CN1253498A - 用β-胡萝卜素作为食品添加剂增强动物免疫应答的方法 - Google Patents

用β-胡萝卜素作为食品添加剂增强动物免疫应答的方法 Download PDF

Info

Publication number
CN1253498A
CN1253498A CN98804580A CN98804580A CN1253498A CN 1253498 A CN1253498 A CN 1253498A CN 98804580 A CN98804580 A CN 98804580A CN 98804580 A CN98804580 A CN 98804580A CN 1253498 A CN1253498 A CN 1253498A
Authority
CN
China
Prior art keywords
carotene
beta
canis familiaris
food
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98804580A
Other languages
English (en)
Other versions
CN1171584C (zh
Inventor
M·G·海克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mars Inc
Original Assignee
Iams Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iams Co filed Critical Iams Co
Publication of CN1253498A publication Critical patent/CN1253498A/zh
Application granted granted Critical
Publication of CN1171584C publication Critical patent/CN1171584C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/01Hydrocarbons
    • A61K31/015Hydrocarbons carbocyclic
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/174Vitamins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/179Colouring agents, e.g. pigmenting or dyeing agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/40Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Fodder In General (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Feed For Specific Animals (AREA)

Abstract

本发明提供用含有有效量β-胡萝卜素的食物来喂养陪伴动物如狗或猫以增强动物免疫应答和改善其总体健康的方法。优选地,食物含有约1-50mg/天的β-胡萝卜素(每kg食物约6-315mgβ-胡萝卜素)。这样的食物提供足够的β-胡萝卜素供动物吸收并供给动物的血液、血白细胞和中性粒细胞。

