热源和各干燥剂被汇集在各单元中,相当于冷却效果的热量ΔQ整个加载到热泵(蒸汽压缩致冷循环)。即就是说,冷却效果不可能超过所采用的热泵的容量(蒸汽压缩致冷循环)。因此,使得系统复杂没有取得任何收益。
因而,为解决这样的问题,有可能考虑象图6中所示的系统来依靠在再生空气通道B中安置一高温源220来加热再生空气,和在处理空气通道A中安置低温空气源240来冷却处理空气,还设置一用于在后干燥剂处理空气与预干燥剂再生空气之间交换显热的热交换器104。在这一情况中,干燥剂103采用旋转来跨接处理空气通道A和再生空气通道B的干燥剂轮。
这一系统可取得作为由热泵产生的冷却效果和由在处理空气与再生空气之间进行的显热交换所产生的冷却效果之总和的冷却效果(ΔQ),如图7的湿度图中所示,从而生成一设计更紧凑和能产生较之图5所示系统产生更大的冷却效果的系统。
在这样的热泵200中,需要设置用于干燥剂再生的温度超过65℃的高温热源和用于冷却处理空气的温度约为10℃的低温热源。对致冷剂HFC134a的蒸汽压缩型冷却处理以图8中所示的焓熵图表示,温升为55℃,压力比及压缩机功率较接近于基于制冷剂HCFC22的通常的空调系统中的热泵。因此,有可能为空调系统中的干燥剂再生采用对HCFC22的压缩机构成热泵。
但是,在一这样配置的系统中,如果采用如图6中所示的惯常型式的单一组件单元的所谓散热片式线圈(plate-fin-coil)热交换器作为高温热源热交换器的话,此时致冷剂以与空气交叉流通的关系流经多路分支的致冷剂通路,而致冷剂与空气在不规则温度分布状态下交换热,因而致冷剂所保持的热能即不能充分地传递给空气。
图9说明对于在公知的热交换器中的致冷剂和再生空气的温度变化与焓变化之间的关系。如图9中所示,当热泵的致冷剂与再生空气交换热时,对于致冷剂和再生空气的焓变化因为热平衡是相等的。在热交换的过程中,致冷剂在显热变化过程中在压缩机出口由过热蒸汽状态失去其焓直至开始冷凝,而在冷凝过程中通过潜热变化过程失去它的焓同时维持其温度不变,并进一步在由饱和液达到过冷液态的显热变化过程中失去它的焓。另一方面,再生空气在热交换过程中的显热变化过程中得到焓。
当这些媒体在上述步骤中相互交换热时,该过程可由一对致冷剂的在65℃的恒温下的冷凝热传导过程和由一对再生空气的入口温度为40℃的显热变化过程来加以近似,而这一过程按照其中冷却剂被混合的交叉流型热交换器的特性在理论上能提供约1.7的NTU(热传导单元数)和80%的温度效率。这样,再生空气的出口温度由下式得:
40+(65-40)×0.8=60℃,所以再生空气被加热到60℃。
因此,如图9所示,再生空气在40℃至60℃的温度范围内停留在热交换器220中,而致冷剂以无序的温度分布状态与这样的再生空气交换热量。因此,在冷凝器出口的具有其最低焓的致冷剂液不能总与入口的具有其最低温度40℃的再生空气相接触,而推测为与再生空气在平均再生空气温度50℃时接触。假定致冷剂被从对应于整个热传导面积的10%的面积传导的热过冷,这可能估计过高,在这一面积的NTU按下式得:
NTU=1.7×0.1=0.17;
由于温度效率由下列公式加以近似:
φ=1-1/exp(NTU),
温度效率理论上计算得:
φ=1-1/exp(0.17)=0.156。
这样,过冷致冷剂液的温度为:
65-(65-50)×0.156=62.7℃。
实际计算对由采用62.7℃时的焓值所得过冷效果的焓变化比,得到如图9中所示的2.5%的值。因此,对于上述计算此假设中的热传导面积被估计过高,而实际的NTU较低和过冷程度更低所以致冷剂液体温度将稍许高于以上的计算值。
这样,即使保持40℃的再生空气作为对冷却热源的最低温度,致冷剂液最多仅能被冷却到62.7℃,即就是说,保持在致冷剂中的热能不能有效地被传导到空气。还由于低温热源热交换器入口处的致冷剂仍然具有高焓,此低温热源热交换器中的致冷效果就变得很小。相应地,冷却再生空气的加热量和冷却效果小于在致冷剂液被冷却到40℃时的情况,因此为加热再生空气需要循环更大的致冷剂量以致降低性能系数。(如图8中所示,如果取热泵的加热量为100%,就需要对应于热量28%的压缩机功率,而致冷效果保持为72%)。
本发明通过提供能对馈给空气连续除湿和干燥剂再生的空调系统来解决上面概述的问题,在该系统中,致冷剂一旦在热泵中冷凝即与停留在高温热源热交换器的入口的处于的其最低温度的再生空气交换热来进一步冷却,从而致冷剂的热能被充分地传导给再生空气由此提高热泵对再生空气的加热能力,并能增强对处理空气的冷却能力,这样得到具有优越的除湿和显热处理能力的节能空调系统。
