CN1202019C - Waste brick application in waste water treatment - Google Patents
Waste brick application in waste water treatment Download PDFInfo
- Publication number
- CN1202019C CN1202019C CNB031003966A CN03100396A CN1202019C CN 1202019 C CN1202019 C CN 1202019C CN B031003966 A CNB031003966 A CN B031003966A CN 03100396 A CN03100396 A CN 03100396A CN 1202019 C CN1202019 C CN 1202019C
- Authority
- CN
- China
- Prior art keywords
- phosphorus
- wastewater treatment
- waste
- adsorbing
- wastewater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004065 wastewater treatment Methods 0.000 title claims abstract description 20
- 239000011449 brick Substances 0.000 title claims abstract description 16
- 239000002699 waste material Substances 0.000 title abstract description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 38
- 239000011574 phosphorus Substances 0.000 claims abstract description 38
- 239000012634 fragment Substances 0.000 claims description 12
- 239000003463 adsorbent Substances 0.000 claims description 7
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 2
- 239000004927 clay Substances 0.000 claims description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 150000004760 silicates Chemical class 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 19
- 238000010521 absorption reaction Methods 0.000 abstract description 15
- 239000002351 wastewater Substances 0.000 abstract description 15
- 229910021536 Zeolite Inorganic materials 0.000 abstract description 5
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 abstract description 5
- 239000010457 zeolite Substances 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 3
- 239000002893 slag Substances 0.000 abstract description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- 239000003795 chemical substances by application Substances 0.000 abstract 6
- 239000000945 filler Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 17
- 239000002594 sorbent Substances 0.000 description 15
- 230000008569 process Effects 0.000 description 13
- 239000002245 particle Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000000274 adsorptive effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- -1 phosphate anion Chemical class 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012851 eutrophication Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 238000009388 chemical precipitation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000003016 phosphoric acids Chemical class 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 239000005422 algal bloom Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- HIGRAKVNKLCVCA-UHFFFAOYSA-N alumine Chemical compound C1=CC=[Al]C=C1 HIGRAKVNKLCVCA-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910001569 aluminium mineral Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 159000000013 aluminium salts Chemical class 0.000 description 1
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001458 anti-acid effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000010786 composite waste Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000050 nutritive effect Effects 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
The present invention relates to the application of waste bricks for wastewater treatment, which belongs to the technical field of wastewater treatment. The present invention utilizes waste bricks of a building site to be mechanically crushed into granular adsorbing agents with a certain extent, and the granular adsorbing agents have the functions of filling materials of a bioreactor for biological wastewater treatment. The granular adsorbing agents can be used for adsorbing and removing harmful elements of phosphorus, etc. in wastewater, and the maximum adsorption quantity of the adsorbing agents for the phosphorus is respectively more than 80 times and more than 20 times as much as the maximum adsorption quantity of the general adsorbing agent zeolite and the traditional active aluminum oxide of furnace slag for the wastewater treatment. The adsorbing agents of the present invention have the advantages of large absorption capacity, simple preparation, low cost, full utilization of waste resources, wide range of application of the wastewater, etc.
Description
Technical field
The invention belongs to technical field of waste water processing, particularly a kind of Cheap highly effective is removed the wastewater treatment sorbent material and the filler of body eutrophication pollutent such as phosphorus in the waste water.
Background technology
Along with the industrial and agricultural production urbanization that develops rapidly and live, the sanitary wastewater, trade effluent and the farmland rainwash that contain nutritive substances such as higher concentration nitrogen, phosphorus import lake, reservoir and river, and in water body, accumulate, stimulate algal bloom in the water body, cause in the fresh water water body that promptly common alleged body eutrophication takes place " red tide " in " wawter bloom " and seawater.The standard that American National Environmental Protection Agency (EPA) divides body eutrophication is exactly that total phosphorus concentration is greater than 0.02mg/L.The ground water environment quality standard of China's regulation is that total phosphorus concentration is less than 0.1mg/L (GB3838-88).Therefore remove in the water body pollutent particularly the phosphorus in the waste water have great importance to preventing body eutrophication.