Description

用β-胡萝卜素作为食品 添加剂增强动物免疫应答的方法
发明背景
本发明涉及一种宠物食品添加剂和用于增强伴侣动物如猫和狗的免疫应答和改善其总体健康的方法,并且更具体地涉及动物食品中含有有益量β-胡萝卜素的宠物食品添加剂和方法。
类胡萝卜素是天然产生的被不同种动物不同程度吸收的植物色素。普通的类胡萝卜素包括β-胡萝卜素、蕃茄红素、黄体素、玉米黄素和虾青素。已知这些类胡萝卜素(最被广泛研究的是β-胡萝卜素)在调节免疫系统和促进这些种的动物的健康中起重要作用。已知β-胡萝卜素是维生素A的前体并且在某些动物包括人和狗的体内被酶转化成维生素A。然而,猫不具备这种酶且不能把β-胡萝卜素转化成维生素A。
β-胡萝卜素还被认为具有强力的抗氧化剂活性并且可保护某些动物的细胞膜和细胞器免受氧化损伤。然而,为了发挥作用,β-胡萝卜素必须存在于细胞中的关键部位如线粒体、核和细胞膜。
疾病预防对于人和陪伴动物都是重要的。健康的免疫系统在预防和战胜疾病中都起重要作用。一些研究报导了狗的循环血中和器官中仅低到不可测出的β-胡萝卜素的量。而且,由于已知猫不能将β-胡萝卜素转化为维生素A,它们的食物中不含β-胡萝卜素添加剂。因此,本领域有必要加强陪伴动物如狗和猫的健康的免疫系统。
发明概述
本发明通过提供用含有效量β-胡萝卜素的食物来喂养伴侣动物如猫或狗的方法满足增强动物免疫应答和改善其总体健康的需要。优选地,用含有约1-50mg/天的β-胡萝卜素的食物(每kg食物约6-315mgβ-胡萝卜素)喂养动物。这样的食物提供足够的β-胡萝卜素供动物吸收并供给动物血液、血白细胞和中性粒细胞。
因此,本发明的特点是通过在动物食品中提供有效量的β-胡萝卜素来提供增强伴侣动物如猫和狗的免疫应答和改善其总体健康的宠物食品添加剂和方法。下面详细的描述和附图使本发明的这个和其它特点和优点更明显。
附图简述
图1是给单一口服剂量的β-胡萝卜素的狗血浆中β-胡萝卜素浓度(μg/L)相对于时间的图。
图2是给重复剂量的胡萝卜素的狗血浆β-胡萝卜素浓度(μg/L)对时间的图。
图3是每日喂养β-胡萝卜素喂养30天的狗的血淋巴细胞摄取的食物β-胡萝卜素(ng/108细胞)相对于时间的图。
图4是每天喂β-胡萝卜素喂养30天的狗的血淋巴细胞的细胞核、线粒体、微粒体、和细胞质食物β-胡萝卜素的摄取(ng/108细胞)的图。
图5是每天喂β-胡萝卜素喂养30天的狗的血淋巴细胞的亚细胞组分(线粒体、微粒体、细胞质和细胞核的β-胡萝卜素的相对摄取的图。
图6是每日喂β-胡萝卜素喂养30天的狗的血中性粒细胞食物β-胡萝卜素摄取图。
图7是每日喂β-胡萝卜素喂养30天的狗的血中性粒细胞的细胞核(nucl),线粒体(mito),微粒体(micro)和细胞质(cyto)的食物β-胡萝卜素摄取图。
图8是每天喂β-胡萝卜素喂养30天的狗血中性粒细胞亚细胞组分(线粒体、微粒体、细胞质和细胞核)的β-胡萝卜素的相对摄取的图。
图9是每日喂0、2、20、或50mg的β-胡萝卜素喂养8周的狗的血浆β-胡萝卜素浓度变化的图。
图10是每日喂0、2、20或50mg的β-胡萝卜素喂养7周的狗的对PHA的DTH反应的图。
图11是每日喂0、2、20或50mg的β-胡萝卜素喂养7周的狗对疫苗的DTH的反应的图。
图12是每日喂β-胡萝卜素0、2、20或50mg喂8周的狗的淋巴细胞CD4亚型的变化的图。
图13是每日喂β-胡萝卜素0、2、20或50mg喂养8周的狗的血浆总Ig变化的图。
图14是给一次口服剂量β-胡萝卜素的猫的血浆β-胡萝卜素浓度(μg/L)相对于时间的图。
图15是给重复剂量β-胡萝卜素的猫的血浆β-胡萝卜素浓度(μg/L)相对于时间的图。
图16是每日喂β-胡萝卜素喂养14天的猫的血淋巴细胞的食物β-胡萝卜素摄取(ng/108个细胞)相对于时间的图。
图17是每日喂β-胡萝卜素喂养7天的猫血淋巴细胞的细胞核、线粒体、微粒体和细胞质的食物β-胡萝卜素摄取的图。
图18是每日喂β-胡萝卜素喂养14天的猫的血淋巴细胞的细胞核(nucl)、线粒体(mitro)、微粒体(micro)和细胞质(cyto)的食物β-胡萝卜素摄取的图。
图19是每日喂β-胡萝卜素5mg喂养7天和14天的猫的淋巴细胞亚细胞成分中β-胡的相对比例(%)的变化的图;及
图20是每日喂β-胡萝卜素10mg喂养7天和14天的猫的淋巴细胞亚细胞成分(线粒体、微粒体、细胞质、和细胞核)中β-胡萝卜素的相对比例(%)的变化的图。
优选实施方案详述
本发明使用以约1-50mg β-胡萝卜素/天(每kg食物约6-315mg β-胡萝卜素)的量含有一定来源的β-胡萝卜素作为添加剂的宠物食品组合物。这样的食物提供足够的β-胡萝卜素供动物吸收并供给动物的血液、血白细胞和中性粒细胞。已发现家养的狗和猫都能吸收食物β-胡萝卜素。而且,在这些动物体内,循环的β-胡萝卜素明显被外周血淋巴细胞和中性粒细胞吸收。β-胡萝卜素也分布于多种亚细胞细胞器中。多种白细胞的亚细胞细胞器中的这些β-胡萝卜素被认为(1)保护这些细胞免受氧自由基攻击和/或(2)直接调控核事件。因此,用有效量的β-胡萝卜素喂养狗和猫在体内组织中的重要细胞位置提供β-胡萝卜素,可导致免疫功能上调并且改善这些动物的健康。
宠物食品组合物可以是任何也提供给动物足够营养的适当宠物食品制剂。例如,用于本发明的典型犬食品可含有约30%天然蛋白、约20%脂肪和约10%总食物纤维。然而,不要求这些或其它营养物的特定比率或百分率。β-胡萝卜素可与这些宠物食品混和以提供所需的有益的量。
为使本发明更容易得到理解,下面用来说明本发明的实施例用作参考,但不限制其范围。实施例1-狗-单一剂量后血液摄取
实施例1-3中用的雌Beagle狗(18到19月龄;7-9kg体重)用满足或超出所有必需营养物要求的基本食物(Iams Co.,Lewisburg,OH)喂养。在光(14小时亮;10小时黑暗)和温度控制的房间里饲养动物。进行实验以研究给单一口服剂量β-胡萝卜素之后的β-胡萝卜素的摄取特点。
为研究给单一口服剂量的β-胡萝卜素的狗的口服β-胡萝卜素的摄取,经口一次给狗(n=6/处理)0、50、100或200mg的β-胡萝卜素(10%冷水溶解;BASF公司,Ludwigshafen,德国)。合适剂量的β-胡萝卜素溶解于5ml的水中,用灌喂注射器经口喂给动物。为确定合适的采血样的时间,预先用两只狗研究。这些狗用50mg的β-胡萝卜素一次饲喂并在0(喂β-胡萝卜素之前即刻)、3、6、9、12、15、18、21和24小时采血。
离心分离血浆并且按下面的方法用高压液相色谱(HPLC)分析β-胡萝卜素的浓度。所有操作在暗的光线下进行。两份血浆,一份白细胞匀浆和一份白细胞亚细胞成分用1∶1的二乙基乙醚和石油醚的混合物在BHT存在下抽提。去除醚相并用氮气吹干。残余物恢复进入流动相以进行HPLC测定β-胡萝卜素。样品(50μl)被加到5μm球形C-18反相柱(3.9×150mm;Resole)上并且用47∶47∶46(v/v/v)乙腈、甲醇和氯仿的混合物以1.0ml/分钟的流速洗脱。
此实施例的结果在图1中描述,并且表明β-胡萝卜素的峰浓度出现在给药后3-6小时,并且在24小时时不能测出。随后,从其余的狗在相同时期取血样。同样分离血浆并用HPLC分析。