作出此发明是为实现上述目的,而按照权利要求1的空调系统包括:用于从处理空气吸收湿气的干燥剂;和包括有压缩机的热泵,通过采用处理空气作为低温热源和再生空气作为高温热源运行以便提供热给再生空气来再生干燥剂;其中用于与预干燥剂再生空气和致冷剂交换热的高温热源热交换器包括多个沿空气流方向划分的区段,再生空气以与干燥剂相反的顺序通过这些区段以便致冷剂一旦在热泵中被冷凝后被作进一步冷却。
因此,依靠将高温热源热交换器划分成多个区段以便能避免温度分布的无序状态和使冷却剂与再生空气以逆向流通方式交换热,和依靠使得致冷剂一旦在热泵中冷凝后能通过与存在于高温热源热交换器入口的处于其最低温度的再生空气交换热而被进一步冷却,从而使致冷剂的热能充分地传导给再生空气,能够提高热泵对再生空气的加热能力,对处理空气的冷却能力也得到增加。
按照权利要求2的发明的空调系统包括:用于从处理空气吸收湿气的干燥剂;和包括有压缩机的热泵,利用处理空气作为低温热源和再生空气作为高温热源以便供热给再生空气来再生干燥剂;其中通经干燥剂的处理空气和再生空气的通路被分成用于进行处理空气的除湿的第一区和用于利用再生空气进行干燥剂的再生的第二区以使干燥剂重复地在第一通路与第二通路之间移动其位置;其中用于与预干燥剂再生空气和致冷剂交换热的高温热源热交换器包括多个沿空气流向划分的区段,再生空气以与致冷剂相反的顺序通过这些区段以便制冷剂一旦在热泵冷凝后能被进一步冷却。
因此,依靠将高温热源热交换器划分成为多个区段以便避免温度分布的无序状态和使致冷剂与再生空气以逆向流动方式交换热,和依靠使致冷剂一旦在热泵中冷凝后能通过与存在于高温热源热交换器的入口的处于其最低温度的再生空气交换热而被进一步冷却,以便使致冷剂的热能充分地传导到再生空气,然后依靠导引再生空气到干燥剂再生区,增加干燥剂的除湿能力,还增加对处理空气的冷却能力。
按照权利要求3的本发明为按照权利要求1或2的空调系统,还进一步包括一设置在致冷剂通路中的收缩装置,至少连接最接近于再生空气的入口的第一区段和次接近于再生空气的入口的第二区段以使得第一区段中的致冷剂压力保持低于第二区段中的致冷剂压力。
因此,在进一步冷却一旦在热泵中冷凝的致冷剂的过程中,依靠提供降低冷凝的致冷剂压力的逐步处理来经历自蒸发和使之与欲被再冷凝的再生空气交换热,致冷剂能通过冷凝热传导过程或潜热传导过程经历状态变化,由此使得能利用高的热传导性能以便使热交换器较小。
按照权利要求4的发明是根据权利要求2或3的空调系统,其中干燥剂具有转轮的形状,从而通过旋转此干燥剂,它重复地在第一区与第二区之间移动其位置。
因此,依靠将干燥剂作成转轮形状使它能转动,即可能连续地进行由干燥剂作处理空气除湿和由对之充分地传导致冷剂的热能的再生空气再生干燥剂。
图1A为说明空调系统第一实施例的基本结构的图形;
图1B为详细表示高温热源热交换器的图形;
图2为图1所示空调系统中的热泵中致冷过程的焓熵图;
图3为表示图1所示实施例中作为热源操作的热泵中的高压致冷剂和再生空气的焓(热含量)的变化与温度之间的关系;
图4为表示图1所示干燥剂协助空调系统的运行的湿度图;
图5为说明通常的干燥剂协助空调系统的基本结构的图形;
图6为另一通常的干燥剂协助空调系统的图形;
图7表示图6中所示通常系统中干燥剂空调过程的湿度图;
图8为图6中所示通常的干燥剂协助空调系统中蒸汽压缩型致冷过程的焓熵图;和
图9为表示图6中所示通常系统中操作作为热源的热泵中高压致冷剂和再生空气的温度与焓变化(热含量)之间的关系的图形。
现在参照附图介绍优选实施例。图1A表示本发明空调系统第一实施例的基本结构。一蒸汽压缩型热泵200包括:压缩机260;低温热源热交换器(蒸发器)240;高温热源热交换器(冷凝器220);和膨胀阀250,由此构成蒸汽压缩型致冷路径。高温热源热交换器(冷凝器)220如图1B中所示被划分成分沿空气流方向的多个区段220D、220C、220B、220A,空气以与致冷剂相反顺序流过这些区段,由此构成一热交换器组件,其中致冷剂通路如下述构成:压缩机260的出口通过通路201连接到高温热源热交换器(冷凝器)220的第一区段220A,高温热源热交换器(冷凝器)220的第一区段220A的出口通过通路202连接到高温热源热交换器(冷凝器)220的第二区段220B,高温热源热交换器(冷凝器)220的第二区段220B的出口通过通路203和诸如节流孔的收缩装置221连接到高温热源热交换器(冷凝器)220的第三区段220C,高温热源热交换器(冷凝器)220的第三区段220C的出口通过通路204和诸如节流孔的收缩装置222连接到高温热源热交换器(冷凝器)220的第四区段220D,和高温热源热交换器(冷凝器)220的第四区段220D的出口通过通路205连接到膨胀阀250。
干燥轮103以给定旋转速度旋转同时跨接处理空气通路A和再生空气通路B二者,如图6中所表明的。在处理空气通路A中,用于回流空气的鼓风机102的入口通过通路107连接到调节空间,鼓风机102的出口通过通路108连接到干燥轮103中进行湿气吸收的第一区,用于处理空气的干燥轮103的出口通过通路109连接到用于与再生空气作热交换的显热交换器104,用于处理空气的显热交换器104的出口通过通路110连接到低温热源热交换器(蒸发器)240,用于处理空气的低温热源热交换器(蒸发器)的出口通过通道111连接到增湿器105,增湿器105的出口通过通路112连接到用于被处理空气的出口或一室内空气供给窗口。这种顺序组成处理空气路径。
与此同时,再生空气通路B被连接到鼓风机140的入口,用于使外部空气能通过通路124进入以便用作为再生空气,而鼓风机140的出口则被连接到与处理空气交换热的显热交换器104,用于再生空气的显热交换器104的出口通过通路126连接到高温热源热交换器(冷凝器)220,而在高温热源热交换器(冷凝器)内,再生空气流以220D、220C、220B、220A的次序经过各区段,如以上所述,用于再生空气的高温热源热交换器(冷凝器)220的出口通过通路127连接到用于进行干燥剂再生的干燥轮103的第二区,而干燥轮103的第二区中再生空气的出口通过通路128连接到周围空间。这种顺序组成一使外界空气能进入和向外排放废空气的路径。在此图形中,带圆圈的字母符号K~T指明相对图4所讨论的空气的各种状态。
上述这样构成的干燥剂协助空调设备的蒸汽压缩型致冷回路中的循环过程将在下面加以说明。致冷剂在低温热源热交换器(蒸发器)240中通过从已于干燥轮103中被除湿的处理空气接收蒸发作用的潜热蒸发,并通过通路207吸进压缩器260加以压缩。经压缩的致冷剂通过通路201流进高温热源热交换器(冷凝器)220。在高温热源热交换器(冷凝器)220内,致冷剂以220A、220B、220C、220D的次序通过各区段,并以逆流方式与从反方向上以220D、220C、220B、220A的次序流经各区段的再生空气交换热,从而使致冷剂温度经空气的显热变化的作用在这些区段中按220D、220C、220B、220A的顺序逐渐升高。这样,致冷剂经受下列处理:排出压缩机的过热蒸汽在区段220A中与再生空气交换热,饱和蒸汽在区段220B中与欲被冷凝的再生空气交换热,和它在当从区段220B过渡到220C时因收缩221令其压力和温度降低之后进行自蒸发,并在区段220C中再冷凝,而在当从区段220C过渡到220D时因收缩222令其压力和温度降低之后再次进行自蒸发,并在区段220D中再冷凝。在高温热源热交换器(冷凝器)220的区段220D中冷凝的致冷剂通过通路205到达膨胀阀250,膨胀和降低压力,并流回到低温热源热交换器(蒸发器)240。
现参照图2中所示的焓熵图说明致冷剂的热处理。致冷剂在低温热源热交换器(蒸发器)240中通过接收来自己在干燥轮103中被除湿的处理空气的蒸发作用的潜热而蒸发(状态a),并通过通路207被吸收进压缩机260被加以压缩。经压缩的致冷剂(状态b)流进高压热源热交换器(冷凝器)220。在高温热源热交换器(冷凝器)220内,致冷剂按照空气的显热变化以从高温至低温的温度次序逐步地交换热。即就是,在高温热源热交换器(冷凝器)220中,致冷剂首先进入区段220A释放过热蒸汽的显热以降低其温度(状态c),然后进入高温热源热交换器(冷凝器)220的区段220B释放大部分冷凝的潜热以再生空气由此而被冷凝(状态d)。从高温热源热交换器(冷凝器)220的区段220B排出的致冷剂饱和液通过收缩221而进行自蒸发从而在等焓过程中降压而成为湿蒸汽(状态e),并在高温热源热交换器(冷凝器)220的区段220C中通过与邻近入口的相对低温度的再生空气交换热而再冷凝(状态f)。进而,从高温热源热交换器(冷凝器)220的区段220C排出的致冷剂饱和液因收缩222而再次进行自蒸发从而在等焓过程中降压成为湿蒸汽(状态g),并在高温热源热交换器(冷凝器)220的区段220D中通过与最接近入口区域中的低温再生空气交换热而被再冷凝(状态h)。在高温热源热交换器(冷凝器)220的区段220D中冷凝的致冷剂到达膨胀阀250,膨胀和降压(状态j),并流回到低温热源热交换器(蒸发器)240。
