CN1189264A - 降低了复杂度的信号传输系统 - Google Patents

降低了复杂度的信号传输系统 Download PDF

Info

Publication number
CN1189264A
CN1189264A CN97190355A CN97190355A CN1189264A CN 1189264 A CN1189264 A CN 1189264A CN 97190355 A CN97190355 A CN 97190355A CN 97190355 A CN97190355 A CN 97190355A CN 1189264 A CN1189264 A CN 1189264A
Authority
CN
China
Prior art keywords
activation sequence
signal
sequence
composite
obtains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97190355A
Other languages
English (en)
Other versions
CN1146129C (zh
Inventor
F·武珀曼
F·M·J·德邦特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8223672&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1189264(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Philips Electronics NV filed Critical Philips Electronics NV
Publication of CN1189264A publication Critical patent/CN1189264A/zh
Application granted granted Critical
Publication of CN1146129C publication Critical patent/CN1146129C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/065Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/12Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/065Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
    • H04L9/0656Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L2019/0001Codebooks
    • G10L2019/0013Codebook search algorithms

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

在一个CELP编码器中,对一个目标信号和多个合成信号作了比较。这个合成信号是这样得到的:用一个合成滤波器对从一个一维码本中得到的多个激励序列进行滤波,该合成滤波器的参数从目标信号中得到。这样就选择了一个激励信号,该激励信号在上述目标信号和合成信号之间产生一个最小误差。对最佳激励信号的搜索需要相当复杂的计算。为降低复杂度,对少量激励序列进行预选择,这个预选择是仅对每Lth码本记录进行选择,以预选出多个激励序列。对该少量激励序列进行全复杂度搜索,在搜索中,要对被预选的激励序列周围的所有激励序列进行选择。

Description

降低了复杂度的信号传输系统
本发明涉及到一个包括一个发送器的传输系统,发送器通过一个传输信道发送一个输入信号到一个接收器。发送器包含一个编码器,编码器带有一个器激励信号发生器,激励信号发生器用来从一个主序列中得到多个激励序列。该多元激励序列是主序列的部分成分,上述部分成分在几个位置之间相互移位。用来选择一个激励序列的选择装置在一个合成信号和一个目标信号之间产生一个最小误差,合成信号从上述激励序列中得到,目标信号从输入信号中得到。发送器被用来发送一个信号给接收器,该信号代表一个最佳激励序列。接收器包含一个解码器,解码器带有一个器激励信号发生器,激励信号发生器用来从代表最佳激励序列的信号中得到被选择的激励序列;接收器还包含一个合成滤波器,合成滤波器用来从激励信号抽样中的最佳序列中得到一个合成信号。
本发明还涉及到一个发送器、一个编码器、一种传输方法和一种编码方法。
符合前文叙述的一个传输系统从US Patent No.5,140,638得到。
该传输系统可以用来通过象无线信道、同轴电缆或光纤这样的传送媒体来传输话音信号。该传送系统也可以用来在象磁带或磁盘这样的录音媒体上录下话音信号。可能的应用是自动应答机或口录机。
在现代话音传输系统中,被传送的话音信号通常通过合成技术使用解析编码方法来编码。在该技术中,合成信号由合成滤波器产生,该合成滤波器被多个激励序列激励。合成话音信号被多个激励序列所确定,代表着合成信号与目标信号之间误差的误差信号也被确定,在这里,目标信号由输入信号得到。产生最小误差的激励序列被选择并以编码的形式发送到接收器。
在接收器侧,激励序列被恢复,通过施加该激励序列到一个合成滤波器产生一个合成信号。该合成信号是发送器的输入信号的一个复制品。
为了获得一个很好的信号传输质量,选择涉及到大量的(例如1024个)激励序列。该选择包括大量的滤波器操作,这些滤波器操作需要很强的计算能力。为了减少对计算能力的要求,通常使用所谓的一维码本。就是说码本包含一个抽样主序列,激励序列是从这个主序列中选择出来的。因为相邻的序列有大量的抽样是相同的,所以可以使用递归方法进行滤波,这样就大量节省了对计算资源的需求。而且,对主序列(激励序列从中选择)的使用,导致存储激励序列的内存需求的减少。在相邻序列间具有大量共同抽样的一个结果是:相邻序列间有一个大的相关值。为了减少计算量,在上述提到的美国专利揭示的编码器中,并没有使用主序列中所有可能的序列,仅使用了在长度为p个抽样的距离上被相互移位的序列。这样做会导致一些质量损耗。
本发明的目的是根据前文所述来提供一种传输系统。在前文中,提到了既提高编码质量,同时又不增加计算复杂度的传输系统。
因此,根据本发明的传输系统,其特征在于该选择装置用来从主序列中得到至少一个其它激励序列,其它激励序列相对被选择的序列被移位,移位距离小于激励序列间的偏移;其特征还在于,该选择装置用来从被选择的激励序列中和从至少一个其它的激励序列中选择激励序列,该激励序列在合成信号和目标信号间产生一个最小误差,合成信号从上述其它的激励序列中得到,目标信号从输入信号中得到,作为最佳序列。
通过使用具有比两个激励序列间偏移值更小偏移值的一个或n个其它激励序列,可以更准确地接近目标信号。因为该附加激励序列在最佳激励序列附近选择,这样额外的计算量非常小。可以看出,主序列可以存储在一个固定的码本中,但主序列也可存储在一个自适应码本中,该码本的内容从以前用过的激励序列中得到。
本发明的一个实施例,其特征在于两个激励序列间的偏移在两个到五个位置之间。
实验已证明,p值在2到5之间是一个好的选择。
本发明的另一个实施例,其特征在于其编码器含有一个合成滤波器,该合成滤波器用来从上述激励序列中得到一个合成信号,上述该合成滤波器相对解码器中的合成滤波器而言,复杂度低一些。
在本实施例中,编码器使用的合成滤波器相对解码器使用的合成滤波器复杂度要低一些。实验令人惊奇地显示,与接收器中合成滤波器的复杂度相比,编码器中合成滤波器的复杂度(过滤程序)可以下降10-20倍。
本发明该实施例的另一个实施例,其特征在于,其选择装置被安排选择至少一个其它激励序列;其特征在于,编码器含有一个额外的合成滤波器,该合成滤波器用来从至少两个激励序列中得到附加的合成信号;其特征还在于,选择装置被安排从至少两个激励序列中选择激励序列,这样就在相应的附加合成输入信号和参考信号之间得到一个最小误差。参考信号从输入信号中得到,作为被选择的激励信号。
在本实施例中,基于对减少复杂度的合成滤波器的使用从至少两个激励序列中做一个预选择。随后,使用一个相对复杂些的合成滤波器作出最终选择。该合成滤波器可能与接收器中的合成滤波器一样,但它也可能比接收器中的合成滤波器复杂度低一些。可以看出,参考信号可能与目标信号一样,但这些信号也有可能不相同。
现在参考图解来解释本发明。
这里给出了下述图:
图1,本发明可以应用在其中的一个传输系统;
图2,根据本发明得到的一个编码器;
图3,自适应码本选择设备的一个部分,该选择设备用来从主序列中预选多个激励序列;
图4,用来选择至少一个其它激励序列的选择装置的一个部分;
图5,根据本发明得到的激励序列选择设备;
图6,根据本发明得到的固定码本选择设备;
图7,一个解码器应用在根据图1得到的一个传输系统中。
在图1的传输系统中,输入信号被施加到发送器2中。在发送器2中,使用根据本发明得到的一个编码器对输入信号编码。编码器4的输出信号被送到发送设备6的一个输入端,通过传输媒体8将编码器4的输出信号发送到接收器10。发送设备的操作可能包括把从编码器得到的信号(二进制)进行调制,可能以二进制的形式调制在适合传送媒体8的载波信号上。在接收器10中,接收到的信号被前端12转换成适合解码器14的一个信号。前端12的操作可能包括滤波、解调和检测二进制符号。通过前端12的输出信号,解码器14得到一个复原的输入信号。
在图2的编码器中,编码器4的输入端承载着数字化的输入信号样本i[n],与成帧设备20的输入部分相连。成帧设备的输出部分承载着输出信号x[n],与高通滤波器22相连。高通滤波器22的输输出端承载着一个输出信号s[n],与感知加权滤波器32相连,还与LPC分析器24的一个输入端相连。LPC分析器24的第一个输出端承载着输出信号r[k],与量化器26相连;LPC分析器的第二个输出端为降低复杂度的合成滤波器承载滤波器系数af。
量化器26的输出端承载着输出信号c[k]与内插器28的一个输入端相连,还与多路复用器59的第一个输入端相连。内插器28的输出端承载着信号aq[k][s],与感知加权滤波器32的第二输入端相连,与零输入响应滤波器34的一个输入端相连,还与脉冲响应计算器36的一个输入端相连。感知加权滤波器32的输出端承载着信号w[n],与减法器38的第一个输入端相连。零输入响应滤波器34的输出端承载着输出信号z[n]与减法器38的第二个输入端相连。
减法器38的输出端承载着一个目标信号t[n],与自适应码本滤波设备40的一个输入端相连,与自适应码本预选设备42的一个输入端相连,还与减法器41的一个输入端相连。冲激响应计算器36的输出端承载着输出信号h[n],与自适应码本选择设备40的一个输入端相连,与自适应码本预选设备42的一个输入端相连,与固定码本选择设备44的一个输入端相连,还与激励信号选择设备46的一个输入端相连。激励信号选择设备46也可叫做固定译码本预选设备。自适应码本预选设备42的一个输出端承载着输出信号ia[k],与自适应码本选择设备40的一个输入端相连。自适应码本预选设备42、自适应码本选择设备40、固定码本预选设备46、固定码本选择设备44一起组合成选择设备45。
自适应码本选择设备的第一个输出端承载着输出信号Ga,与多路复用器59的第二个输入端相连,还与乘法器52的第一个输入端相连。自适应码本选择设备的第二个输出端承载着输出信号Ia,与多路复用器59的第三个输入端相连,还与自适应码本48的一个输入端相连。自适应码本选择设备40的第三个输出端承载着输出信号p[n],与减法器41的第二个输入端相连。
减法器41的输出端承载着输出信号e[n],与固定码本选择设备44的第二个输入端相连,还与固定码本预选设备46的第二个输入端相连。固定码本预选设备46的一个输出端承载着输出信号if[k],与固定码本选择设备44的第三个输入端相连。固定译码本选择设备的第一个输出端承载着输出信号Gf,与乘法器54的第一个输入端相连,还与多路复用器59的第四个输入端相连。固定码本选择设备44的第二个输出端承载着输出信号P,与激励发生器50的第一个输入端相连,还与多路复用器59的第五个输入端相连。固定码本选择设备44的第三个输出端承载着输出信号L[k],与激励发生器50的第二个输入端相连,还与多路复用器59的第六个输入端相连。激励发生器50的一个输出端承载着输出信号yf[n],与乘法器54的第二个输入端相连。自适应译码本48的一个输出端承载着输出信号ya[n],与乘法器52的第二个输入端相连。乘法器52的一个输出端与加法器56的第一个输入端相连。乘法器54的一个输出端与加法器56的第二个输入端相连。加法器56的一个输出端承载着输出信号yaf[n],与内存更新单元58相连,后者与自适应码本48连接。