Usually the method for removing phosphorus in the water body has biological process, chemical method and absorption method.Biological phosphate-eliminating is meant that generally the dephosphorization bacterial that utilizes in the active sludge can this process of huge uptake phosphorus in aerobic environment.But in case be in anaerobic state, dephosphorization bacterial will discharge the excessive phosphorus in the cell, so the dephosphorization instability, and exists the phosphorus containing sludge disposal concerns.Chemical dephosphorization is meant by adding chemical agents such as calcium salt, molysite or aluminium salt and forms the insoluble phosphate precipitation, by solid-liquid separation the phosphorus in the waste water removed then.There is also the working cost height, control condition complexity, operation shortcoming such as loaded down with trivial details.
Sorbent material can be divided into three types to the absorption of phosphorus: physical adsorption, chemical precipitation and physical and chemical adsorption.Physical adsorption is meant: phosphoric acid salt is a kind of more difficult dissociated compound, might be subjected to the absorption of solid surface energy, and relatively concentrate on the interface of solid-liquid phase.This absorption generally is reversible, and free energy is lower, discharges than being easier to.Chemical precipitation is: positively charged ions such as calcium, magnesium, iron, aluminium can produce the very little compound of solubleness with phosphoric acid salt.Therefore, phosphate anion easily produces chemisorption and is fixed.The chemisorption reversibility is little, is adsorbed to form the very difficult release in back.Physical and chemical adsorption is: since solid phase surface with negatively charged ion, make the phosphate radical anion in the solution be attracted to solid phase surface by ion-exchange.The energy variation of this absorption is between physical adsorption and chemisorption.The phosphate ion of absorption can be other ion and replaces out.
The sorbent material of iron content, aluminum compound to the absorption of phosphorus and fixing mainly be chemical precipitation, physical adsorption and machinery close and hold.Ferric oxide, aluminium mineral can also adsorb phosphoric acid from the teeth outwards except by precipitation and exchange absorption and the phosphorus effect.It is when ironic hydroxide or alumine hydroxide colloid cohesion that machinery closes the effect of holding, and the phosphoric acid in the solution is closed hold in gelinite, or be wrapped in calcium phosphate precipitation or other phosphorous solid surface, reduces its solubleness.Three kinds of modes that iron, aluminum oxide adsorb phosphorus, simultaneous often.
Adopt absorption method to phosphorus adsorb remove have simple to operate, with low cost, be convenient to reclaim advantages such as useful resources, sorbent material can be recycled.The general phosphorus adsorbent that uses mainly comprises activated alumina, natural materials (as red soil, flying dust etc.) and synthetic sorbent material (as gac).A common weak point of the sorbent material of known natural and simple modification is that adsorptive capacity is all on the low side, though and the high-performance water treatment absorbent loading capacity height of synthetic exploitation, cost costliness, and can not being applied directly in the composite waste of high density.
Filler has a wide range of applications in the wastewater treatment, bio membrane processes such as the biological contact oxidation process during trade effluent, sanitary wastewater are handled, biological fluidized bed, BAF, it is a kind of high-efficiency wastewater treatment, and filler is the core of this technology, no matter be that filler all plays an important role in aerobic, double oxygen or the anaerobic process.Along with increasing the weight of day by day of pollution of waterhead, in the biological pre-treatment process of feedwater micro-polluted raw, filler has also been brought into play important performance.
Trade effluent, sanitary wastewater are handled in the biomembrance process wastewater treatment, and filler plays fixed biomembranous effect, is the core of membrane process craft, and the success or failure of technology have direct relation with the filler of selecting for use.When generally selecting filler for use, take all factors into consideration following some: 1. surface irregularity, the hole prosperity, suitable microorganism grows within it; 2. microorganism colonization is fast, the aging microbial film stability that easily comes off 3., require filler can be antiacid, alkali resistant, resistance to oxidation, readily biodegradable is difficult for aging etc.; 4. installation and maintenance are convenient; 5. light weight, physical strength is big; 6. low price, wide material sources etc.Select appropriate filler, can shorten the reaction times of technology, improve operating performance and operation stability etc.Filler commonly used in these technologies has, as biological ceramic particle, gac, zeolite, diatom scholar, quartz sand, oyster shell and some artificial synthetic inorganic light weight carriers, the characteristics of these fillers are need not the installation work of above-mentioned filler, only need be positioned in the treatment unit during application and get final product, easy to use, and change simple, therefore having reduced installation and operation management workload, is the development trend of filler from now on.This filler of many uses in the biomembrance process waste water treatment process, but these fillers generally do not have the function of absorb polluted matter in wastewater treatment, minority has the filler of outstanding absorption property, as gac, and but price very high (as 1000~3000 yuan/ton of gacs); To the well behaved zeolite of ammonia nitrogen absorption in the waste water (but it is to phosphorus weak effect), price is also wanted 400~600 yuan/ton.
Summary of the invention
One of purpose of the present invention provides a kind of phosphorus adsorbent that is used for wastewater treatment.
Another object of the present invention provides a kind of filler that is used in the biomembrance process wastewater treatment.
Technical scheme of the present invention is as follows:
Utilize useless fragment of brick as the application of phosphorus adsorbent in wastewater treatment and the application that utilizes useless fragment of brick filler in the biomembrance process wastewater treatment.
Described fragment of brick is the discarded queen closer in construction site, and the main raw material of this fragment of brick is a clay by analysis, is rich in iron, and composition is silicates, mineral such as oxide-based, sulfide-based.This fragment of brick after to a certain degree Mechanical Crushing becomes particle diameter to be the particle of 0.3~5cm, is used for the adsorption treatment of the phosphorus of waste water.By repeatedly test, show that this sorbent material compares with wastewater treatment sorbent material commonly used the absorption of phosphorus in the waste water, adsorptive capacity obviously increases, and rate of adsorption is obviously accelerated.
It has loading capacity height, preparation simple, with low cost, make full use of advantages such as waste resource, appropriate pH scope be wide.
The prepared queen closer of the present invention has the function that is equipped with filler in the biomembrance process waste water treatment process concurrently.It is the particle of 0.3~5cm that this useless fragment of brick is become particle diameter through Mechanical Crushing to a certain degree, useless brick structure after the fragmentation is loose, surface irregularity, porosity is big, hydraulic conductivity can be good, therefore it also can be used as the filler of a kind of excellent property of bio-reactor in the wastewater treatment (as artificial swamp, biological fluidized bed and BAF), has the function of microbe carrier and phosphorus adsorbent concurrently.After measured, broken back particle diameter is the useless fragment of brick of 0.3~5cm, and porosity is 0.5~0.75, and fluid conductivity is 1 * 10
3Mm/s~1 * 10
4Mm/s.Its Costco Wholesale is also very cheap in addition.
Embodiment
Embodiment 1
With particle diameter the phosphorus in the fragment of brick absorption phosphorus-containing wastewater of 0.3~5cm.In temperature is to carry out adsorption experiment under the condition that 25 ℃, initial pH are 7, initial phosphorus concentration is 100mg/L.Phosphorus concentration when adsorption equilibrium is under the condition of 0.18mg/L, and the sorbent material balance phosphorus adsorptive capacity that records reaches the 1.78mg-P/g-sorbent material, for the control group slag at more than 19 times of the adsorptive capacity 0.09mg-P/g under the similarity condition.
Embodiment 2
With the phosphorus in this adsorbents adsorb waste water, be to carry out adsorption experiment under the condition that 25 ℃, initial pH are 7, initial phosphorus concentration is 80mg/L in temperature.Phosphorus concentration when adsorption equilibrium is under the condition of 0.06mg/L, and the sorbent material balance phosphorus adsorptive capacity that records reaches the 1.19mg-P/g-sorbent material.For control group zeolite and haydite at more than 50 times and 3 times of the adsorptive capacity 0.021mg-P/g under the similarity condition and 0.39.
Embodiment 3
Being the phosphorus in this adsorbents adsorb waste water of 0.3~5cm with particle diameter, is to carry out adsorption experiment under the condition that 20 ℃, initial pH are 7, initial phosphorus concentration is 75mg/L in temperature.The concentration of per 30 minutes sampling and measuring phosphorus.Reach balance through absorption in 9 hours, its saturated adsorption capacity is the 0.91mg-P/g-sorbent material.
Embodiment 4
The fragment of brick that to get 7 parts of particle diameters be 0.3~5cm adds certain volume KH then respectively
2PO
4-CaCl
2Solution makes that its initial phosphorus concentration is respectively 3,5,10,20,40,80,100mg/L.On 25 ℃ of constant temperature shaking tables, shook 24 hours.According to the adsorption isotherm line of balance, the fragment of brick maximum adsorption capacity that calculates is the 2.50mg-P/g-sorbent material, and the maximum adsorption capacity of control group zeolite, slag and haydite only is 0.03,0.12 and the 0.96mg-P/g-sorbent material.
Claims (1)
1. be main raw material with the clay, composition is the application as phosphorus adsorbent in wastewater treatment of the useless fragment of brick of silicates, metal oxide-type and sulfide-based mineral.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031003966A CN1202019C (en) | 2003-01-17 | 2003-01-17 | Waste brick application in waste water treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031003966A CN1202019C (en) | 2003-01-17 | 2003-01-17 | Waste brick application in waste water treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1424260A CN1424260A (en) | 2003-06-18 |
CN1202019C true CN1202019C (en) | 2005-05-18 |
Family
ID=4789816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031003966A Expired - Fee Related CN1202019C (en) | 2003-01-17 | 2003-01-17 | Waste brick application in waste water treatment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1202019C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101948164A (en) * | 2010-09-13 | 2011-01-19 | 中国水产科学研究院黄海水产研究所 | Biological membrane quick-constructing method used in seawater factory breeding cycle water purification system |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102351565A (en) * | 2011-09-27 | 2012-02-15 | 环境保护部南京环境科学研究所 | Method for preparing water treatment phosphorus accumulation filler by sintering with household garbage incineration residues |
CN102531093A (en) * | 2012-01-17 | 2012-07-04 | 中国科学院水生生物研究所 | Method for removing phosphorus by utilizing waste bricks |
CN103304033A (en) * | 2012-03-15 | 2013-09-18 | 中国科学院城市环境研究所 | Artificial wetland system taking oyster shell-waste brick-zeolite as composite filler |
CN105880252A (en) * | 2014-05-08 | 2016-08-24 | 江苏常环环境科技有限公司 | Method for preparing constructed wetland padding from discarded red brick blocks and steel slag |
CN103977636A (en) * | 2014-05-08 | 2014-08-13 | 常州大学 | Method for preparing water treatment filter material from waste red brick block |
CN103978009A (en) * | 2014-05-08 | 2014-08-13 | 常州大学 | Method for preparing artificial wetland matrix material by using powdered waste red brick block |
CN105110591B (en) * | 2015-10-10 | 2017-08-25 | 宁波市海洋与渔业研究院 | A kind of cultivating pool substrate modifier |
CN105836898B (en) * | 2016-05-27 | 2020-05-01 | 盛世生态环境股份有限公司 | Artificial wetland composite substrate containing modified waste bricks and preparation method thereof |
CN106277640A (en) * | 2016-09-21 | 2017-01-04 | 东莞市联洲知识产权运营管理有限公司 | A kind of low-temperature denitrification phosphorous removal method of low-carbon-source sewage |
CN108889267B (en) * | 2018-07-15 | 2021-08-06 | 南京信息工程大学 | Method for removing phosphorus in water by using modified waste red bricks |
CN109731544A (en) * | 2019-01-30 | 2019-05-10 | 中国矿业大学 | A kind of red mud-clinker-cementitious composite dephosphorization agent preparation method |
CN109851167B (en) * | 2019-01-31 | 2020-12-11 | 华南农业大学 | Biological trickling filter, high-load biological trickling filter combined landscape filter bed system and process |
CN110228972A (en) * | 2019-06-13 | 2019-09-13 | 湖南鑫恒环境科技有限公司 | A kind of leachate processing method containing heavy metal waste |
CN111807552A (en) * | 2020-07-20 | 2020-10-23 | 西南科技大学 | Method for treating inorganic phosphorus-containing wastewater |
CN113058578A (en) * | 2021-04-07 | 2021-07-02 | 上海应用技术大学 | Ammonia nitrogen adsorbent and preparation method and application thereof |
CN115155512A (en) * | 2022-06-21 | 2022-10-11 | 上海应用技术大学 | Preparation and degradation method of tetracycline adsorbent |
-
2003
- 2003-01-17 CN CNB031003966A patent/CN1202019C/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101948164A (en) * | 2010-09-13 | 2011-01-19 | 中国水产科学研究院黄海水产研究所 | Biological membrane quick-constructing method used in seawater factory breeding cycle water purification system |
Also Published As
Publication number | Publication date |
---|---|
CN1424260A (en) | 2003-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1202019C (en) | Waste brick application in waste water treatment | |
Yang et al. | Selection and optimization of the substrate in constructed wetland: A review | |
US11339074B2 (en) | Highly effective in situ treatment method for endogenous pollution in sludge | |
De Philippis et al. | Assessment of the metal removal capability of two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936 | |
CN103449559A (en) | Method and application for using building abandoned cement brick as dephosphorization filler | |
CN102430398A (en) | Composite type mercury ion adsorbent and preparation method thereof | |
CN102485663A (en) | Constructed wetland composite filling material for water treatment and preparation method thereof | |
CN102115234A (en) | Preparation method of flocculant capable of removing phosphate from red mud | |
CN109206148B (en) | Preparation method and application of ceramsite | |
JP7174967B2 (en) | phosphorus adsorbent | |
Wang et al. | Membrane fouling and performance of anaerobic ceramic membrane bioreactor treating phenol-and quinoline-containing wastewater: granular activated carbon vs polyaluminum chloride | |
Cydzik-Kwiatkowska et al. | Efficient dewatering of polymer-rich aerobic granular sludge with cationic polymer containing hydrocarbons | |
CN113860497A (en) | Urban and municipal sewage nitrogen and phosphorus removal filler and preparation method thereof | |
Kamarzamann et al. | Hydroxyapatite/Dolomite alkaline activated material reaction in the formation of low temperature sintered ceramic as adsorbent materials | |
CN101653719A (en) | Method for in-situ pillared modification of bentonite and algal-removing water purifying agent | |
CN101734746B (en) | Method for adsorbing and removing phycobiliprotein and microcystin-LR by modified attapulgite | |
Liu et al. | Effects of modified sediments from a eutrophic lake in removing phosphorus and inhibiting phosphatase activity | |
CN113880383A (en) | Polluted water body sediment remediation method | |
CN103723831A (en) | Application of forsterite as phosphorus-removing substrate material | |
CN117263388A (en) | Low-cost baffling type efficient denitrification and dephosphorization wetland combined matrix system | |
CN111514861A (en) | Preparation method and application of tridentate ligand heavy metal ion imprinting material | |
CN111847814A (en) | Black and odorous water body sediment in-situ repair material based on oyster shells and repair method thereof | |
CN106732469A (en) | A kind of preparation method of magnetic absorption dephosphorization agent and its renovation process of product | |
CN106365319A (en) | Artificial wetland matrix combination filling method | |
CN100413789C (en) | Compound filling for sewage treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |