CN1201959A - 冷却器压缩机电机过热的预测 - Google Patents

冷却器压缩机电机过热的预测 Download PDF

Info

Publication number
CN1201959A
CN1201959A CN98109564A CN98109564A CN1201959A CN 1201959 A CN1201959 A CN 1201959A CN 98109564 A CN98109564 A CN 98109564A CN 98109564 A CN98109564 A CN 98109564A CN 1201959 A CN1201959 A CN 1201959A
Authority
CN
China
Prior art keywords
refrigeratory
refrigerant
output valve
state
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98109564A
Other languages
English (en)
Other versions
CN1098512C (zh
Inventor
谢拉尤·图珀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of CN1201959A publication Critical patent/CN1201959A/zh
Application granted granted Critical
Publication of CN1098512C publication Critical patent/CN1098512C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0254Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Feedback Control In General (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本发明的目的是为了在机器失效之前启动服务而检测冷却器的性能下降,以此推断是否会发生失效;预测是否需要冷却器服务从而可以随时而不是在紧急情况下启动服务;提供持续的冷却器运行。本发明的预测原理部分基于冷却器的低阶线性状态空间热力学模型,该模型由基于非线性代数微分方程的精确热力学数学模型推演而得,它精确地表征了压缩机电机过热状态。

Description

冷却器压缩机电机过热的预测
本发明涉及对冷却器系统热力运行状态的监视以提供冷却器异常运行的前期预警信息,该信息可以指示出压缩机电机的过热状态。
众所周知,冷却器提供了冷却水,并且期望提供有成本效率的不中断服务。冷却器传统上具备安全功能,包括采用内带诊断能力的控制器,以避免其在不良状态下运行。但是诊断通常只能检测到某些超出异常设计值的冷却器运行状态,并据此关闭冷却器和显示相关的报警代码。在报警之前系统没有任何先兆指示,所以当压缩机性能开始下降引起电机发热后,需要较长的一段时间才能察觉。到报警时,由于系统关闭,所以为时已晚,此外,电机可能已经严重损坏,需要大修。
本发明的目标包括:为了在机器失效之前启动服务而检测冷却器的性能下降,以此推断是否会发生失效;预测是否需要冷却器服务从而可以随时而不是在紧急情况下启动服务;提供持续的冷却器运行。
本发明的预测原理部分基于冷却器的低阶线性状态空间热力学模型,该模型由基于非线性代数微分方程的精确热力学数学模型推演而得,它精确地表征了压缩机电机过热状态。
本发明的预测原理还利用了基于冷却器热力学低阶模型的Kalman滤波器,以在在线运行期间提供冷却器的状态和输出,它们又被用来检测即将出现的压缩机电机过热。
按照本发明,冷却器的在线监视的实现方式为,监视输入(或原因)参数和可测输出(或结果)参数,并使参数通过基于冷却器热力学低阶状态空间表示或模型的Kalman滤波器。按照本发明,低阶模型的实现方式为,对大量样本进行计算机高阶模型输入随机激励处理,并对高维模型确定的最终输出和状态进行线性回归技术处理,以导出低阶状态空间模型的矩阵系数。输入可以是实际冷却器正常情况下的典型输入,并且可以限制随机变化,例如在实际冷却器输入额定值的99%~100%之间。
通过以下结合附图对实施例的描述,可以更好地理解本发明的其它目标、特征和优点。
图1为按照本发明方式监视的冷却器的示意图。
图2为本发明用于特定冷却器的实施例中数据获取部分所用装置的示意图。
图3为线性回归处理期间所用装置的简化示意图。
图4为按照本发明的方式在线监视冷却器时采用的装置的简化示意图。
图5为图4所示在线监视期间的流程图。
图6为报警逻辑程序的逻辑流程图。
参见图1,按照本发明的带传感器的冷却器12包括经管道14向冷凝器15提供高压致冷气体的压缩机13。液态致冷剂经流体管16道从冷凝器流动到扩张阀17,扩张阀的输出通过流体管道18到达蒸发器19,随后致冷剂气体通过流体管道20到达压缩机13。阀门17受控以响应步进电机或其它阀门控制装置24的控制,而这些控制装置又受到控制器26经线路25提供的信号的控制。线路25上的信号取决于管道20内蒸汽的过热状态,通常通过计算蒸发器19出口处温度(由温度传感器27检测)与压缩机13入口处致冷剂蒸汽温度(由温度传感器28检测)之差得到。温度传感器32检测的蒸发器19出口31处水温被控制器26用来开启和关闭压缩机从而将水温保持在设定点上。由冷凝器入口压力(由压力检测器34检测)与冷凝器出口压力(由压力检测器35检测)之差决定的冷凝器压力差被控制器用来在线路36上提供信号,以适时地开启和关闭风扇组37。上述所有装置与普通的冷却器相近,并且可以按照普通的方式实现和控制。
按照本发明,一种基于非线性代数和微分方程的精确数学模型(描述了冷却器的流体、压力和温度动态学)能够精确地表征本发明试图预测的压缩机电机的过热状态。对于往复式压缩机,所用模型与下列所述的任一种相似:
1)Clark,D.R.and W.B.May(1985),HVACSIM+Building System andEquipment Simulation Program-User’s Manual,U.S.Department of Commerce,National Bureau of Standards,NBSIR 85-3243.
2)Clark,D.R.(1985),HVACSIM+Building System and EquipmentSimulation Program-Reference Manual,U.S.Department of Commerce,National Bureau of Standards,NBSIR 84-2996.
3)Clark,D.R.,C.Park and G.E.Kelly(1986),HVACSIM+Building Systemand Equipment Simulation Program-Building Loads Calculation,U.S.Department of Commerce,National Bureau of Standards,NBSIR 86-3331.
对于采用离心式压缩机的冷却器,所用模型与下列所述的相似:
4)Nadira,R.and I.Schick,Modeling and Simulation of an HVACSIMRefrigeration System,Simulators IV,Proceedings of the SCS SimulatorsConference,April 6-9,1987,Orlando,Fla,Vol.18,No.4.
5)Clark,D.R.(1985b),Centrifugal Chiller Model:PreliminaryDocumentation,U.S.Department of Commerce,National Bureau of Standards,Not Released.
该模型被可变输入连续激励(在计算机程序内)以生成大量的数据集。例如,通过观察冷却器系统样机的响应来确定,该系统的参数响应频率在0.005 Hz与0.33 Hz之间。将时钟(采样速率)被选定为2倍最高频率的倒数,即等于每隔1.52秒采样一次。为了捕捉到最慢的响应,采样周期间隔选定为最低响应频率的倒数,即204秒,结果该周期采样134次。每个样本利用表1所示的三个输入U1-U3的激励。
表1
输入                  状态                    输出U1蒸发器入水温度      X1冷凝器中致冷剂的焓    Y1蒸发器出水温度U2冷凝器空进入气温度  X2冷凝器中致冷剂的质量  Y2冷却器放出空气温度U3扩张阀位置          X3蒸发器中致冷剂的焓    Y3压缩机排气压力
                   X4蒸发器中致冷剂的质量  Y4压缩机吸气压力
                   X5冷凝器中空气的焓      Y5压缩机吸气温度
                   X6冷凝器中致冷剂饱和温度Y6过热温度
                   X7蒸发器中水的焓        Y7冷凝器中致冷剂进入
                                               温度
                   X8蒸发器中致冷剂饱和温度Y8冷凝器中致冷剂离开
                                               温度
                   X9压缩机效率            Y9蒸发器中致冷剂进入
                                               温度
每个输入包括数值取为特定冷却器额定或典型值的信号,该数值在每次采样周期内上升或降低一个百分点。每个信号的增大或减小又响应于伪随机数序列,从而使每次输入基本上按照随机方式变化,并且输入的组合也基本上以随机方式变化。在每次采样期间,记录下表1所示所有的输入U、状态X和输出Y。即,对于每次采样,记录下21项数据。这些数据被存储起来以作下列用途。与此同时,或者随后,根据同一计算机或者另一计算机内存储的数据来计算每对数值X和Y的标准偏差以用来确定误差阈值,该阈值在识别预测电机过热时比较重要,所有这些将在下面讨论。
建立Kalman滤波器的过程可以概括为如下步骤:
1.按一组非线性代数微分方程建立描述冷却器热力学过程的计算机模型。
2.选择受到电机过热状态影响的输入、状态和输出参数。
3.在每个选定输入上用随机信号激励冷却器模型;存储随之选定的状态和输出参数数据。(图2)
4.利用线性回归方程处理存储数据以拟合冷却器状态派生值与冷却器输出,从而确定模型矩阵数值;利用存储的数据将误差阈值定义为±3标准偏差。(图3)
5.利用步骤4中得到的矩阵值建立包含9次线性方程组的模型。
6.根据状态空间模型建立Kalman滤波器。
参见图2,获取大量样本的步骤利用了信号发生器42,该发生器包括伪随机二进制序列发生器和驱动器,以响应伪随机二进制序列,生成U1-U3的±1%的输入。这些信号经信号线路43提供给包含高次热力学模型的计算机44。由线路43上的输入激励的模型对每个连续输入生成数值X和Y(表1),它们与相应的输入U一起经合适的总线提供给存储器46。
如图3所示,数值U、X和Y所有134个样本,共计2814个数据从存储器46提供给计算机44,在那里平均值被从数据中去除,并且利用递归最小平方估值线性回归拟合数据以导出9阶状态空间模型的矩阵系数值。显示器上显示的矩阵值随后被用来生成如下表示的线性9阶冷却器模型:
X(k+1)=AX(k)+BU(k)+W(k)    (1)
Y(k)=CX(k)+DU(k)+V(k)      (2)
式中,A、B、C和D为过渡矩阵,而W(k)和V(k)分别为协方差Qk和Rk的零平均值白噪声高斯序列。递归最小估值程序可以参见
6)Soderstorm,T.,and P.Stoica,System Identification,Prentice Hall Inc.,New York,N.Y.,1989,Chapter 9,pp.324,349-350.
7)Dexter,A.L.,et al,Self-tuining Control Algorithm for Single-chipMicrocomputer Implementation,IEE Proceedings,Vol.130,No.5,September1983,pp.255-260.
8)Franklin,G.F.,and D.Powell,Digital Control of Dynamic System,Addison Wesley,Reading,MA,1980,pp.210-215.
一旦从高阶冷却器热力学模型(图2和3)生成的数据导出状态空间模型以后,就可以基于这种降阶状态空间表示以普通的方式建立Kalman滤波器,参见
9)Gelb,A.,Editor,Applied Optimal Estimation,M.I.T.Press,1980,Chapters3 and 4.
参见图4,在图1的冷却器运行的同时,现场在线计算机48(一般不是图2和3中的计算机)监视线路49上的输入U1-U3和输出Y1-Y3,并利用Kalman滤波器技术对特定采样时刻k检测的实际数值U和Y,预测下一采样时刻k+1的输出和状态的值。
显而易见,每次采样时,在对冷却器输出进行滤波以对状态和输出作出预测之前Kalman滤波器本身已经被更新。检测到输出首先被用来更新Kalman滤波器方程,随后输入和输出值通过更新过的Kalman滤波器方程以计算预测的状态(X)和输出(Y)。
初始状态估值为X(0)=O,并且初始状态估值误差协方差矩阵为P(0)=O,这些都在启动时的初始化阶段完成。在滤波器中,每一采样时刻k时状态估值利用下式更新: X ∩ ( k | k ) = X ∩ ( k | k - 1 ) + K ( k ) { y ( k ) - C X ∩ ( k | k - 1 ) } - - - ( 3 ) 式中,
Figure A9810956400082
为时刻k时根据直到时刻k-1为止的测量得到的滤波器状态估值。采样k的间隔为三分钟左右。更新的Kalman增益矩阵K计算如下:
K(k)=P(k|k-1)CT[CP(k|k-1)CT+Rk]-1    (4)
式中,P(.|.)为满足下列关系的状态估值误差协方差矩阵:
P(k|k-1)=AP(k-1|k-1)AT+Qk-1    (5)
P(k|k)=[I-CK(k)]P(k|k-1)    (6)
式中,T表示转置矩阵。
在进行k+1时刻的下一次测量之前,利用状态动态方程使状态估值向前延伸一步: X ∩ ( k + 1 | k ) = A X ∩ ( k | k ) + BU ( k ) - - - ( 7 )
这随后被用作下次采样的方程(1)中的
Figure A9810956400092
在每次采样时的Kalman滤波器更新之后,来自冷却器的已知输入U和传感器信号Y经过Kalman滤波器处理以生成冷却器状态 的优化估值和传感器测量预测值
Figure A9810956400094
。将
Figure A9810956400095
从实际测量值Y中减去后生成误差信号矢量e,该矢量被用于作失效判断。对于Kalman滤波器,e(k)=Y(k)-CX(k|k-1)。因此误差信号e(k)为协方差矩阵下的零平均值白噪声。
图5示出了在线监视期间计算机48内每次采用周期期间进行的处理。当监视系统为第一输入在线时,将进行初始化(块51),包括上述的初始化状态估值和初始化状态估值误差协方差矩阵。在每次3分钟左右的采样期间,如同方程(3)那样更新状态估值(块52)。接着,如同在方程(4)-(6)中那样,计算Kalman增益矩阵(块53),更新状态估值误差协方差矩阵并将其传送给下一次采样时刻。如同在方程(7)中那样,利用状态动态方程将状态估值传递到下一采样时刻(块54)。在Kalman滤波器更新之后,线路49上的输入传感器信号U1-U3和线路50上的输出传感器信号Y1-Y9被提供给Kalman滤波器(块55)。Kalman滤波器产生冷却器状态优化估值
Figure A9810956400096
和传感器测量预测
Figure A9810956400097
。传感器测量预测
Figure A9810956400098
与实际的电流传感器测量Y比较,而冷却器状态估值X与传递的冷却器状态前一估值比较(块56),以生成误差信号。误差信号与相应的阈值比较(块57),在本实施例中被取为±3标准偏差,并且如同6所示,在报警逻辑程序中检测是否超过阈值(块58),以确定这种超过阈值是否预示压缩机电机过热状态的到来。
图6逻辑程序的入口点为62,并且测试63-65要求数值Y3、Y4和Y5必须存在误差,以识别报警状态。如果没有误差,程序通过返回点66返回而不设定报警状态。如果全部(Y3,Y4和Y5)存在误差,则进行一系列的测试67-70以判断X1、X3、X5或X9中是否存在误差。如果是,则产生报警状态;如果没有误差,则进至返回点66而不设定报警状态。如果X1、X3、X5或X9中存在误差,则进行一系列的测试71-73来判断X2、X4或X7中是否有误差。如果没有误差,则进至返回点而不设定报警状态。但是如果所有的Y3、Y4和Y5有误差,X1、X3、X5或X9中的任一种有误差,并且X2、X4或X7中的任一种有误差,则步骤74设定报警状态。
在图5中,报警状态将使线路76上的信号实际启动任何合适形式的报警77,并且使打印机78打印出线路49和50上所有当前的输入和输出参数,从而指示出恶化运行的性质。
用来按照上述方式控制冷却器12的控制器26和参数都是示意性质的;冷却器可以按照任一所需的方式控制,并且通过确保控制器根据原始高阶模型精确控制冷却器,本发明的实现方式较为简单。本发明同样可以用于各种其它的冷却器中。
虽然上面借助实施例对本发明作了描述,但是本发明的精神和范围由后面所附权利要求限定。

Claims (6)

1.一种预测冷却器压缩机电机过热的方法,其特征在于,
各种冷却器型分别进行:
在计算机中根据描述冷却器流体、压力和温度动态的非线性代数微分方程建立高阶数学模型;
在多次输入的每次输入时以选定输入信号随机数值激励冷却器模型,其变化将改变受电机过热影响的可测量输出参数的值和不可测量、但可计算的冷却器状态的值;
对所述激励输入信号的每次变化,记录包括每次所述输入值、每次所述输出值和每次所述可计算冷却器状态的一组数值;
利用线性回归方程对存储数据进行处理,拟合所述记录的冷却器状态数值和输出值,以确定冷却器低阶线性状态空间模型的矩阵值;
建立包括一组利用前一步骤确定的矩阵值得到的线性方程的低阶状态空间模型;
根据前一步骤得到的所述低阶线性状态空间模型建立Kalman滤波器;
在每个冷却器的正常运行状态下进行:
通过一边提供包括所述选定输入的输入信号,一边测量所述选定输入和所述可测量输出参数的数值来操作所述冷却器;
向采用所述Kalman滤波器的计算机提供所述测量输入值和输出值,以确定预测的输出值;
将所述预测输出值与所述测量输出值进行比较;
当计算的输出值与测量的输出值之差表明处于电机过热状态时指示报警。
2.如权利要求1所述的方法,其特征在于所述低阶状态空间模型为9阶模型。
3.如权利要求1所述的方法,其特征在于:
所述输入为进入蒸发器的水温、进入冷凝器的空气温度以及扩张阀的位置;
所述输出为离开蒸发器的水温、离开冷凝器的空气温度、压缩机的排气压力、压缩机入口压力、过热温度、进入冷凝器的致冷剂温度、离开冷凝器的致冷剂温度以及进入压缩机的致冷剂温度;
所述状态为冷凝器中致冷剂的焓、冷凝器中致冷剂的质量、蒸发器中致冷剂的焓、蒸发器中致冷剂的质量、冷凝器中空气的焓、冷凝器中致冷剂的饱和温度、蒸发器中水的焓、蒸发器中的致冷剂饱和温度以及压缩机效率。
4.如权利要求1所述的方法,其特征在于进一步包括:
对估计输出值与测量输出值的偏差建立阈值;
所述指示步骤包括只对估计输出值与测量输出值之差超过所述阈值的情况作出指示警报的响应。
5.如权利要求1所述的方法,其特征在于进一步包括:
对所述数值记录组指示的每一所述输出值和每一所述可计算冷却器状态确定标准偏差;
其中所述指示步骤包括在计算的输出值与测量的输出值之差和前后计算的冷却器状态之差超过指示电机过热状态的相应数值3标准偏差时指示报警。
6.如权利要求1所述的方法,其特征在于,所述指示步骤包括只对下列所述变化超过阈值的情况作出报警响应:(1)当每个压缩机排气压力、压缩机吸气压力和压缩机吸气温度的变化都超过阈值时,(2)冷凝器中致冷剂的焓、蒸发器中致冷剂的焓、冷凝器中空气的焓或者压缩机效率的变化都超过阈值时,(3)冷凝器中致冷剂的质量、蒸发器中致冷剂的质量以及蒸发器中水的焓的变化,三者中任一项超过阈值时。
CN98109564A 1997-06-05 1998-06-05 冷却器压缩机电机过热的预测方法 Expired - Fee Related CN1098512C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/869,323 US5911127A (en) 1997-06-05 1997-06-05 Prediction of chiller compressor motor overheating
US08/869,323 1997-06-05
US08/869323 1997-06-05

Publications (2)

Publication Number Publication Date
CN1201959A true CN1201959A (zh) 1998-12-16
CN1098512C CN1098512C (zh) 2003-01-08

Family

ID=25353342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98109564A Expired - Fee Related CN1098512C (zh) 1997-06-05 1998-06-05 冷却器压缩机电机过热的预测方法

Country Status (10)

Country Link
US (1) US5911127A (zh)
EP (1) EP0883046B1 (zh)
JP (1) JP3029257B2 (zh)
KR (1) KR100291724B1 (zh)
CN (1) CN1098512C (zh)
AR (1) AR012935A1 (zh)
AU (1) AU733822B2 (zh)
BR (1) BR9801771B1 (zh)
DE (1) DE69806207T2 (zh)
TW (1) TW430720B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100358234C (zh) * 2002-07-31 2007-12-26 E.On瑞典股份公司 电机
CN109827378A (zh) * 2019-01-28 2019-05-31 长虹美菱股份有限公司 用于制冷设备变频压缩机运行失步的调控方法及装置

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818860C2 (de) * 1998-04-28 2001-04-19 Daimler Chrysler Ag Verfahren und Einrichtung zur Detektion und Lokalisation von Sensorfehlern in Kraftfahrzeugen
EP0953815B1 (en) 1998-04-30 2003-08-06 Showa Denko K.K. Connecting device for heat exchanger
DE19923296A1 (de) * 1999-05-21 2000-12-07 Baelz Gmbh Helmut Anlage mit Prüfeinrichtung
SE9902401L (sv) * 1999-06-23 2000-12-24 Saab Ab Förfarande för övervakning eller styrning av en anordning med hjälp av en datormodell
US20020082884A1 (en) * 2000-12-22 2002-06-27 Moroney Brady J. Manufacturing and testing communications system
US6651012B1 (en) * 2001-05-24 2003-11-18 Simmonds Precision Products, Inc. Method and apparatus for trending and predicting the health of a component
JP4396286B2 (ja) 2004-01-21 2010-01-13 三菱電機株式会社 機器診断装置および機器監視システム
DE102004058619A1 (de) * 2004-12-04 2006-06-08 Audi Ag Diagnoseverfahren in Systemen
DE102004058621B4 (de) * 2004-12-04 2008-08-07 Audi Ag Verfahren zum Ermitteln von Größen in einem Motorsteuergerät
US7992395B2 (en) * 2006-01-17 2011-08-09 Hussmann Corporation Expansion valve with piezo material
ITBO20070399A1 (it) * 2007-06-04 2008-12-05 Rhoss S P A Metodo per stimare il carico termico di un circuito per un fluido di servizio in uscita da una macchina frigorifera
US8291720B2 (en) * 2009-02-02 2012-10-23 Optimum Energy, Llc Sequencing of variable speed compressors in a chilled liquid cooling system for improved energy efficiency
US8600556B2 (en) 2009-06-22 2013-12-03 Johnson Controls Technology Company Smart building manager
US8788097B2 (en) 2009-06-22 2014-07-22 Johnson Controls Technology Company Systems and methods for using rule-based fault detection in a building management system
US9606520B2 (en) 2009-06-22 2017-03-28 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US8532808B2 (en) 2009-06-22 2013-09-10 Johnson Controls Technology Company Systems and methods for measuring and verifying energy savings in buildings
US10739741B2 (en) 2009-06-22 2020-08-11 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US8532839B2 (en) 2009-06-22 2013-09-10 Johnson Controls Technology Company Systems and methods for statistical control and fault detection in a building management system
US9286582B2 (en) 2009-06-22 2016-03-15 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9196009B2 (en) 2009-06-22 2015-11-24 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US8731724B2 (en) * 2009-06-22 2014-05-20 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US11269303B2 (en) 2009-06-22 2022-03-08 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9753455B2 (en) 2009-06-22 2017-09-05 Johnson Controls Technology Company Building management system with fault analysis
US8165860B2 (en) * 2009-08-25 2012-04-24 Invensys Systems, Inc Thermodynamic process control based on pseudo-density root for equation of state
US8386121B1 (en) 2009-09-30 2013-02-26 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Optimized tuner selection for engine performance estimation
WO2011049891A1 (en) 2009-10-21 2011-04-28 Carrier Corporation Centrifugal compressor part load control algorithm for improved performance
US20130133751A1 (en) * 2009-12-08 2013-05-30 Christoph Backi Method and device for regulating the production of steam in a steam plant
US9390388B2 (en) 2012-05-31 2016-07-12 Johnson Controls Technology Company Systems and methods for measuring and verifying energy usage in a building
CN104654690B (zh) * 2014-11-18 2017-01-11 深圳职业技术学院 冷水机组控制方法及控制系统
US9778639B2 (en) 2014-12-22 2017-10-03 Johnson Controls Technology Company Systems and methods for adaptively updating equipment models
EP3124897B1 (en) * 2015-07-27 2018-02-21 Honeywell spol s.r.o. Methods and apparatus for vapor compression circuit control
EP3377951B1 (en) * 2015-11-19 2019-11-06 Carrier Corporation Diagnostics system for a chiller and method of evaluating performance of a chiller
US20170243413A1 (en) * 2016-02-22 2017-08-24 Hamilton Sundstrand Corporation Method for determining aircraft sensor failure without a redundant sensor and correct sensor measurement when redundant aircraft sensors give inconsistent readings
KR102571211B1 (ko) * 2017-01-12 2023-08-24 엘지전자 주식회사 공기조화기 시스템 및 그 제어방법
WO2018146805A1 (ja) * 2017-02-13 2018-08-16 三菱電機株式会社 冷凍装置
JP7057205B2 (ja) * 2018-05-01 2022-04-19 三菱重工業株式会社 油圧機器の異常診断方法、及び、油圧機器の異常診断システム
DE102020118762A1 (de) 2020-07-16 2022-01-20 Vaillant Gmbh Massenstromschätzung in linksdrehenden Kreisprozessen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716719A (en) * 1980-07-04 1982-01-28 Hitachi Ltd Method and equipment for controlling steam temperature in thermal power plant
US5394322A (en) * 1990-07-16 1995-02-28 The Foxboro Company Self-tuning controller that extracts process model characteristics
FI922031A0 (fi) * 1991-10-23 1992-05-05 Antti Aarne Ilmari Lange Foerfarande foer kalman-filter i stora system.
US5740033A (en) * 1992-10-13 1998-04-14 The Dow Chemical Company Model predictive controller
US5633800A (en) * 1992-10-21 1997-05-27 General Electric Company Integrated model-based reasoning/expert system diagnosis for rotating machinery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100358234C (zh) * 2002-07-31 2007-12-26 E.On瑞典股份公司 电机
CN109827378A (zh) * 2019-01-28 2019-05-31 长虹美菱股份有限公司 用于制冷设备变频压缩机运行失步的调控方法及装置
CN109827378B (zh) * 2019-01-28 2021-08-03 长虹美菱股份有限公司 用于制冷设备变频压缩机运行失步的调控方法及装置

Also Published As

Publication number Publication date
JPH10339527A (ja) 1998-12-22
DE69806207D1 (de) 2002-08-01
EP0883046A1 (en) 1998-12-09
KR19990006717A (ko) 1999-01-25
BR9801771B1 (pt) 2009-08-11
AR012935A1 (es) 2000-11-22
DE69806207T2 (de) 2002-11-07
JP3029257B2 (ja) 2000-04-04
MX9804468A (es) 1998-12-31
KR100291724B1 (ko) 2001-06-01
US5911127A (en) 1999-06-08
AU733822B2 (en) 2001-05-24
CN1098512C (zh) 2003-01-08
BR9801771A (pt) 1999-07-13
TW430720B (en) 2001-04-21
AU6987198A (en) 1998-12-10
EP0883046B1 (en) 2002-06-26

Similar Documents

Publication Publication Date Title
CN1098512C (zh) 冷却器压缩机电机过热的预测方法
EP3809220B1 (en) Method and system for semi-supervised deep anomaly detection for large-scale industrial monitoring systems based on time-series data utilizing digital twin simulation data
Grimmelius et al. On-line failure diagnosis for compression refrigeration plants
WO2018138880A1 (ja) モデルパラメータ値推定装置及び推定方法、プログラム、プログラムを記録した記録媒体、モデルパラメータ値推定システム
Wang et al. Enhanced chiller fault detection using Bayesian network and principal component analysis
US10496466B2 (en) Preprocessor of abnormality sign diagnosing device and processing method of the same
US20060042277A1 (en) Fault diagnostics and prognostics based on distance fault classifiers
JP3375543B2 (ja) 膨張バルブの動作を監視するための方法
WO2002015458A2 (en) Discovering hidden damage in machinery and predicting remaining life
JPH1183246A (ja) 冷媒充てん量を監視する方法
US9631568B2 (en) Method for monitoring operational parameters in an internal combustion engine
JP2007249997A (ja) 工業プロセスの監視方法及び監視システム
Navarro-Esbri et al. A vapour compression chiller fault detection technique based on adaptative algorithms. Application to on-line refrigerant leakage detection
KR102206737B1 (ko) 기계학습 기반 펌프수차 고장 진단 방법 및 시스템
WO2020008533A1 (ja) データ処理装置およびデータ処理方法
CN110163451B (zh) 暖通系统的健康度预测方法、系统和计算机可读存储介质
CN114857067B (zh) 一种大型透平压缩机全生命周期监测管理方法及系统
US10845792B2 (en) Failure diagnosis apparatus, monitoring apparatus, failure diagnosis method and recording medium
JP7445533B2 (ja) 異常検出装置、プログラムおよび電気機器システム
Aravinth et al. Air compressor fault diagnosis through vibration signals using statistical features and J48 algorithms
Rachid et al. Vibrations Detection in Industrial Pumps based on Spectral Analysis to Increase Their Efficiency
Walker Adapting approximate entropy as a health indicator of rotating machinery for estimation of remaining useful life
US20230304713A1 (en) Refrigerant Quantity Diagnosis Device, Refrigerant System, and Refrigerant Quantity Diagnosis Method
CN117367775B (zh) 一种液压制动系统模拟测试装置及方法
RU2614948C1 (ru) Способ оценки технического состояния машин

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030108

Termination date: 20170605

CF01 Termination of patent right due to non-payment of annual fee