多路复用器59的一个输出端构成编码器4的输出。
在解释根据图2得到的本编码器实施例时,基于如下假设:输入信号是一个宽带话音信号,其频带范围为0-7kHz。还假设了样本速率为16kHz。然而,可以看出,本发明不仅仅限于应用于这类信号。
在成帧设备20中,话音信号i[n]被分成连续的N个信号样本x[n],也叫做帧。这样的一个帧持续时间典型值为10-30ms。通过使用高通滤波器22,成帧信号中的直流成分被滤掉,由此在高通滤波器22的输出端可以得到无直流成分的信号。通过线性预测分析器24,可确定K个线性预测系数a[k]。对于窄带话音信号,K的典型值在8到12之间;对于宽带话音信号,K的典型值在16到20之间。然而,有的K值也可能在此典型值范围之外。在本文后面将解释这些线性预测系数在合成滤波器中的使用。
为计算预测系数a[k],首先,信号s[n]以汉明窗被加权,得到一个加权的信号sw[n];然后预测系数a[n]通过以下步骤从信号sw[n]中得到:先计算自动相关系数,随后执行Levinson-Durbin算法,用来循环确定a[k]值。第一个循环步骤的结果被存为af,用于降低了复杂度的合成滤波器。另一方面,可以把第二个循环步骤的结果af1和af2,作为给降低复杂度的合成滤波器的参数。可以看出,如果使用了一个二阶的降低复杂度的合成滤波器,可能仅仅进行预选择就行了。这样可以免除使用一个全复杂度的合成滤波器滤波。为消除预测参数a[k]所代表的谱线包络中的极端锐峰值,要进行扩展带宽的操作,就是将每个系数a[k]乘以rk。修正后的预测系数ab[k]变换成对数区系数r[k]。
为了减少用于发送对数区系数到接收器的比特数目,量化器26以一种不均匀的方式量化对数区系数。量化器26产生一个信号C[k],用于指示对数区系数的量化程度。
为了给合成滤波器选择最佳激励序列,帧s[n]被分成S个子帧。为实现平滑滤波器变迁,内插器28在当前系数C[k]和上一个系数Cp[k]之间为每一个子帧进行线性内插,并把相应的对数区系数转换成预测参数aq[k][s]。s等于当前子帧的索引。
合成编码器在进行解析时,将一个话音信号帧(或子帧)与一个多元合成话音帧相比较,该多元合成话音帧中每一个与通过合成滤波器滤波得到的不同激励序列相对应。该合成滤波器的转移函数为1/A(z),其中A(z)等于: A ( z ) = 1 - Σ k = 0 P - 1 aq [ k ] [ s ] · z - k - 1 - - - - ( 1 )
在(1)式中,P是预测次序,k是运行指数,z-1是整体时延运算子。
为了照顾到人类听觉系统的感知特性,用一个感知加权滤波器将话音帧和合成话音帧之间的偏差滤掉,这个过滤过程的转移函数为A(z)/A(z/γ)。γ是一个常数,通常其值大约为0.8。所选择的最佳激励信号是这样一个信号:它使感知加权滤波器输出信号的功率最小。
对于大部分话音编码来说,感知加权滤波器在比较操作之前进行操作。这意味着,话音信号要被一个滤波器进行过滤,滤波器的转移函数为A(z)/A(z/γ)。还意味着该合成滤波器要被一个修正后的合成滤波器所替代,转移函数为1/A(z/γ)。可以看出,这里还使用了其它类型的感知加权滤波器,例如就使用了一个转移函数为A(z/γ1)/A(z/γ2)的感知加权滤波器。感知加权滤波器32根据上面讨论过的转移函数A(z)/A(z/γ),对话音信号进行滤波。感知加权滤波器32的参数每一个子帧都被内插预测参数aq[k][s]更新。可以看出,本发明的范围包括所有不同转移函数的感知加权滤波器,还包括感知加权滤波器上的所有位置。
修正后的合成滤波器的输出信号也依赖于从以前子帧中选择的激励序列。依赖于当前激励序列和以前激励序列的合成话音信号部分可以被分离。因为零输入滤波器的输出信号依赖于当前激励序列,该信号可以被移到话音信号通路,如对图2中滤波器34所进行的一样。
因为修正后的合成滤波器的输出信号被从感知加权话音信号中减去,零输入响应滤波器34的信号也被从感知加权话音信号中扣除。以上扣除由减法器38来减去。在减法器38的输出端,可以得到目标信号t[n]。
编码器4包含一个本地解码器30。本地解码器30包含一个自适应码本48,该自适应码本用来随后存储多个先前被选择的激励序列。自适应码本48是用自适应码本索引Ia寻址的。自适应码本48的输出信号ya[n]被乘法器52放大,增益系数为Ga。本地解码器30还包含激励发生器50,该激励发生器用来产生多个的预定激励序列。激励序列yf[n]是一个所谓的规则脉冲激励序列,它包含多个激励样本,这些样值被一些值为0的样值所隔开。参数PH(相位)代表该激励样本的位置。该激励样本的取值可以是-1、0和+1中的一个。激励样本的值由变量L[k]给出。激励发生器50的输出信号yf[n]被乘法器54放大,增益系数为Gf。乘法器52和54的输出信号被加法器56相加,得到一个激励信号yaf[n]。信号yaf[n]被存储在自适应码本48中,用于下一个子帧。
自适应码本预选设备42中确定一组缩减了的激励序列。这些序列的系数ia[k]被传到自适应码本选择设备40。在自适应码本预选设备42中,使用了一个根据本发明的一阶的降低了复杂度的合成滤波器。另外,这里并没有考虑到所有的激励序列,而只是一个数目减少了的激励序列至少在两个置位上相互移位。移位的范围从2到5是一个比较号的选择。在这里既把合成滤波器的复杂度降低了,又把要考虑的激励序列的数目减少了,这样就大大降低了编码器的复杂度。
自适应码本预选设备40的作用是:从被预选过的激励序列中得到最佳激励序列。在该选择中,使用了一个全复杂度的合成滤波器,只试验了少量的位于被预选过的激励序列附近的激励序列。这里被试验的激励序列间的位移比预选择时的位移要小。根据本发明得到的一个编码器使用的位移为1。由于涉及到的激励序列数目较少,最终选择的额外复杂度较低。自适应码本选择设备还产生一个合成信号p[n],它通过加权合成滤波器对存储的激励序列进行滤波再将合成信号乘上值Ga。
减法器41从目标信号t[n]中减去信号p[n],得到一个不同的信号e[n]。在固定码本预选设备46中,从信号e[n]中得到一个经过后向滤波的目标信号tf[n]。从所有可能的激励序列中,预选出与被滤波的目标信号最相近的激励序列,这些被预选出的激励序列的系数if[k]被送到固定码本选择设备44中。固定码本选择设备44中从固定码本预选设备46预选出的激励序列中找出最佳激励信号。在寻找最佳激励信号时,使用了一个全复杂度的合成滤波器。信号C[k]、Ga、Ia、Gf、PH和L[k]被复用器59复用成一个单一的输出信号流。
冲激响应计数器36根据以下递归式从预测参数aq[k][s]中计算出冲激响应值h[n]:
        h[n]=0    ;n<0
        h[n]=1    ;n=0
                                 (2) h &lsqb; n &rsqb; = &Sigma; i = 0 P - 1 h &lsqb; n - l - i &rsqb; &CenterDot; aq &lsqb; i &rsqb; &lsqb; s &rsqb; &gamma; i + 1 ; l &le; n < Nm
在(2)式中,Nm是冲激响应要求的长度。在本系统中,该长度对于子帧中的样本数。
在图3的自适应码本预选设备42中,目标信号t[n]被施加到时间反相器50的一个输入端。时间反相器50的输出端与零状态滤波器52的一个输入端相连。零状态滤波器52的输出端与时间反相器54的一个输入端相连。时间反相器54的输出端与互相关器56的第一个输入端相连。互相关器56的一个输出端与除法器64的第一个输入端相连。
自适应译码本48的一个输出端与互相关器56的第二个输入端相连,还通过选择开关49与降低了复杂度的零状态合成滤波器60的一个输入端相连。该选择开关的另一端与内存更新单元58的一个输出端相连。降低了复杂度的合成滤波器60的输出端与能量估计器62的一个输入端相连。能量估计器62的一个输出端与能量表63的一个输入端相连。能量表63的一个输出端与除法器64的第二个输入端相连。除法器64的输出端与峰值检测器65的一个输入端相连,峰值检测器65的输出端与选择器66的一个输入端相连。选择器66的第一个输出端自适应码本48的一个输入端相连,用来选择不同的激励序列。选择器66的第二个输出端承载着指示从自适应码本中得到的被选择的激励序列的一个信号,与自适应译码本48的一个选择输入端相连,还与能量表63的一个选择输入端相连。
自适应码本预选设备42用来从自适应码本中选择激励序列和相应的增益系数ga。该操作把误差信号ε降低到最小,ε等于:
在(3)式中,Nm是在一个子帧中的样本数,y[l][n]是零状态合成滤波器对激励序列ca[l][n]的响应。用(3)式对ga求导,令导数为0,可得出ga的最佳值: ga = &Sigma; n = 0 Nm - 1 t &lsqb; n &rsqb; &CenterDot; y &lsqb; l &rsqb; &lsqb; n &rsqb; &Sigma; n = 0 Nm - 1 y 2 &lsqb; l &rsqb; &lsqb; n &rsqb; - - - ( 4 )
把(4)代入(3)得到ε:
Figure A9719035500133
使ε最小化相当于让(5)式中第二项f[l]最大化并超过1。f[l]也可写成: f &lsqb; l &rsqb; = &lsqb; &Sigma; n = 0 Nm - 1 t &lsqb; n &rsqb; &CenterDot; y &lsqb; l &rsqb; &lsqb; n &rsqb; &rsqb; 2 &Sigma; n = 0 Nm - 1 y 2 &lsqb; l &rsqb; &lsqb; n &rsqb; = &lsqb; &Sigma; n = 0 Nm - 1 t &lsqb; n &rsqb; &CenterDot; ( &Sigma; i = 0 Nm - 1 ca &lsqb; l &rsqb; &lsqb; i &rsqb; &CenterDot; h &lsqb; n - i &rsqb; ) &rsqb; 2 &Sigma; n = 0 Nm - 1 y 2 &lsqb; l &CenterDot; &rsqb; &lsqb; n &rsqb; - - - ( 6 )
在(6)中,h[n]是图3中滤波器52的冲激响应,它根据(2)式算出。(6)也可写成: f &lsqb; l &rsqb; = &lsqb; &Sigma; i = 0 Nm - 1 ca &lsqb; l &rsqb; &lsqb; i &rsqb; &CenterDot; ( &Sigma; n = 0 Nm - 1 t &lsqb; n &rsqb; &CenterDot; h &lsqb; n - i &rsqb; ) &rsqb; 2 &Sigma; n = 0 Nm - 1 y 2 &lsqb; l &rsqb; &lsqb; n &rsqb; = &lsqb; &Sigma; i = 0 Nm - 1 ca &lsqb; l &rsqb; &lsqb; i &rsqb; &CenterDot; ta &lsqb; i &rsqb; &rsqb; 2 &Sigma; n = 0 Nm - 1 y 2 &lsqb; l &rsqb; &lsqb; n &rsqb; - - - ( 7 )
(7)式用于自适应码本的预选。使用(7)式的好处是:对于所有的码本项目,仅需一个滤波操作就可确定(7)的分子。使用(6)式则对于预选择中涉及到的每一个译码本记录,都要进行一次滤波操作。为确定(7)式中分母,需要对所有译码本项目进行滤波,在这里使用了一个降低复杂度的合成滤波器。
f[l]的分母Ea是激励序列的能量,涉及降低复杂度的合成滤波器60的滤波。实验显示,单个滤波器系数变化很慢,每帧仅更新一次。所以对于每帧,可以仅对激励序列能量计算一次,但在这里需要稍微修改选择过程。为了从自适应码本中预选激励序列,由(7)推导出的量度rap[i·Lm+l]根据以下公式计算得到: rap &lsqb; i &CenterDot; Lm + L &rsqb; = &lsqb; &Sigma; n = 0 Nm - 1 ca &lsqb; L min + i &CenterDot; Lm + l &CenterDot; Sa - n &rsqb; &CenterDot; ta &lsqb; n &rsqb; &rsqb; 2 Ea ( i &CenterDot; Lm + l ) - - - - ( 8 )
在(8)式中,i和l是运算参数,Lmin是要考虑的话音信号的最小可能的高音周期,Nm是每个子帧的样本数,Sa是后续激励序列之间的位移,Lm是一个常数,用于定义每个子帧存储的能量值的个数,它等于:1+(Nm-1)/Sa。(8)式中搜索的参数范围是:0≤l<Lm以及0≤i<S。搜索总是包括第一个码本项目,该码本项目与先前写在自适应码本48中的一个激励序列的起始部分相对应。这样就可以对存储在能量表63中的上次计算出的能量值Ea重复使用。
在更新自适应码本48时,被选择的上一个子帧的激励信号yaf[n]被送到存储器更新单元58中。选择开关49处于0位置,当前可得到的激励序列被降低复杂度的合成滤波器60所滤波。当前滤波得到的激励序列的能量值被存储在Lm内存位置。内存63中已有的能量值则往下移。最早的Lm能量值则从内存63中溢出,因为在自适应码本中不再有相应的激励序列。目标信号ta[n]由时间反向器50、滤波器52和时间反向器54的组合体计算得到。互相关器56计算(8)的分子,除法器64则执行(8)式中分子与分母的相除。峰值检测器65确定码本系数,码本系数给出了(8)式的最大值Pa。选择器66把由峰值检测器65发现的Pa序列的相邻激励序列的系数相加,并把所有这些系数送到自适应码本40中。
在帧的中部(即已通过S/2的子帧),af值被更改。随后,选择开关推到1位置,并且与涉及自适应码本预选择的激励序列相对应的能量值被重新计算,并存储于内存63中。
在图4的自适应码本选择器40中,自适应码本48的一个输出端,与零状态合成滤波器70(全复杂度)的一个输出端相连。合成滤波器70从计算器36中接收到它的脉冲响应参数。合成滤波器70的输出与互相关器72的一个输入端相连,还与能量估计器74的一个输入端相连。目标信号t[n]被施加到互相关器72的第二个输入端。互相关器72的一个输出端与除法器76的第一个输入端相连。能量估计器74的一个输出端与除法器76的第二个输入端相连。除法器76的输出端与选择器78的第一个输入端相连。被预选的激励序列的系数ia[k]被施加到选择器78的第二个输入端。选择器的第一个输出端与自适应码本48的一个选择输入端相连。选择器78的另外两个输出端提供输出信号Ga和Ia。
最佳激励序列的选择就是要使ra[r]项最大化,上述ra[r]项等于: ra &lsqb; r &rsqb; = &lsqb; &Sigma; n = 0 Nm - 1 t &lsqb; n &rsqb; &CenterDot; y &lsqb; r &rsqb; &lsqb; n &rsqb; &rsqb; 2 &Sigma; n = 0 Nm - 1 y 2 &lsqb; r &rsqb; &lsqb; n &rsqb; - - - ( 9 )
(9)式相当于(5)式中的f[l]项。信号y[r][n]由滤波器70从激励序列中得到。每次要对一个激励序列进行滤波之前,滤波器70的初始状态被设置成0。假设变量ia[r]以系数递增的顺序包含了被预选的激励序列和它们相邻序列的系数。这就是说,ia[r]包含了Pa随后的系数组,这里的每一个系数组都包括Sa个连续的自适应码本系数。对于带有系数组的第一个系数的码本项目,y[r·Sa][n]根据下式计算得到: y &lsqb; r &CenterDot; Sa &rsqb; &lsqb; n &rsqb; = &Sigma; l = 0 n h &lsqb; n - l &rsqb; &CenterDot; ca &lsqb; ia &lsqb; r &CenterDot; Sa &rsqb; - l &rsqb; ; 0 &le; n < Nm - - - ( 10 )
因为除了一个以外的其它相同激励样本都与计算y[r·Sa+l][n]有关,所以y[r·Sa+l][n]的值可以由y[r·Sa][n]递推得到。该递推可应用到所有在系数组有系数的激励序列。该递推可概括成下式:
y[r·Sa+i+l][n]=y[r·Sa+i][n-l]+h[n]·ca[ia[r·Sa+i+l]]    (11)
互相关器72根据滤波器70的输出信号和目标信号t[n]确定(9)式的分子。能量估计器74确定(9)式的分母。在除法器的输出端可得到(9)式的结果。选择器78使(9)式的计算用于所有被预选的系数,并存储自适应码本48的最佳系数Ia。随后,选择器根据下式计算增益值g: g = &Sigma; n = 0 Nm - 1 t &lsqb; n &rsqb; &CenterDot; y ~ &lsqb; n &rsqb; &Sigma; n = 0 Nm - 1 y ~ 2 &lsqb; n &rsqb; - - - ( 12 )
在(12)式中,y是滤波器70对被选择的系数为Ia的激励序列的响应。增益系数g被以一种不均匀量化操作量化为量化增益系数Ga,它在选择器78的输出端得到。选择器78还输出自适应码本对合成信号的影响p[n],p[n]由下式得到: p &lsqb; n &rsqb; = Ga &CenterDot; y ~ &lsqb; n &rsqb; - - - ( 13 )
在图5的固定码本预选设备中,信号e[n]被施加到后向滤波器80的有关输入端。后向滤波器80的输出端与互相关器86的第一个输入端相连,还与相位选择器82的一个输入端相连。相位选择器的输出端与幅度选择器84的一个输入端相连。幅度选择器84的输出端与互相关器86的第二个输入端相连,还与一个降低复杂度的合成滤波器88的一个输入端相连。降低复杂度的合成滤波器88的输出端与能量估计器90的一个输入端相连。
互相关器86的输出端与除法器92的第一个输入端相连。能量估计器90的输出端与除法器92的第二个输入端相连。除法器92的输出端与选择器94的一个输入端相连。在选择器的输出端可以得到固定码本的预选激励序列的系数if[k]。
后向滤波器80从信号e[n]中计算出被后向滤波的信号tf[n]。该后向滤波器的操作与图3中自适应码本预选设备42中有关的后向滤波操作一样。固定码本被安排成所谓的三进制RPE(规则脉冲激励)码本,即一个包含多个等距离间隔的脉冲的译码本,这些脉冲被几个预定的零值所隔开。该三进制RPE码本有Nm个脉冲,其中Np个脉冲幅度为+1、0和-1中的一个。这些Np个脉冲位于一个规则的栅格上,该栅格由相位PH和脉冲展宽D定义,且0≤PH<D。栅格位置pos由PH+D·l给出,且0≤l<Np。余下的Nm-Np个脉冲为0。上面定义的三进制RPE码本有D·(3Np-l)个项目。为降低复杂度,为每个子帧产生一个包含Nf个项目子集的本地RPE码本。该本地的RPE码本中的所有激励序列具有相同的相位PH,这个相位由相位选择器82搜索间隔为0≤PH<D的PH值而确定的。它使下式最大化: &Sigma; l = 0 Np - 1 | tf &lsqb; PH + D &CenterDot; l &rsqb; | - - - - ( 14 )
在幅度选择器中填充两个数组。第一个数组为amp,它包含变量amp[l],amp[l]等于sign(tf[PH+D·l]),在这里sign是符号函数。第二个数组为pos[l],它包含一个标志,指示|tf[PH+D·l]|的Nz个最大值的标志。对于这些值,激励脉冲不允许为0值。随后,一个二维数组cf[k][n]被Nf个激励序列填充,这些激励序列相位PH和样本值分别满足数组amp和pos内容的要求。这些激励序列与残余序列非常相似,在这里由后向滤波器信号tf[n]所代表。
对候选激励序列的选择基于的原理与自适应码本预选设备42中所用的原理一样。互相关器86计算出向滤波器信号tf[n]和被预选的激励序列之间的相关值。合成滤波器88(降低复杂度的)用来对激励序列进行滤波,能量估计器90计算被滤波的激励序列相应的能量。除法器将相关值除以激励序列相应的能量。选择器94选择对应于除法器92输出信号中Pf个最大值的激励序列,并把这些候选激励序列的系数存储于数组if[k]中。
在图6的固定码本选择设备44中,缩减的译码本94的一个输出端与合成滤波器96的一个输入端相连。合成滤波器96的输出端与互相关器98的第一个输入端相连,还与能量估计器100的一个输入端相连。信号e[n]被施加到互相关器98的第二个输入端上。互相关器98的输出端与乘法器108的第一个输入端相连,还与除法器102的第一个输入端相连。能量估计器100的输出端与除法器102的第二个输入端相连,还与乘法器112的一个输入端相连。除法器102的输出端与量化器104的一个输入端相连。量化器104的输出端与乘法器105的一个输入端相连,还与平方器110相连。
乘法器105的输出端与乘法器108的第二个输入端相连,平方器110的输出端与乘法器112的第二个输入端相连。乘法器108的输出端与减法器114的第一个输入端相连。乘法器112的输出端与减法器114的第二个输入端相连。减法器114的输出端与选择器116的一个输入端相连。选择器116的第一个输出端与缩减的码本94的一个选择输入端相连。选择器116的三个输出端分别承载着代表固定码本搜索的最后结果的信号P,L[k],Gf。
在固定码本选择设备42中执行一个闭合环路搜索过程,用来搜索最佳激励序列。这个搜索包括确定标记r,该r值使表达式rf[r]值最大。rf[r]等于: rf &lsqb; r &rsqb; = 2 &CenterDot; Gf &CenterDot; &Sigma; n = 0 Nm - 1 e &lsqb; n &rsqb; &CenterDot; y &lsqb; r &rsqb; &lsqb; n &rsqb; - GF 2 &CenterDot; &Sigma; n = 0 Nm - 1 y 2 &lsqb; r &rsqb; &lsqb; n &rsqb; - - - ( 15 )
在(15)式中,y[r][n]是被滤波的激励序列,Gf是最佳增益系数g的量化形式,g等于: g = &Sigma; n = 0 Nm - 1 e &lsqb; n &rsqb; &CenterDot; y &lsqb; r &rsqb; &lsqb; n &rsqb; &Sigma; n = 0 Nm - 1 y 2 &lsqb; r &rsqb; &lsqb; n &rsqb; - - - ( 16 )
展开ε的表达式可得到(15)式,删掉与r无关的项,用量化增益Gf取代最佳增益。信号y[r][n]可根据下式计算: y &lsqb; r &rsqb; &lsqb; n &rsqb; = &Sigma; j = 0 n h &lsqb; n - j &rsqb; &CenterDot; cf &lsqb; if &rsqb; &lsqb; r &rsqb; &lsqb; j &rsqb; ; 0 &le; n < Nm - - - ( 17 )
因为对于j=P+D·l(0≤l<Np)(17),cf[if[r]][j]仅有非0值,因此(17)可简化为: y &lsqb; r &rsqb; &lsqb; n &rsqb; = &Sigma; l = 0 n - P D h &lsqb; n - P - D &CenterDot; l &rsqb; &CenterDot; cf &lsqb; r &rsqb; &lsqb; P + D &CenterDot; l &rsqb; - - - ( 18 )
滤波器96确定(18)式。(15)式的分子部分由互相关器98确定,分母部分由能量估计器100来计算。在除法器102的输出端可得到g值。g值被量化器104量化成Gf。在乘法器108的输出端,可得到(15)式的第一项,在乘法器112的输出端可得到(15)式第二项。在减法器114的输出端可得到表达式rf[r]。选择器116选择使(15)式值最大的r值。并把增益Gf、非0激励脉冲的幅度L[k]和激励序列的最佳相位PH送到它的输出端。
在图7中,解码器14的输入信号被施加到解复用器118的一个输入端。解复用器118的第一个输出端承载着信号C[k]与内插器130的一个输入端相连。解复用器118的第二个输出端承载着信号Ia与自适应码本120的一个输入端相连。自适应码本120的一个输出端与乘法器124的第一个输入端相连。解复用器118的第三个输出端承载着信号Ga与乘法器124的第二个输入端相连。解复用器118的第四个输出端承载着信号Gf与乘法器126的第一个输入端相连。解复用器118的第五个输出端承载着信号PH与激励发生器122的第一个输入端相连。解复用器118的第六个输出端承载着信号L[k]与激励发生器122的第二个输入端相连。激励发生器的一个输出端与乘法器126的第二个输入端相连。乘法器124的输出端与加法器128的第一个输入端相连,乘法器126的输出端与加法器128的第二个输入端相连。
加法器128的输出端与合成滤波器132的第一个输入端相连。合成滤波器的输出端与后置滤波器134的第一个输入端相连。内插器130的输出端与合成滤波器132的第二个输入端相连,还与后置滤波器134的第二个输入端相连。在后置滤波器134的输出端可得到解码器的输出信号。
自适应码本120根据标记Ia为每个子帧产生一个激励序列。上述激励信号被乘法器124乘上增益系数Ga。激励发生器122根据相位PH和幅度值L[k]为每个子帧产生一个激励序列。从激励发生器122得到的激励序列被乘法器126乘上增益系数Gf。乘法器124和126的输出信号被加法器128相加,得到完整的激励信号。该激励信号被反馈到自适应码本120,以修改自适应码本120的内容。在内插预测参数aq[k][s]的控制下,合成滤波器132从加法器128输出的激励信号中得到一个合成话音信号,对于每一个子帧,内插的预测参数aq[k][s]都要被更新。内插的预测参数aq[k][s]是通过内插参数C[k],并把它转变成预测参数而得到的。后置滤波器134用来提高话音信号的感知质量。它的转移函数为: F ( z ) = G &lsqb; s &rsqb; &CenterDot; l - &Sigma; i = 0 P - 1 0.6 5 i + 1 &CenterDot; aq &lsqb; i &rsqb; &lsqb; s &rsqb; &CenterDot; Z - ( i + 1 ) l - &Sigma; i = 0 P - 1 0.7 5 i + 1 &CenterDot; aq &lsqb; i &rsqb; &lsqb; s &rsqb; &CenterDot; z - ( i + 1 ) &CenterDot; ( 1 - 0.3 &CenterDot; z - 1 ) - - - ( 19 )
在(19)式中,G[s]是一个增益系数,该增益系数用来补偿由于后置滤波器134的滤波功能而带来的不同的衰减。

Claims (10)

1.包含一个发送器的传输系统,发送器通过一个传输信道发送一个输入信号到一个接收器,发送器包含一个编码器,编码器带有一个器激励信号发生器,激励信号发生器用来从一个主序列中得到多个激励序列,该多个激励序列是主序列的部分成分,上述部分成分在几个位置之间被相互移位,用来选择一个激励序列的选择装置,该激励序列在一个合成信号和一个目标信号之间产生一个最小误差,合成信号从上述激励序列中得到,目标信号从输入信号中得到,发送器被用来发送一个信号给接收器,该信号代表一个最佳激励序列,接收器包含一个解码器,解码器带有一个器激励信号发生器,激励信号发生器用来从代表最佳激励序列的信号中得到被选择的激励序列,接收器还包含一个合成滤波器,合成滤波器用来从激励信号抽样中的最佳序列中得到一个合成信号,其特征在于,该选择装置用来从主序列中得到至少一个其它激励序列,其它激励序列相对被选择的序列被移位,移位距离小于激励序列间的偏移;其特征还在于,该选择装置用来从被选择的激励序列中和至少一个其它的激励序列中选择,该激励序列在合成信号和目标信号间产生一个最小误差,合成信号从上述其它的激励序列中得到,目标信号从输入信号中得到。
2.根据权利要求1的传输系统,其特征在于,两个激励序列间的偏移在两个到五个位置之间。
3.根据权利要求1和2的传输系统,其特征在于,其编码器含有一个合成滤波器,该合成滤波器用来从上述激励序列中得到一个合成信号,上述合成滤波器相对解码器中的合成滤波器而言,复杂度低一些。
4.根据权利要求3的传输系统,其特征在于,其选择装置被安排选择至少一个其它激励序列,其特征在于编码器含有一个额外的合成滤波器,该合成滤波器用来从至少两个激励序列中得到附加的合成信号,其特征还在于,选择装置被安排从至少两个激励序列中选择激励序列作为被选择的激励信号,使得相应的附加合成输入信号和参考信号之间得到一个最小误差,参考信号从输入信号中得到。
5.发送一个输入信号的发送器,包含一个编码器,编码器带有一个激励信号发生器,激励信号发生器用来从一个主序列中得到多个激励序列,该多个激励序列是主序列的部分成分,上述部分成分在几个位置之间相互移位,选择装置用来选择一个激励序列使得在一个合成信号和一个目标信号之间产生一个最小误差,合成信号从上述激励序列中得到,目标信号从输入信号中得到,发送器被用来发送一个代表最佳激励序列的信号,其特征在于,该选择装置用来从主序列中得到至少一个其它激励序列,其它激励序列相对被选择的序列移位,移位距离小于激励序列间的偏移;其特征还在于,该选择装置用来从被选择的激励序列中和至少一个其它的激励序列中选择一个激励序列作为最佳序列,该激励序列在合成信号和目标信号间产生一个最小误差,合成信号从上述其它的激励序列中得到,目标信号从输入信号中得到。
6.根据权利要求5的传输系统,其特征在于,两个激励序列间的偏移在两个到五个位置之间。
7.包含一个激励信号发生器的编码器,激励信号发生器用来从一个主序列中得到多个激励序列,该多个激励序列是主序列的部分成分,上述部分成分在几个位置之间相互移位,选择装置用来选择一个激励序列使得在一个合成信号和一个目标信号之间产生一个最小误差,合成信号从上述激励序列中得到,目标信号从输入信号中得到,用来产生一个代表最佳激励序列的编码器,其特征在于,该选择装置用来从主序列中得到至少一个其它激励序列,其它激励序列相对被选择的序列被移位,移位距离小于激励序列间的偏移,其特征还在于,该选择装置用来从被选择的激励序列中和至少一个其它的激励序列中选择激励序列作为最佳序列,该激励序列在合成信号和目标信号间产生一个最小误差,合成信号从上述其它的激励序列中得到,目标信号从输入信号中得到。
8.根据权利要求7的编码器,其特征在于,两个激励序列间的偏移在两个到五个位置之间。
9.通过一个传输信道发送一个输入信号的方法,该方法包括从一个主序列中得到多个激励序列,该多个激励序列是主序列的部分成分,上述部分成分在几个位置之间相互移位。选择装置用来选择一个激励序列使得在一个合成信号和一个目标信号之间产生一个最小误差,合成信号从上述激励序列中得到,目标信号从输入信号中得到;经传输介质发送一个代表最佳激励序列的信号,以从传输介质收到的信号中得到被选择的激励序列,并从激励信号抽样的最佳激励序列中得到一个合成信号;其特征在于,该方法包括从主序列中得到至少一个其它激励序列,其它激励序列相对被选择的序列被移位,移位距离小于激励序列间的偏移;其特征还在于,该方法包括从被选择的激励序列中和从至少一个其它的激励序列中选择激励序列作为最佳序列,该激励序列在合成信号和目标信号间产生一个最小误差,合成信号从上述其它的激励序列中得到,目标信号从输入信号中得到。
10.对一个输入信号编码的方法,包括从一个主序列中得到多个激励序列,该多个激励序列是主序列的部分成分,上述部分成分在几个位置之间被相互移位,选择一个激励序列使得在一个合成信号和一个目标信号之间产生一个最小误差,合成信号从上述激励序列中得到,目标信号从输入信号中得到,并产生一个代表一个最佳激励序列的信号,其特征在于该方法包括从主序列中得到至少一个其它激励序列,其它激励序列相对被选择的序列移位,移位距离小于激励序列间的偏移;其特征还在于,该选择方法包括从被选择的激励序列中和至少一个其它的激励序列中选择激励序列作为最佳序列,该激励序列在合成信号和目标信号间产生一个最小误差,合成信号从上述其它的激励序列中得到,目标信号从输入信号中得到。
CNB971903557A 1996-02-15 1997-01-31 降低了复杂度的信号传输系统和方法 Expired - Lifetime CN1146129C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP96200370 1996-02-15
EP96200370.3 1996-02-15

Publications (2)

Publication Number Publication Date
CN1189264A true CN1189264A (zh) 1998-07-29
CN1146129C CN1146129C (zh) 2004-04-14

Family

ID=8223672

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB971903557A Expired - Lifetime CN1146129C (zh) 1996-02-15 1997-01-31 降低了复杂度的信号传输系统和方法

Country Status (10)

Country Link
US (1) US5920832A (zh)
EP (1) EP0821848B1 (zh)
JP (1) JP3970327B2 (zh)
KR (1) KR100455970B1 (zh)
CN (1) CN1146129C (zh)
AR (1) AR007765A1 (zh)
BR (1) BR9702072B1 (zh)
CA (1) CA2218217C (zh)
DE (1) DE69732746C5 (zh)
WO (1) WO1997030524A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306473C (zh) * 2001-06-04 2007-03-21 高通股份有限公司 快速码向量搜索装置和方法
CN100336101C (zh) * 2001-06-06 2007-09-05 高通股份有限公司 减少对于码本搜索的存储要求的装置和方法
CN100369110C (zh) * 2002-05-22 2008-02-13 日本电气株式会社 用于在音频代码的编码/解码处理之间转换代码的方法和装置
CN1757060B (zh) * 2003-03-15 2012-08-15 曼德斯必德技术公司 Celp语音编码的话音指数控制

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3261691B2 (ja) * 1997-11-28 2002-03-04 沖電気工業株式会社 符号帳予備選択装置
TW439368B (en) * 1998-05-14 2001-06-07 Koninkl Philips Electronics Nv Transmission system using an improved signal encoder and decoder
US7548787B2 (en) 2005-08-03 2009-06-16 Kamilo Feher Medical diagnostic and communication system
US6182030B1 (en) * 1998-12-18 2001-01-30 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced coding to improve coded communication signals
US9373251B2 (en) 1999-08-09 2016-06-21 Kamilo Feher Base station devices and automobile wireless communication systems
US7260369B2 (en) 2005-08-03 2007-08-21 Kamilo Feher Location finder, tracker, communication and remote control system
US9307407B1 (en) 1999-08-09 2016-04-05 Kamilo Feher DNA and fingerprint authentication of mobile devices
EP1199812A1 (en) * 2000-10-20 2002-04-24 Telefonaktiebolaget Lm Ericsson Perceptually improved encoding of acoustic signals
KR20070061818A (ko) 2004-09-17 2007-06-14 마츠시타 덴끼 산교 가부시키가이샤 음성 부호화 장치, 음성 복호 장치, 통신 장치 및 음성부호화 방법
EP3511935B1 (en) 2014-04-17 2020-10-07 VoiceAge EVS LLC Method, device and computer-readable non-transitory memory for linear predictive encoding and decoding of sound signals upon transition between frames having different sampling rates

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1223365A (en) * 1984-02-02 1987-06-23 Shigeru Ono Method and apparatus for speech coding
US4944013A (en) * 1985-04-03 1990-07-24 British Telecommunications Public Limited Company Multi-pulse speech coder
US4907276A (en) * 1988-04-05 1990-03-06 The Dsp Group (Israel) Ltd. Fast search method for vector quantizer communication and pattern recognition systems
US5384891A (en) * 1988-09-28 1995-01-24 Hitachi, Ltd. Vector quantizing apparatus and speech analysis-synthesis system using the apparatus
US5293448A (en) * 1989-10-02 1994-03-08 Nippon Telegraph And Telephone Corporation Speech analysis-synthesis method and apparatus therefor
GB2235354A (en) * 1989-08-16 1991-02-27 Philips Electronic Associated Speech coding/encoding using celp
CA2068526C (en) * 1990-09-14 1997-02-25 Tomohiko Taniguchi Speech coding system
BR9106932A (pt) * 1990-09-28 1993-08-03 Philips Nv Sistema e processo para codificacao de sinais analogicos,sistema de decodificacao para obter um sinal analogico e processo de re-sintetizacao de sinais analogicos
US5195137A (en) * 1991-01-28 1993-03-16 At&T Bell Laboratories Method of and apparatus for generating auxiliary information for expediting sparse codebook search
JP3254687B2 (ja) * 1991-02-26 2002-02-12 日本電気株式会社 音声符号化方式
US5651090A (en) * 1994-05-06 1997-07-22 Nippon Telegraph And Telephone Corporation Coding method and coder for coding input signals of plural channels using vector quantization, and decoding method and decoder therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306473C (zh) * 2001-06-04 2007-03-21 高通股份有限公司 快速码向量搜索装置和方法
CN100336101C (zh) * 2001-06-06 2007-09-05 高通股份有限公司 减少对于码本搜索的存储要求的装置和方法
CN100369110C (zh) * 2002-05-22 2008-02-13 日本电气株式会社 用于在音频代码的编码/解码处理之间转换代码的方法和装置
CN1757060B (zh) * 2003-03-15 2012-08-15 曼德斯必德技术公司 Celp语音编码的话音指数控制

Also Published As

Publication number Publication date
DE69732746D1 (de) 2005-04-21
CA2218217A1 (en) 1997-08-21
KR19990007818A (ko) 1999-01-25
CA2218217C (en) 2004-12-07
KR100455970B1 (ko) 2004-12-31
EP0821848B1 (en) 2005-03-16
EP0821848A1 (en) 1998-02-04
US5920832A (en) 1999-07-06
AR007765A1 (es) 1999-11-24
BR9702072B1 (pt) 2009-01-13
DE69732746T2 (de) 2006-04-06
BR9702072A (pt) 1998-05-26
DE69732746C5 (de) 2020-11-19
JP3970327B2 (ja) 2007-09-05
WO1997030524A1 (en) 1997-08-21
CN1146129C (zh) 2004-04-14
JPH11504491A (ja) 1999-04-20

Similar Documents

Publication Publication Date Title
CN1114279C (zh) 复杂度减小的信号传输系统
CN1146129C (zh) 降低了复杂度的信号传输系统和方法
CN1154086C (zh) Celp转发
CN1121683C (zh) 语音编码
CN1132156C (zh) 具有减少复杂性的合成滤波器的celp语音编码器
CN1235190C (zh) 改善音频信号编码效率的方法
JPH08263099A (ja) 符号化装置
CN1589468A (zh) 确定数据帧是否包含已编码附加数据的方法和设备
CN1334952A (zh) 用于改善编码通信信号性能的编码增强特性
CN1173938A (zh) 综合分析语音编码方法
CN1140894C (zh) 可变位速率语音传输系统
CN1051099A (zh) 信号能量参数优化的数字语声编码器
DE69837296T2 (de) Verfahren und Vorrichtung zur Audiokodierung mittels einer mehrstufigen Mehrimpulsanregung
CN1234898A (zh) 具有改进语音编码器和解码器的发射机
WO2024021747A1 (zh) 声音编解码方法以及相关装置、系统
CN1124588C (zh) 信号编码方法及设备
CN1222996A (zh) 用于传输语音信号的传输系统
CN1124590C (zh) 改善话音信号编码器性能的方法
CN1104093C (zh) 语音传输系统
JP3471889B2 (ja) 音声符号化方法及び装置
CN105122358A (zh) 用于处理编码信号的装置和方法与用于产生编码信号的编码器和方法
US8050913B2 (en) Method and apparatus for implementing fixed codebooks of speech codecs as common module
CN1103973C (zh) 传输系统和方法及相应发射机、接收机、编码器、解码器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Applicant after: Koninklike Philips Electronics N. V.

Applicant before: Philips Electronics N. V.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: N.V. PHILIPS' OPTICAL LAMP LTD., CO. TO: ROYAL PHILIPS ELECTRONICS CO., LTD.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20040414

CX01 Expiry of patent term