未补充β-胡萝卜素的狗在研究的所有时期检测不到血浆β-胡萝卜素浓度。与之相对比,给予口服剂量的β-胡萝卜素的狗的血浆β-胡萝卜素表现剂量依赖性增加(P<0.01)(图1)。观察到峰浓度出现在给药后6小时并且所有的处理组的峰浓度出现时间一致。此后,所有给β-胡萝卜素添加剂的狗的β-胡萝卜素浓度出现迅速下降(P<0.01)。在给药后24小时时测不出β-胡萝卜素浓度。血浆β-胡萝卜素的半衰期约为3(50和100mg剂量)到4(100mg剂量)小时。狗的血β-胡萝卜素的峰浓度出现早于猫的(见下面实施例4和5)。同时,在调整体重差异之后,狗的血浆β-胡萝卜素浓度比观察到的猫的β-胡萝卜素浓度低约10~16倍。实施例2-狗-给重复剂量的血液摄取
在此实施例中,每天在0800小时用0、12.5、25、50或100mgβ-胡萝卜素喂养狗(n=6/处理)连续7天。β-胡萝卜素加在食物上面并在早饭时喂养。在0天(第一次给药之前即刻),随后在每次给剂量之后6小时(第一天到第七天)每天取血一次。采血时间根据一次剂量之后6小时显示β-胡萝卜素峰浓度的实施例1得到的结果而定。分离血浆并分析β-胡萝卜素的浓度。
每天给β-胡萝卜素给7天的狗出现如图2所描述的循环β-胡萝卜素剂量依赖增加(P<0.01)。喂100mg β-胡萝卜素的狗表现出每天血浆β-胡萝卜素浓度的急剧上升。此实施例中喂100mg β-胡萝卜素的狗的第一天血浆β-胡萝卜素的峰浓度(18μg/L)与实施例1中的(图1)观察到的相似。最后一次给药之后血浆β-胡萝卜素的浓度一般比第一次给药之后观察到的高2.5-4倍。
此实施例的结果表明狗可从它们的食物中吸收β-胡萝卜素。这一发现与早先报道的血液中、肝脏中和乳汁中如果有的话、微量的胡萝卜素的研究相矛盾。然而,其它已报道狗血液中低度到中等的β-胡萝卜素浓度。实施例3-狗-血白细胞的摄取
设计本实施例来研究狗的血淋巴细胞的β-胡萝卜素摄取。这些狗(n=8/处理)每天喂0、50或100mg的β-胡萝卜素喂养30天。在第10、20和30天经颈静脉从所有的狗取血。用密度梯度离心分离血淋巴细胞和中性粒细胞。细胞计数、淋巴细胞和中性粒细胞重新悬浮于含3%抗坏血酸钠作为抗氧化剂的PBS中。一份细胞悬液作超声处理以打碎细胞。提取白细胞匀浆用于β-胡萝卜素HPLC分析。
第30天时,取更大一份血液并按上面所描述的制备白细胞悬液用于随后的亚细胞分级分离。在5倍体积的0.25M蔗糖中声处理20秒打碎细胞。加入抗坏血酸钠作为抗氧化剂。离心匀浆(4℃下,600×g,10分钟)并且从上清液中分离核沉淀物。离心此核后上清液(4℃,17,300×g 20分钟)以分离线粒体部分。离心线粒体后上清液(4℃,102,000×g,60分钟)从胞质组分分离微粒体。每种亚细胞组分用HPLC分析β-胡萝卜素含量。
0天时(给β-胡萝卜素添加剂之前即刻),如图3所说明的,检测不到所有狗的外周血淋巴细胞中β-胡萝卜素的浓度。而且,未补充β-胡萝卜素的狗的淋巴细胞中的β-胡萝卜素在整个研究中一直检测不出。与之对比的是,喂β-胡萝卜素的狗的淋巴细胞中β-胡萝卜素浓度一般以时间依赖方式增加(P<0.01)。比较喂50mg与100mg β-胡萝卜素的狗时,其淋巴细胞β-胡萝卜素的浓度没有明显的处理差异。此实施例中狗的淋巴细胞中的β-胡萝卜素浓度比观察到的猫的(见下面实施例4和5)低20-30倍。
图4-8说明了淋巴细胞和中性粒细胞亚细胞组分的β-胡萝卜素摄取。在未给添加剂的狗的淋巴细胞的不同亚细胞组分中检测不到β-胡萝卜素(图4)。与之对比的是,从补充β-胡萝卜素的狗分离的血淋巴细胞的所有亚细胞组分都摄取β-胡萝卜素。胞质组分摄取的占淋巴细胞中总β-胡萝卜素的52-62%(图5)而细胞核摄取的占总β-胡萝卜素的最低量(6-8%)。线粒体(14-17%)和微粒体摄取的(16-23%)居于细胞质和细胞核的中间。在喂养的第30天,食物β-胡萝卜素的剂量对于亚细胞组分摄取β-胡萝卜素没有明显影响。结果表明,β-胡萝卜素被淋巴细胞所有亚细胞组分所摄取。然而,β-胡萝卜素在狗的细胞质中最高而在猫的线粒体中最高(见下面实施例4-6)。而且,狗的淋巴细胞的所有亚细胞组分中的β-胡萝卜素浓度明显低于猫中所报导的(见下面实施例4-6)。
如淋巴细胞,血白细胞同样摄取β-胡萝卜素(图6)。然而不象淋巴细胞,它们的最大摄取出现在第10天,在观察的第30天,中性粒细胞的β-胡萝卜素浓度无进一步增加。血白细胞的细胞质、线粒体和微粒体也表明明显的β-胡萝卜素摄取(图7)。与之相对比的是,在细胞核中检测不到β-胡萝卜素。象在血淋巴细胞亚细胞成分,β-胡萝卜素在血白细胞的胞质组分中最高(61-68)(图8)。没有观察到明显的剂量效应。
结果表明,狗能够吸收食物的β-胡萝卜素。此结果是令人吃惊的,因为早些的研究发现狗的肝脏和乳汁中仅有微量的β-胡萝卜素并且在狗的血液中仅仅检测到微量到中等量的β-胡萝卜素。而且,已发现,循环β-胡萝卜素被狗的外周血淋巴细胞和中性粒细胞明显吸收。β-胡萝卜素分布于不同的亚细胞细胞器内。白细胞的不同细胞器中的β-胡萝卜素被认为(1)保护这些细胞免受氧自由基攻击和/或(2)直接调控核事件。因此,通过用有效量的β-胡萝卜素喂养狗使β-胡萝卜素存在于体内组织的重要细胞位置可促进这些狗的健康。实施例4-狗-对免疫应答的影响
雌性Beagles(4-5月龄)每天给0、25、50或100mg的β-胡萝卜素添加剂以研究食物β-胡萝卜素在加强狗的细胞介导的免疫和狗的体液免疫系统中的作用。评价所有的动物或外周血淋巴细胞的下面的参数:(1)对PHA(非特异性免疫)和疫苗(特异性免疫)的迟发型超敏反应,(2)淋巴细胞增生,(3)淋巴细胞数量和(4)免疫球蛋白(Ig)。
β-胡萝卜素添加剂以图9所示的剂量依赖方式增加血浆β-胡萝卜素浓度但不影响血浆维生素A或α-维生素E。如图11和10分别所示,这些变化一般反应对特异性(疫苗)和非物性(PHA)抗原的DTH反应。喂50mg β-胡萝卜素的狗观察到对PHA的最大反应而喂20或50mg β-胡萝卜素的狗表现出对疫苗显著的更高的DTH反应。迟发型超敏反应是严格的有T细胞和巨噬细胞参与的无抗体成分参与的细胞反应。抗原呈递细胞(如巨噬细胞)呈递抗原或过敏原给T细胞,使之激活并释放淋巴因子。这些林巴因子激活巨噬细胞并使它们成为外来侵入者有力的杀伤细胞。因此,这些资料表明了喂养β-胡萝卜素的狗升高的细胞介导反应。
β-胡萝卜素喂养也产生淋巴细胞亚单位明显的改变。与对照组相比,喂20或50mg的β-胡萝卜素的狗如图12所示,CD4+细胞数目增加(8周)。喂20mg的β-胡萝卜素的狗也在第2周和第4周出现CD8细胞数目增加。T细胞可根据CD4膜成分的表达来分类。CD4可作为粘附分子和共同信号共同受体。它在T细胞的活化中起作用。CD4+T淋巴细胞识别抗原连同II类MHC分子并且主要作为辅助细胞。本研究中T辅助细胞数量的增加可解释喂养20-50mg β-胡萝卜素的狗相应的DTH反应增强。
早在食品添加剂之后第1周,喂养β-胡萝卜素的狗的IgG、IgM和总IgG(图10)的浓度显著增加,对于喂0-20mg β-胡萝卜素的狗Ig的增加是剂量依赖的。最高剂量的β-胡萝卜素(50mg)没有产生进一步的增加。喂20mg β-胡萝卜素的狗一致地具有两种Ig的最大的抗体反应。免疫系统的主要功能之一是产生的抗体自由地循环以保护机体免疫外来物质侵袭。抗体可中和毒素、固定某些微生物、使病毒活性失效、凝集微生物或抗原微粒并且沉淀可溶性抗原。
β-胡萝卜素喂养不影响丝裂原诱导的淋巴细胞母细胞化和IL-2产生。淋巴细胞参与细胞介导的免疫。一旦识别抗原,淋巴细胞就很快分裂,然后自我复制准备抵抗潜在的侵袭。体液免疫应答中,对抗原的应答时IL-2刺激T辅助细胞和B细胞增生。这对于抗原或丝裂原活化的T细胞的细胞系扩增是必需的。细胞介导的免疫应答中,IL-2活化自然杀伤细胞,刺激胸腺细胞增生并诱导细胞毒T细胞的活性。令人吃惊的是,这两种免疫参数不受β-胡萝卜素喂养的影响而其它大多数参数受其影响。
根据这些实验的结果,狗从食物中吸收相当数量的β-胡萝卜素并将其转移进入免疫细胞和巨噬细胞的亚细胞细胞器中。β-胡萝卜素通过增强细胞介导的免疫应答(DTH反应、淋巴细胞亚群的转变)和体液免疫应答(IgG和IgM的产生)表现增强狗的免疫系统。因此,补充食物β-胡萝卜素促进狗的免疫健康,这将可能增加全身健康。实施例5-猫-单一剂量后的血液摄取
成熟雌性短毛Tabby猫(7-8月龄;体重1.5-2.0kg)用于实施例4-6并且用满足或超过所有必需营养物要求的基本食物(Iams Co.,Lewisburg,OH)喂养。动物分组养在光线和温度控制的房间里进行实验研究单一口服剂量的β-胡萝卜素之后β-胡萝卜素的摄取特征。
为研究口服单一剂量的β-胡萝卜素的猫的口服β-胡萝卜素摄取,一次经口给猫(n=6/处理)0、10、20或50mg的β-胡萝卜素(10%冷水溶解;BASF公司,Ludwigshafen,德国)。合适剂量的β-胡萝卜素溶于0.61ml水中并用灌喂注射器经口喂给动物。为确定合适的采样时间,先用两只猫作预实验。这些猫一次喂50mg β-胡萝卜素并在0(喂β-胡萝卜素之前即刻)、3、6、10、16、24、30和36小时取血。
离心分离血浆并按前面所描述的用HPLC分析β-胡萝卜素浓度。此实施例的结果在图14中描述并表明一般在给药后10-16小时出现β-胡萝卜素的峰浓度。随后,在给药后0、12、24、30、36、42、48和72小时从其它猫取血。
所有的研究时期中,未补充β-胡萝卜素的猫中未测出β-胡萝卜素的浓度。与之对比的是,给单一口服剂量的猫的血浆β-胡萝卜素一般以剂量依赖方式增加(P<0.01,图14)。喂50mg β-胡萝卜素的猫的浓度最高(P<0.01)。喂10mg或20mg β-胡萝卜素的β-胡萝卜素血浆浓度相似(P>0.01)。观察到,给10mg或20mg β-胡萝卜素的猫峰浓度出现在12小时,而喂50mg β-胡萝卜素的猫的峰浓度出现在24小时。然后到72小时时,所有给予添加剂的动物的浓度下降到不能测出的水平(10mg和20mg组)。然而,在喂50mg β-胡萝卜素的猫中血浆β-胡萝卜素在72小时时仍可测出(高于100μg/ml)。对于喂10或20mg β-胡萝卜素组的猫的血浆β-胡萝卜素半衰期为12-18小时而喂50mg β-胡萝卜素的猫的半衰期约为24小时。实施例6-猫-给重复剂量的血液摄取
此实施例中,每天在0800小时喂给猫(n=6/处理)0、1、2、5或10mg β-胡萝卜素连续喂养6天。在0天(第一次给药之前即刻)及随后在每次给药后12小时(第1到6天)每天取血一次。取血时间的选择根据实施例5得到的结果。分离血浆并分析β-胡萝卜素浓度。
如图15所示,每天给β-胡萝卜素,喂养6天的猫,循环血中β-胡萝卜素出现剂量依赖增加(P<0.01)。喂10mg β-胡萝卜素的猫每天β-胡萝卜素的变化表现出急剧增高。本实施例中,首次给药后12小时,血浆β-胡萝卜素浓度(192±58μg/L)与实施例5观察到的(230±26μg/L,见图14)相似。最后一次给药后,血浆β-胡萝卜素浓度一般比单一剂量之后观察到的高1.5-2倍。
根据本实施例的结果,如继续补充β-胡萝卜素,血浆β-胡萝卜素浓度可继续升高。来自本实施例的结果表明家养的猫可容易地吸收食物β-胡萝卜素。这一发现与先前表明家养的猫不能吸收口服β-胡萝卜素的报导相矛盾。猫不具有必需的将β-胡萝卜素转化为维生素A的小肠酶。一些研究者用其来解释全身循环中出现高浓度的β-胡萝卜素。然而,这种生理差异很不可能与猫的吸收β-胡萝卜素的能力相关,因为即使有小肠β-胡萝卜素裂解酶,猪和啮齿类动物的β-胡萝卜素的浓度很低。因此,本实施例中所表明的猫吸收食物β-胡萝卜素的能力更可能是由于小肠粘膜中存在一种β-胡萝卜素转运机制。实施例7-猫-外周血淋巴细胞的摄取
此实施例研究猫的血淋巴细胞摄取β-胡萝卜素。每天用0、5或10mg的β-胡萝卜素喂猫喂养14天。在血液收集vacutainer设备(BectonPickenson,Franklin Lakes,NJ)的辅助下,在第7和14天从服了镇静剂(每kg体重10mg氯胺酮和0.1mg的乙酰丙嗪)的动物取血。密度梯度离心分离血淋巴细胞和中性粒细胞、细胞计数。淋巴细胞重悬于含3%的抗坏血酸钠作为抗氧化剂的PBS中。超声处理一份细胞悬液30秒以打碎细胞。提取淋巴细胞匀浆用于β-胡萝卜素HPLC分析。因不能得到足够数量的中性粒细胞,因此,定量循环血中中性粒细胞β-胡萝卜素摄取没有得到资料。
更大一份,细胞悬液用于制备亚细胞淋巴细胞组分。在5体积的0.25M蔗糖中超声处理20秒打碎淋巴细胞。加入抗坏血酸钠作为抗氧化剂。离心匀浆(4℃ 600×g 10分钟)并从上清液分离粗的核沉淀物。离心早先得到的核后上清液(4℃,17,300×g,20分钟)以分离线粒体组分。离心线粒体后上清液(4℃,102,000g,60分钟)以从胞质组分分离微粒体。用HPLC分析每种亚细胞组分的β-胡萝卜素含量。
0天时(给β-胡萝卜素添加剂之前),所有猫的外周血淋巴细胞的β-胡萝卜素浓度检测不出(图16)。第7天时,血淋巴细胞表现出β-胡萝卜素的明显摄取(P<0.01),观察到第14天时没有额外的增加。用10mg的β-胡萝卜素添加剂的猫的淋巴细胞中没有更高的β-胡萝卜素的积累。因此,食物β-胡萝卜素的最大摄取出现在第7天并且口服剂量为5mg或更少。
根据外周血淋巴细胞亚细胞组分的分级分离,观察到如图17和18所描述的,在所有细胞成分中都有β-胡萝卜素积累。如图19和20所示,β-胡萝卜素浓度在线粒体中最高(40-52%)、在微粒体中(20-35%)和细胞质(15-34%)中为中等,在细胞核中最低(1.5-6%)。这些淋巴细胞亚细胞成分中相关的β-胡萝卜素的特征一般不受给药剂量或给予添加剂时间长短的影响。然而,与未给予添加剂的对照组相比,给予β-胡萝卜素添加剂的猫的淋巴细胞中细胞核摄取β-胡萝卜素仍很明显。喂10mg β-胡萝卜素的猫(图20)的β-胡萝卜素的浓度不比那些喂5mg的高(图19)。而且,与第7天(图17)相比,第14天(图18)时所有组分中β-胡萝卜素没有额外的积累。
这些结果与整个淋巴细胞的数据整体上一致(图16)表明β-胡萝卜素的最大摄取出现在β-胡萝卜素喂养的第7天并且5mg的β-胡萝卜素口服剂量足够产生淋巴细胞的最大摄取。本实施例中也观察到猫淋巴细胞的β-胡萝卜素的最大摄取出现在第7天,并且线粒体也含有总β-胡萝卜素的最高比例。
这些结果表明,家养Tabby猫能够吸收食物的β-胡萝卜素。而且,循环中β-胡萝卜素明显地被外周血淋巴细胞吸收并且分布于不同的亚细胞细胞器,尤其是线粒体。认为淋巴细胞亚细胞细胞器中的β-胡萝卜素(1)保护淋巴细胞免受氧自由基的攻击和/或(2)直接调控核事件。因此引起β-胡萝卜素存在于重要细胞位置的给家养猫喂养有效量的β-胡萝卜素可导致免疫功能增强和提高这些猫的健康状况。
尽管为说明本发明,已表明了某些有代表性的实施方案和细节,显然,对于本领域的技术人员,在不离开在附加的权利要求书中有所定义的本发明范围情况下,可对在此公开的方法和装置作不同的改变。

Claims (8)

1.一种增强陪伴动物免疫应答和改善其总体健康的方法,包括用含有有效量β-胡萝卜素的食物喂养该动物足以使所述β-胡萝卜素被该动物吸收的一段时间。
2.如权利要求1所述的方法,其中所述食物包含1-50mg/天的β-胡萝卜素。
3.如权利要求1所述的方法,其中所述食物包含每kg食物约6-315mg β-胡萝卜素。
4.如权利要求1所述的方法,其中所述陪伴动物是狗。
5.如权利要求1所述的方法,其中所述陪伴动物是猫。
6.如权利要求1所述的方法,其中所述食物包含约30%天然蛋白、约20%脂肪和约10%食物纤维。
7.一种增高陪伴动物循环血中β-胡萝卜素浓度的方法,包括用含有有效量β-胡萝卜素的食物喂养该动物足以使所述β-胡萝卜素被该动物吸收进入血流的一段时间。
8.一种改善狗的免疫健康的方法,包括用含有有效量β-胡萝卜素的食物喂养该狗足以使所述β-胡萝卜素增强所述狗的细胞介导的免疫应答和体液应答的一段时间。
CNB98804580XA 1997-04-09 1998-04-08 用β-胡萝卜素作为食品添加剂增强动物免疫应答的方法 Expired - Lifetime CN1171584C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4206197P 1997-04-09 1997-04-09
US60/042,061 1997-04-09

Publications (2)

Publication Number Publication Date
CN1253498A true CN1253498A (zh) 2000-05-17
CN1171584C CN1171584C (zh) 2004-10-20

Family

ID=21919839

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB98804580XA Expired - Lifetime CN1171584C (zh) 1997-04-09 1998-04-08 用β-胡萝卜素作为食品添加剂增强动物免疫应答的方法

Country Status (13)

Country Link
US (1) US6133323A (zh)
EP (1) EP0975234A2 (zh)
JP (1) JP2000512859A (zh)
CN (1) CN1171584C (zh)
AR (1) AR012384A1 (zh)
AU (1) AU731097B2 (zh)
BR (1) BR9807953A (zh)
CA (1) CA2285941C (zh)
HK (1) HK1027032A1 (zh)
NZ (1) NZ337942A (zh)
RU (1) RU2180174C2 (zh)
TR (1) TR199902499T2 (zh)
WO (1) WO1998044808A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103053825A (zh) * 2012-05-08 2013-04-24 吉林农业大学 β-胡萝卜素在制备免疫促进剂中的应用
CN103260423A (zh) * 2010-12-20 2013-08-21 希尔氏宠物营养品公司 用于诱导饱食反应的宠物食品组合物
CN103260425A (zh) * 2010-12-23 2013-08-21 希尔氏宠物营养品公司 用于体重减轻与保持的宠物食品组合物和方法
CN103504148A (zh) * 2013-09-03 2014-01-15 秦志红 一种宠物狗饲料
US10449247B2 (en) 2007-10-26 2019-10-22 Avivagen Inc. Compositions and methods for enhancing immune response
US10456369B2 (en) 2009-04-30 2019-10-29 Avivagen Inc. Methods and compositions for improving the health of animals

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563522B2 (en) * 1997-07-08 2013-10-22 The Iams Company Method of maintaining and/or attenuating a decline in quality of life
US20060116330A1 (en) * 1997-07-08 2006-06-01 The Iams Company Methods of mimicking the metabolic effects of caloric restriction by administration of mannoheptulose
US20020035071A1 (en) * 1997-07-08 2002-03-21 Josef Pitha Mimicking the metabolic effects of caloric restriction by administration of glucose antimetabolites
US20030198661A1 (en) * 2000-01-31 2003-10-23 Mars Incorporated Antioxidant compositions and methods for companion animals
GB2367489B (en) * 2000-07-31 2005-02-09 Mars Inc Use of antioxidants
HUP0201437A2 (en) * 1999-05-27 2002-08-28 Iams Company Process and product for enhancing immune response in companion animal using a combination of antioxidants
US6737089B2 (en) 1999-08-27 2004-05-18 Morinda, Inc. Morinda citrifolia (Noni) enhanced animal food product
EG22407A (en) * 2000-02-17 2003-01-29 Iams Company Method for improving bone modeling and chondrocyte functioning in growing canines
US8178150B2 (en) 2000-02-22 2012-05-15 Suzanne Jaffe Stillman Water containing soluble fiber
US7892586B2 (en) 2001-02-22 2011-02-22 Suzanne Jaffe Stillman Water containing soluble fiber
US8642051B2 (en) 2000-03-21 2014-02-04 Suzanne Jaffe Stillman Method of hydration; infusion packet system(s), support member(s), delivery system(s), and method(s); with business model(s) and Method(s)
US8652546B2 (en) 2007-09-06 2014-02-18 Tahitian Noni International, Inc. Morinda citrifolia based formulations for regulating T cell immunomodulation in neonatal stock animals
US20110217394A1 (en) * 2000-12-05 2011-09-08 Brett Justin West Iridoid Based Formulations
US8790727B2 (en) * 2000-12-05 2014-07-29 Tahitian Noni International, Inc. Morinda citrifolia and iridoid based formulations
US7244463B2 (en) * 2005-10-18 2007-07-17 Tahitian Noni International, Inc. Garcinia mangostana L. enhanced animal food product
US20040192761A1 (en) * 2003-03-25 2004-09-30 Palu Afa Kehaati Preventative and treatment effects of morinda citrifolia as an aromatase inhibitor
US20120237626A9 (en) * 2000-12-05 2012-09-20 Palu Afa Kehaati Profiles of lipid proteins and inhibiting HMG-CoA reductase
US6855345B2 (en) * 2001-11-02 2005-02-15 Morinda, Inc. Preventative and treatment effects of Morinda citrifolia on diabetes and its related conditions
US8574642B2 (en) 2000-12-05 2013-11-05 Tahitian Noni International, Inc. Antiviral Morinda citrifolia L. based formulations and methods of administration
US20070196527A1 (en) * 2006-02-23 2007-08-23 Jensen Claude J Preventative and treatment effects of Morinda citrifolia on Osteoarthritis and its related conditions
US7048952B2 (en) * 2002-05-21 2006-05-23 Morinda, Inc. Formulation for inhibiting fungal and microbial growth comprising morinda citrifolia puree juice
JP2005511479A (ja) * 2001-04-17 2005-04-28 モリンダ・インコーポレーテッド モリンダシトリフォリア油および果汁の緩和作用
GB0119052D0 (en) * 2001-08-03 2001-09-26 Mars Uk Ltd Foodstuff
US7442395B2 (en) * 2002-11-14 2008-10-28 Tahitian Noni International, Inc. Formulation for treating candidiasis using Morinda citrifolia
US20110160057A1 (en) * 2001-11-14 2011-06-30 Bryant Wadsworth Morinda Citrifolia Based Antimicrobial Formulations
DE10201420A1 (de) * 2002-01-15 2003-07-24 Basf Ag Strahlungshärtbare Beschichtungen mit verbesserter Haftung
US8519008B2 (en) 2003-01-22 2013-08-27 Purina Animal Nutrition Llc Method and composition for improving the health of young monogastric mammals
US20040151761A1 (en) * 2003-02-05 2004-08-05 The Procter & Gamble Company Methods and compositions utilizing astaxanthin
US20060269630A1 (en) * 2003-04-16 2006-11-30 Palu Afa K Morinda citrifolia as a 5-Lipoxygenase inhibitor
US20050106275A1 (en) * 2003-05-02 2005-05-19 Chen Su Morinda citrifolia-based formulation for inhibiting metastasis of carcinogenic cells
JP4073826B2 (ja) * 2003-06-04 2008-04-09 タヒチアン ノニ インターナショナル インコーポレーテッド ヤエヤマアオキの抽出物を含む農業用活力剤
US20070259060A1 (en) * 2003-08-12 2007-11-08 Mian-Ying Wang Formulations and Methods for Treating Breast Cancer with Morinda Citrifolia and Methylsulfonymethane
US20050152884A1 (en) * 2003-12-19 2005-07-14 The Procter & Gamble Company Canine probiotic Bifidobacteria globosum
US8877178B2 (en) * 2003-12-19 2014-11-04 The Iams Company Methods of use of probiotic bifidobacteria for companion animals
US7785635B1 (en) 2003-12-19 2010-08-31 The Procter & Gamble Company Methods of use of probiotic lactobacilli for companion animals
US20050158294A1 (en) * 2003-12-19 2005-07-21 The Procter & Gamble Company Canine probiotic Bifidobacteria pseudolongum
US8894991B2 (en) * 2003-12-19 2014-11-25 The Iams Company Canine probiotic Lactobacilli
US20050260291A1 (en) * 2004-03-10 2005-11-24 Palu Afa K Methods and compositions for reactivating acetylcholinesterase
US20060088611A1 (en) * 2004-09-01 2006-04-27 Paulus Wang Morinda citrifolia-based formulations and methods for weight management
KR101327590B1 (ko) 2004-09-28 2013-11-12 체마폴, 인코포레이티드. 체중 증가 및 사료 전환을 촉진하는 조성물 및 방법
US20060141076A1 (en) * 2004-11-01 2006-06-29 Palu Afa K Morinda citrifolia based compositions and methods for inhibiting xanthine oxidase
US20090176864A1 (en) * 2004-11-24 2009-07-09 Hill's Pet Nutrition, Inc. Methods For Improving Hepatic and Immune Function In An Animal
CN101107012A (zh) * 2004-11-24 2008-01-16 希尔氏宠物营养品公司 改进动物异生素物质肝清除率的方法
CA2588708C (en) * 2004-11-24 2014-05-27 Hill's Pet Nutrition, Inc. Use of lipoic acid to improve immune response by increased natural killer cell activity
WO2006074089A2 (en) 2004-12-30 2006-07-13 Hill's Pet Nutrition, Inc. Methods for enhancing the quality of life of a senior animal
US8252742B2 (en) 2004-12-30 2012-08-28 Hill's Pet Nutrition, Inc. Methods for enhancing the quality of life of a senior animal
US20060204601A1 (en) * 2005-03-09 2006-09-14 Palu Afa K Formulations and methods for preventing and treating substance abuse and addiction
US20060228448A1 (en) 2005-04-11 2006-10-12 The Iams Company Pet food compositions comprising two components
US20100233312A9 (en) * 2005-04-11 2010-09-16 The Procter & Gamble Company Compositions comprising probiotic and sweetener components
US20060280818A1 (en) * 2005-05-26 2006-12-14 Palu Afa K Nicotinic acetylcholine receptor antagonist
US20070122507A1 (en) * 2005-05-26 2007-05-31 Palu Afa K Histone deacetylase and tumor necrosis factor converting enzyme inhibition
JP4938005B2 (ja) 2005-05-31 2012-05-23 ザ・アイムス・カンパニー ネコ科動物プロバイオティックであるラクトバシラス
JP4938006B2 (ja) * 2005-05-31 2012-05-23 ザ・アイムス・カンパニー ネコ科動物プロバイオティク・ビフィドバクテリア
US20070154579A1 (en) * 2005-11-29 2007-07-05 Palu Afa K Morinda Citrifolia Based Formulation And Methods For Weight Management
US20070237848A1 (en) * 2005-12-21 2007-10-11 Brad Rawson MORINDA CITRIFOLIA BASED COMPOSITIONS FOR TREATMENT OF ANTI-INFLAMMATORY DISEASES THROUGH INHIBITION OF COX-1, COX-2, INTERLEUKIN-1beta, INTERLEUKIN-6, TNF-alpha, HLE, AND iNOS
US20080260906A1 (en) * 2006-03-17 2008-10-23 Marko Stojanovic Compositions comprising probiotic and sweetener components
US20070281903A1 (en) * 2006-05-04 2007-12-06 Palu Afa K Morinda Citrifolia-Based Formulation 5-LOX And 15-LOX
US8025910B2 (en) 2006-05-12 2011-09-27 Tahitian Noni International, Inc. Method and composition for administering bioactive compounds derived from Morinda citrifolia
US8535741B2 (en) 2006-05-12 2013-09-17 Morinda, Inc. Method and composition for administering bioactive compounds derived from Morinda citrifolia
US20080226758A1 (en) * 2006-11-28 2008-09-18 Shixin Deng Lipoxygenase and Cyclooxygenase Inhibition
WO2008093303A2 (en) 2007-02-01 2008-08-07 The Iams Company Method for decreasing inflammation and stress in a mammal using glucose antimetaboltes, avocado or avocado extracts
US20080213415A1 (en) * 2007-02-08 2008-09-04 Palu Afa K Treatment of Glaucoma and Diabetic Retinopathy with Morinda Citrifolia Enhanced Formulations
US20080317890A1 (en) * 2007-06-21 2008-12-25 Claude Jarakae Jensen Method for treating visual impairment through the prophylactic administration of a morinda citrifolia-based naturaceutical
US20090196944A1 (en) * 2008-02-01 2009-08-06 Brad Rawson Methods of Manufacture of Morinda Citrifolia Based Compositions for Treatment of Anti-Inflammatory Diseases through Inhibition of Cox-1, Cox-2, Interleukin -1beta, Interleukin-6, TNF-alpha, HLE, and iNOS
US9771199B2 (en) 2008-07-07 2017-09-26 Mars, Incorporated Probiotic supplement, process for making, and packaging
BRPI0923454A2 (pt) * 2008-12-16 2015-07-28 Hills Pet Nutrition Inc "métodos para intensificar uma capacidade de um animal de estimação resistir ou combater uma infecção viral e para tratar uma infecção viral em um animal de estimação.
US10104903B2 (en) 2009-07-31 2018-10-23 Mars, Incorporated Animal food and its appearance
ES2610829T3 (es) 2009-11-11 2017-05-03 Alimentary Health Limited Cepa de Bifidobacterium
US20110206786A1 (en) * 2010-02-23 2011-08-25 Brett Justin West Acai and Iridoid Based Formulations
US20120115798A1 (en) * 2010-11-04 2012-05-10 Stefan Patrick Massimino Method for improving the immunity of a companion animal
AU2015201811B2 (en) * 2010-12-20 2016-09-29 Hill's Pet Nutrition, Inc. Pet food compositions for inducing a satiety response
JP6027978B2 (ja) * 2010-12-23 2016-11-16 ヒルズ・ペット・ニュートリシャン・インコーポレーテッド 関節炎および関節炎に関連する炎症を治療するためのペットフード組成物および方法
BR112013015487B1 (pt) 2011-01-14 2020-04-22 Mars, Incorporated composição alimentícia para animais de estimação compreendendo carotenóides
RU2668656C2 (ru) 2013-03-13 2018-10-02 Марс, Инкорпорейтед Способ изготовления упакованного корма для домашних животных
US9392814B2 (en) 2014-06-06 2016-07-19 Nicholas J. Singer Delivery system for drinks
CA2975217C (en) 2015-02-13 2023-08-15 Mars, Incorporated Pet food feeding system
USD773313S1 (en) 2015-06-23 2016-12-06 Nicholas J. Singer Package
US11291680B2 (en) 2016-12-15 2022-04-05 Société des Produits Nestlé S.A. Compositions and methods that modulate white blood cells or neutrophils in a companion animal
CA3099923A1 (en) * 2018-06-14 2019-12-19 Mars, Incorporated Composition for supporting animal with cancer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0689834A3 (en) * 1994-07-01 1996-06-05 Willem Jacob Serfontein Food or feed additive that contains vitamins and minerals with delayed release of active ingredients
ZA965149B (en) * 1996-06-18 1997-01-23 Henry John Davis Vitamin and nutrient supplement compositions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10449247B2 (en) 2007-10-26 2019-10-22 Avivagen Inc. Compositions and methods for enhancing immune response
US10456369B2 (en) 2009-04-30 2019-10-29 Avivagen Inc. Methods and compositions for improving the health of animals
CN103260423A (zh) * 2010-12-20 2013-08-21 希尔氏宠物营养品公司 用于诱导饱食反应的宠物食品组合物
CN107095065A (zh) * 2010-12-20 2017-08-29 希尔氏宠物营养品公司 用于诱导饱食反应的宠物食品组合物
US9861116B2 (en) 2010-12-20 2018-01-09 Hill's Pet Nutrition, Inc. Pet food compositions for inducing a satiety response
CN103260425A (zh) * 2010-12-23 2013-08-21 希尔氏宠物营养品公司 用于体重减轻与保持的宠物食品组合物和方法
CN103053825A (zh) * 2012-05-08 2013-04-24 吉林农业大学 β-胡萝卜素在制备免疫促进剂中的应用
CN103053825B (zh) * 2012-05-08 2014-02-26 吉林农业大学 β-胡萝卜素在制备免疫促进剂中的应用
CN103504148A (zh) * 2013-09-03 2014-01-15 秦志红 一种宠物狗饲料

Also Published As

Publication number Publication date
CA2285941C (en) 2004-06-29
US6133323A (en) 2000-10-17
JP2000512859A (ja) 2000-10-03
WO1998044808A3 (en) 1999-01-07
AU731097B2 (en) 2001-03-22
NZ337942A (en) 2002-02-01
EP0975234A2 (en) 2000-02-02
HK1027032A1 (en) 2001-01-05
CN1171584C (zh) 2004-10-20
AR012384A1 (es) 2000-10-18
BR9807953A (pt) 2000-03-08
CA2285941A1 (en) 1998-10-15
WO1998044808A2 (en) 1998-10-15
AU6890698A (en) 1998-10-30
RU2180174C2 (ru) 2002-03-10
TR199902499T2 (xx) 2002-07-22

Similar Documents

Publication Publication Date Title
CN1171584C (zh) 用β-胡萝卜素作为食品添加剂增强动物免疫应答的方法
JP4485074B2 (ja) 酸化防止剤の組み合わせによりコンパニオンアニマルの免疫反応を高めるためのプロセスと生産物
Dawood et al. Effects of heat killed Lactobacillus plantarum (LP20) supplemental diets on growth performance, stress resistance and immune response of red sea bream, Pagrus major
Kim et al. Dietary lutein stimulates immune response in the canine
Abdel-Tawwab Interactive effects of dietary protein and live bakery yeast, Saccharomyces cerevisiae on growth performance of Nile tilapia, Oreochromis niloticus (L.) fry and their challenge against Aeromonas hydrophila infection
Baba et al. Effects of feed supplemented with Lentinula edodes mushroom extract on the immune response of rainbow trout, Oncorhynchus mykiss, and disease resistance against Lactococcus garvieae
US20170014356A1 (en) Methods of enhancing immunity in a companion animal
Pongpet et al. Partial replacement of fishmeal by brewer's yeast (Saccharomyces cerevisiae) in the diets of Thai Panga (Pangasianodon hypophthalmus× Pangasius bocourti)
Cho et al. Effects of dietary Scutellaria baicalensis extract on growth, feed utilization and challenge test of olive flounder (Paralichthys olivaceus)
Díaz‐Rosales et al. Effect of dietary administration of Porphyridium cruentum on the respiratory burst activity of sole, Solea senegalensis (Kaup), phagocytes
Zomborszky-Kovács et al. Effect of beta-carotene and nucleotide base supplementation on blood composition and immune response in weaned pigs
Pothiraj et al. Disease Management and Prophylaxis by Immunostimulants
Cuesta et al. Tumouricidal activity of gilthead seabream (Sparus aurata L.) natural cytotoxic cells: the role played in vitro and in vivo by retinol acetate
Hoseini et al. Evaluation of C-phycocyanin Effects with Drug Purity on the Immune System through Its Effect on Interferon-gamma (INF-γ)
Goddeeris et al. The porcine and avian intestinal immune system and its nutritional modulation
Yoo et al. Immunostimulatory effects of an anionic alkali mineral complex solution (Barodon®) on porcine lymphocytes
Salem et al. Nannochloropsis oculata supplementation improves growth, immune response, intestinal integrity, and disease resistance of Nile Tilapia
AU2008202253B2 (en) Methods and compositions utilizing astaxanthin
Lumsangkul et al. Effect of Dietary Sugarcane Bagasse Supplementation on Growth Performance, Immune Response, and Immune and Antioxidant-Related Gene Expressions of Nile Tilapia (Oreochromis niloticus) Cultured under Biofloc System. Animals 2021, 11, 2035
Chew The basics of carotenoid activity and their action on the immune system.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151019

Address after: Virginia

Patentee after: Mars, Inc.

Address before: American Ohio

Patentee before: The IAMS Co.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20041020