在这一实施例中,致冷剂在区段220C中55℃时冷凝,并在区段220D中45℃时进一步冷凝,这样,致冷剂释放由78℃时后压缩状态b的过热蒸汽至45℃时状态h中的饱和液体的焓差进入再生空气,而且还能在蒸发器240中得到由45℃时状态h中的饱和液体至10℃时状态a中的干饱和蒸汽的焓差。相应地,如果到再生空气的热传导达到100%,则需要对应于23%的压缩机的功率同时得到77%的致冷效果。而且,在区段220C、220D中的热传导对应于整个输入热量的18%。
图3为表示对图1中说明的实施例的被用作为热泵200中热源的高压致冷剂中的和在高温热源热交换器(冷凝器)220中的温度与焓(热量)变化之间的关系的图形。当热泵200中的致冷剂与再生空气交换热时,致冷剂和再生空气中的焓变化因热平衡而相等。还因为空气以几乎恒定的比热经受显热传导过程,它们在图中由一定斜度的连续线表述,并且因为致冷剂经受潜热变化和显热变化,潜热变化期间的部分表示为一水平线。
在此实施例中,高温热源热交换器(冷凝器)220如图1B中所示被划分成沿空气流方向的多个区段220D、220C、220B、220A,而空气以相对于致冷剂相反的次序流经这些区段,以此来避免致冷剂与空气在无序的温度分布状态中交换热,从而使得如图3中所示致冷剂能恒定地维持较再生空气高的温度直至它成为45℃的饱和液体,以便能促进将致冷剂中保留的热传导给空气。在区段220C、220D中由致冷剂作的热传导还通过伴随着相变化的冷凝热传导过程进行,它能呈现出高热传导系数从而能使热交换器较小。在此实施例中,致冷剂的冷凝和蒸发被重复两次,但单一过程也能得到类似效果虽然可能稍差一些,重复多于两次也是有效的。
下面参照图4中所示空气湿度图说明基于作为热源的热泵200的系统的运作。进入系统的返回空气(处理空气:状态K)通经通路107被吸引进鼓风机102,被增压并通过通路108送到第一区,在干燥轮103中进行湿气吸收,处理空气中的湿气在干燥轮103中的湿气吸收剂中被吸收,而处理空气降低其湿度比并因吸收的热的传导而提高其温度(状态L)。已降低湿度和提高温度的处理空气被通过通路109送到显热交换器104,与外面空气(再生空气)交换热而被冷却(状态M)。被冷却的处理空气通经通路110并在通经低温热源热交换器(蒸发器)240的同时被冷却(状态N)。被冷却处理空气被送到加湿器105并被在一等焓处理中的喷射水或蒸发性加湿冷却(状态P),并通过通路112作为馈给空气返回到调节空间。
另一方面,如下述进行干燥轮103的再生。被用作为再生空气的外面空气(状态Q)通经通路124被吸引进鼓风机140中,并被增压送往显热交换器104,在此它在提高自身温度(状态R)的同时冷却处理空气,并通过通路126到达高温热源热交换器(冷凝器)220。在高温热源热交换器(冷凝器)220中,再生空气如上述以与致冷剂相反方向按220D、220C、220B、220A的次序流经这些区段,此时它在区段220D中被图2中状态g转移到状态h的致冷剂的冷凝作用的潜热加热,在区段220C中被由图2中状态e转移到状态f的致冷剂的冷凝作用的潜热加热,在区段220B中被由图2中状态c转移到状态d的致冷剂的冷凝作用的潜热加热,在区段220A中被由图2中状态b转移到状态c的过热蒸汽的显热加热,最后到达要被增加温度的状态s。从高温热源热交换器(冷凝器)220排出的再生空气通经用于进行再生的干燥轮103的区域,从干燥轮103吸收湿气(状态T),并通过通路128被作为废空气向外排出。
因此,此系统以重复干燥剂再生和除湿的处理及冷却处理空气来进行调节。在此实施例中,如上述假设对再生空气的热传导为100%,在得到77%的致冷效果时需要对应于23%的压缩机功率。这样,与图8中所示的通常的系统相比较,为释放同样的热量到再生空气所需的压缩机的功率节省:
(1-23/28)×100=18%,
并因为致冷效率增加,对处理空气的潜热的处理能力增加:
(77/72-1)×100=7%。
因此,依靠将高温热源热交换器沿空气流通方向划分成多个区段,再生空气以与致冷剂相反次序通过各区段而使得在热泵200中冷凝的致冷剂通过与在高温热源热交换器的入口邻近流通并处于其最低温度的再生空气交换热而被进一步冷却,由此将致冷剂中所保留的热能充分地传导到再生空气,而使之能增强再生空气的加热能力,节省压缩机输入功率,增加对处理空气的冷却能力(显热处理能力),从而提供具有高除湿和显热处理能力的节能空调系统。
在此实施例中,冷凝的制冷剂自蒸发和再冷凝,但也可采用无自蒸发作用的,以使饱和液体被导引到过冷液体来提供同样的节省输入功率和增加潜热处理能力的效果。但是在这一情况中,热传导是通过制冷剂的显热变化而无相变来进行的,热传导效率较低从而需要较大的热传导面积。
如上述,按照本发明,在能连续进行由干燥剂作空气除湿处理和由热泵再生干燥剂的空调系统中,在热泵中冷凝的冷凝剂通过与在高温热源热交换器的入口的邻近流通并处于其最低温度的再生空气交换热而被进一步冷却,由此充分地将致冷剂中保留的热能传导到再生空气,从而能增强再生空气加热能力,节省压缩机输入功率,增加对处理空气的冷却能力(显热处理能力),这样即提供具有高除湿和显热处理能力的节能空调系统。
本发明可用作为平常居室中或大型建筑例如超级市场或办公室中的空调系统。

Claims (4)

1、一种空调系统,包括:
用于从处理空气吸收湿气的干燥剂;和包括一压缩机的热泵,采用处理空气作为低温热源和再生空气作为高温热源运行以便供热给再生空气用于再生所述干燥剂;
其中,用于与预干燥再生空气和制冷剂交换热的高温热源热交换器包括多个沿空气流方向划分的区段,而再生空气以与制冷剂相反的次序通过所述各区段以便使制冷剂一旦在所述热泵中冷凝后被进一步冷却。
2、一种空调系统,包括:
用于从处理空气吸收湿气的干燥剂;和包括有压缩机的热泵,采用处理空气作为低温热源和再生空气作为高温热源运行以便供热给再生空气用于再生所述干燥剂;
其中,处理空气和再生空气的通经所述干燥剂的通路被划分成用于进行处理空气的除湿的第一区和用于利用再生空气进行所述干燥剂再生的第二区以便使所述干燥剂重复地在所述第一路径与所述第二路径之间转移其位置;和
其中,用于与预干燥再生空气和致冷剂交换热的高温热源热交换器包括多个沿空气流方向划分的区段,而再生空气以与致冷剂相反的次序通过所述区段以便制冷剂一旦在所述热泵中冷凝后被进一步冷却。
3、按照权利要求1或2的空调系统,还包括:
设置在致冷剂路径中的收缩装置,至少连接到一最邻近于再生空气入口的第一区段和次邻近于所述再生空气入口的第二区段以便使所述第一区段中的致冷剂压力能维持低于所述第二区段中的压力。
4、按照权利要求2或3的空调系统,其特征是:
所述干燥剂具有转轮形状以便能通过转动所述干燥剂使它能在所述第一区与所述第二区之间移动其位置。
CN98804613A 1997-04-11 1998-04-10 空调系统 Expired - Fee Related CN1117961C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP110143/1997 1997-04-11
JP9110143A JP2968231B2 (ja) 1997-04-11 1997-04-11 空調システム

Publications (2)

Publication Number Publication Date
CN1253617A true CN1253617A (zh) 2000-05-17
CN1117961C CN1117961C (zh) 2003-08-13

Family

ID=14528137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98804613A Expired - Fee Related CN1117961C (zh) 1997-04-11 1998-04-10 空调系统

Country Status (4)

Country Link
US (1) US6247323B1 (zh)
JP (1) JP2968231B2 (zh)
CN (1) CN1117961C (zh)
WO (1) WO1998046958A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106812A1 (fr) * 2003-06-02 2004-12-09 Guangzhou Haizhu De Hua Hardware Machine Factory Appareil de ventilation a recuperation totale de la chaleur pour piece a air conditionne
CN102032619A (zh) * 2009-10-02 2011-04-27 株式会社丰田自动织机 空调及控制空调的方法
CN102667350A (zh) * 2010-11-23 2012-09-12 杜酷尔有限公司 空气调节系统
CN115920605A (zh) * 2023-02-01 2023-04-07 杭州嘉隆气体设备有限公司 一种压缩热再生干燥器及控制方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69830598T2 (de) 1997-01-31 2006-05-18 The Horticulture And Food Research Institute Of New Zealand Limited Optische vorrichtung und methode
US6149867A (en) 1997-12-31 2000-11-21 Xy, Inc. Sheath fluids and collection systems for sex-specific cytometer sorting of sperm
JP3316570B2 (ja) 1999-08-31 2002-08-19 株式会社荏原製作所 ヒートポンプ及び除湿装置
JP3228731B2 (ja) 1999-11-19 2001-11-12 株式会社荏原製作所 ヒートポンプ及び除湿装置
US7208265B1 (en) 1999-11-24 2007-04-24 Xy, Inc. Method of cryopreserving selected sperm cells
US6360550B2 (en) * 2000-01-31 2002-03-26 Visteon Global Technologies, Inc. Air conditioning system and method of controlling same
US7713687B2 (en) 2000-11-29 2010-05-11 Xy, Inc. System to separate frozen-thawed spermatozoa into x-chromosome bearing and y-chromosome bearing populations
AU2002220018A1 (en) 2000-11-29 2002-06-11 Colorado State University System for in-vitro fertilization with spermatozoa separated into x-chromosome and y-chromosome bearing populations
EP1367333B1 (en) * 2001-03-07 2006-02-01 Ebara Corporation Heat pump and dehumidifier
EP1388714A4 (en) 2001-05-16 2008-04-09 Ebara Corp DEHUMIDIFIER
US7086242B2 (en) * 2001-07-13 2006-08-08 Ebara Corporation Dehumidifying air-conditioning apparatus
US8486618B2 (en) 2002-08-01 2013-07-16 Xy, Llc Heterogeneous inseminate system
MXPA05001100A (es) 2002-08-01 2005-04-28 Xy Inc Sistema de separacion de baja presion para celulas de esperma.
WO2004017041A2 (en) 2002-08-15 2004-02-26 Xy, Inc. High resolution flow cytometer
US7169548B2 (en) 2002-09-13 2007-01-30 Xy, Inc. Sperm cell processing and preservation systems
DK2309245T3 (en) 2003-03-28 2016-01-04 Inguran Llc Methods for providing sex-sorted animal semen
NZ544103A (en) 2003-05-15 2010-10-29 Xy Llc Efficient haploid cell sorting for flow cytometer systems
EP2151243B1 (en) 2004-03-29 2012-10-24 Inguran, LLC Sperm suspensions for sorting into X or Y chromosome-bearing enriched populations
ATE455291T1 (de) * 2004-03-29 2010-01-15 Inguran Llc Verwendung einer oxidations-/reduktionsreaktionen intrazellulär und/oder extrazellulär regulierenden zusammensetzung in einem anfärbe- oder sortierungsverfahren für spermatozoen
JP4529530B2 (ja) * 2004-04-26 2010-08-25 ダイキン工業株式会社 調湿装置
CA2574499C (en) 2004-07-22 2016-11-29 Monsanto Technology Llc Process for enriching a population of sperm cells
US7770405B1 (en) 2005-01-11 2010-08-10 Ac Dc, Llc Environmental air control system
FI20075595A0 (fi) * 2007-06-27 2007-08-30 Enervent Oy Ab Ilmanvaihtokojeyksikkö
KR100983325B1 (ko) * 2010-02-02 2010-09-20 주식회사 그린에너텍 일체형 히트펌프 냉난방 시스템
JP5334909B2 (ja) * 2010-04-20 2013-11-06 三菱電機株式会社 冷凍空調装置並びに冷凍空調システム
US9885486B2 (en) 2010-08-27 2018-02-06 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method
US10274210B2 (en) * 2010-08-27 2019-04-30 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method
US8915092B2 (en) 2011-01-19 2014-12-23 Venmar Ces, Inc. Heat pump system having a pre-processing module
CN103363702B (zh) * 2012-04-10 2015-04-22 多乐空气处理设备(苏州)有限公司 混合制冷及低温除湿方法及其系统
US8956447B2 (en) * 2013-01-11 2015-02-17 Norm Pacific Automation Corp. Desiccant wheel dehumidifier and heat exchanger thereof
US9267696B2 (en) * 2013-03-04 2016-02-23 Carrier Corporation Integrated membrane dehumidification system
US9772124B2 (en) 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
EP2940394A1 (en) * 2014-05-01 2015-11-04 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Air conditioning
KR101632494B1 (ko) * 2014-09-27 2016-06-21 (주)귀뚜라미 히트펌프에 간접식증발냉각기 배수를 이용한 하이브리드 제습냉방시스템
AU2015357516A1 (en) 2014-12-05 2017-06-15 Inguran, Llc Cell processing using magnetic particles
US10753655B2 (en) 2015-03-30 2020-08-25 William A Kelley Energy recycling heat pump
EP3450862A1 (de) * 2017-08-29 2019-03-06 Emil Grüniger Vorrichtung für ein gebäude, insbesondere eine schwimmhalle, zum austauschen von feuchtigkeit und wärme
GB2576515B (en) * 2018-08-21 2022-05-18 Ebac Industrial Products Ltd Desiccant dehumidifier
US11629330B2 (en) 2019-03-19 2023-04-18 Inguran, Llc Method for improved sperm cell populations
EP4104186A1 (en) 2020-02-13 2022-12-21 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH Method for an automatic, semantic-based, functional tissue annotation of histological and cellular features in order to identify molecular features in tissue samples

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182060A (ja) * 1982-04-19 1983-10-24 Nobuyoshi Kuboyama 減圧平衡摩擦熱発生機構における内気外気吸排装置
JPS61164623A (ja) * 1985-01-11 1986-07-25 Matsushita Electric Works Ltd 除湿機
JPS61167425A (ja) * 1985-01-19 1986-07-29 Matsushita Electric Works Ltd 除湿機
US4864830A (en) * 1988-06-13 1989-09-12 Ahlstromforetagen Svenska Ab Air conditioning process and apparatus
US4887438A (en) 1989-02-27 1989-12-19 Milton Meckler Desiccant assisted air conditioner
JPH03140764A (ja) * 1989-10-26 1991-06-14 Nippondenso Co Ltd 熱交換器
JP2909605B2 (ja) * 1990-11-30 1999-06-23 昭和アルミニウム株式会社 水冷式インタークーラ
US5325676A (en) 1992-08-24 1994-07-05 Milton Meckler Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability
US5364455A (en) 1992-09-22 1994-11-15 Gas Research Institute Silica gels of controlled pore size as desiccant materials and processes for producing same
US5551245A (en) * 1995-01-25 1996-09-03 Engelhard/Icc Hybrid air-conditioning system and method of operating the same
US5448895A (en) 1993-01-08 1995-09-12 Engelhard/Icc Hybrid heat pump and desiccant space conditioning system and control method
US5758509A (en) 1995-12-21 1998-06-02 Ebara Corporation Absorption heat pump and desiccant assisted air conditioning apparatus
US5761925A (en) 1995-12-21 1998-06-09 Ebara Corporation Absorption heat pump and desiccant assisted air conditioner
US5718122A (en) 1996-01-12 1998-02-17 Ebara Corporation Air conditioning system
US5761923A (en) 1996-01-12 1998-06-09 Ebara Corporation Air conditioning system
US5816065A (en) 1996-01-12 1998-10-06 Ebara Corporation Desiccant assisted air conditioning system
US5791157A (en) 1996-01-16 1998-08-11 Ebara Corporation Heat pump device and desiccant assisted air conditioning system
JPH09318127A (ja) 1996-05-24 1997-12-12 Ebara Corp 空調システム
US5950442A (en) 1996-05-24 1999-09-14 Ebara Corporation Air conditioning system
JPH109633A (ja) 1996-06-20 1998-01-16 Ebara Corp 空調システム
US6029467A (en) * 1996-08-13 2000-02-29 Moratalla; Jose M. Apparatus for regenerating desiccants in a closed cycle
JPH1096542A (ja) 1996-09-24 1998-04-14 Ebara Corp 空調システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106812A1 (fr) * 2003-06-02 2004-12-09 Guangzhou Haizhu De Hua Hardware Machine Factory Appareil de ventilation a recuperation totale de la chaleur pour piece a air conditionne
CN102032619A (zh) * 2009-10-02 2011-04-27 株式会社丰田自动织机 空调及控制空调的方法
CN102667350A (zh) * 2010-11-23 2012-09-12 杜酷尔有限公司 空气调节系统
CN102667350B (zh) * 2010-11-23 2015-03-25 杜酷尔有限公司 空气调节系统
CN115920605A (zh) * 2023-02-01 2023-04-07 杭州嘉隆气体设备有限公司 一种压缩热再生干燥器及控制方法

Also Published As

Publication number Publication date
JPH10288421A (ja) 1998-10-27
JP2968231B2 (ja) 1999-10-25
US6247323B1 (en) 2001-06-19
WO1998046958A1 (fr) 1998-10-22
CN1117961C (zh) 2003-08-13

Similar Documents

Publication Publication Date Title
CN1117961C (zh) 空调系统
CN1116552C (zh) 空调系统
US20050257551A1 (en) Desiccant-assisted air conditioning system and process
KR100510774B1 (ko) 복합식 제습냉방시스템
CN1236258C (zh) 空调系统
CN1189717C (zh) 空调系统及其运行方法
CN101846369B (zh) 一种热回收型溶液除湿新风机组
CN1174963A (zh) 去湿空调装置
CN1156806A (zh) 吸收式热泵及干燥剂辅助空调设备
CN106705334A (zh) 能量回收型双冷源大焓差蓄能新风机组及其控制方法
CN211503040U (zh) 热湿比可调的溶液辅助式热泵系统
CN107314483A (zh) 两级双除湿蒸发器双除湿冷凝器除湿热泵系统及方法
CN112050618B (zh) 三效热回收型混风式热泵烘干系统及其应用
CN110173776A (zh) 一种预冷式转轮调湿的新风处理装置
CN101122406B (zh) 热湿分别处理的小型中央空调机组
Peng et al. Influence of heat recovery on the performance of a liquid desiccant and heat pump hybrid system
CN201858724U (zh) 全新风热泵型屋顶式空调机
CN110375395A (zh) 工业用复合式深度除湿系统
CN201138102Y (zh) 一种带二次加湿冷却式冷凝器的新回风能量回收热泵装置
CN206269310U (zh) 能量回收型双冷源大焓差蓄能新风机组
JP3765732B2 (ja) ヒートポンプ及び除湿空調装置
CN210718200U (zh) 一种热泵系统
KR100493871B1 (ko) 제습 및 건조설비
CN110986207A (zh) 一种热泵驱动直膨式温湿分控热回收型溶液调湿新风机组
CN100523649C (zh) 能利用室内排风冷热量的溶液除湿蒸发冷却空调装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee