CN118147027A - Method, strain and application for improving steroid precursor production by enhancing intracellular ATP metabolism - Google Patents
Method, strain and application for improving steroid precursor production by enhancing intracellular ATP metabolism Download PDFInfo
- Publication number
- CN118147027A CN118147027A CN202410225366.2A CN202410225366A CN118147027A CN 118147027 A CN118147027 A CN 118147027A CN 202410225366 A CN202410225366 A CN 202410225366A CN 118147027 A CN118147027 A CN 118147027A
- Authority
- CN
- China
- Prior art keywords
- mycobacterium
- mnr
- strain
- atpase
- genetically engineered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 150000003431 steroids Chemical class 0.000 title claims abstract description 21
- 239000002243 precursor Substances 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000003834 intracellular effect Effects 0.000 title claims abstract description 18
- 230000002708 enhancing effect Effects 0.000 title claims abstract description 15
- 230000004060 metabolic process Effects 0.000 title claims abstract description 12
- 108091006112 ATPases Proteins 0.000 claims abstract description 41
- 102000057290 Adenosine Triphosphatases Human genes 0.000 claims abstract description 39
- AEMFNILZOJDQLW-QAGGRKNESA-N androst-4-ene-3,17-dione Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 AEMFNILZOJDQLW-QAGGRKNESA-N 0.000 claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims abstract description 36
- AEMFNILZOJDQLW-UHFFFAOYSA-N androstenedione Natural products O=C1CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 AEMFNILZOJDQLW-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229960005471 androstenedione Drugs 0.000 claims abstract description 32
- 241000186359 Mycobacterium Species 0.000 claims abstract description 31
- 229930182558 Sterol Natural products 0.000 claims abstract description 29
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 29
- 150000003432 sterols Chemical class 0.000 claims abstract description 29
- 235000003702 sterols Nutrition 0.000 claims abstract description 29
- 241000894006 Bacteria Species 0.000 claims abstract description 21
- 238000000855 fermentation Methods 0.000 claims abstract description 21
- 230000004151 fermentation Effects 0.000 claims abstract description 21
- 102000004190 Enzymes Human genes 0.000 claims abstract description 6
- 108090000790 Enzymes Proteins 0.000 claims abstract description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 27
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 21
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 16
- -1 AD) Chemical compound 0.000 claims description 13
- 244000005700 microbiome Species 0.000 claims description 13
- 241000187488 Mycobacterium sp. Species 0.000 claims description 12
- 239000001963 growth medium Substances 0.000 claims description 12
- 238000011218 seed culture Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- FRHBOQMZUOWXQL-UHFFFAOYSA-L ammonium ferric citrate Chemical compound [NH4+].[Fe+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FRHBOQMZUOWXQL-UHFFFAOYSA-L 0.000 claims description 8
- LUJVUUWNAPIQQI-QAGGRKNESA-N androsta-1,4-diene-3,17-dione Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 LUJVUUWNAPIQQI-QAGGRKNESA-N 0.000 claims description 8
- 238000012258 culturing Methods 0.000 claims description 8
- 229960004642 ferric ammonium citrate Drugs 0.000 claims description 8
- 239000004313 iron ammonium citrate Substances 0.000 claims description 8
- 235000000011 iron ammonium citrate Nutrition 0.000 claims description 8
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 8
- 241000186365 Mycobacterium fortuitum Species 0.000 claims description 7
- 230000014509 gene expression Effects 0.000 claims description 7
- 241000233866 Fungi Species 0.000 claims description 6
- 241000186367 Mycobacterium avium Species 0.000 claims description 6
- 241000187481 Mycobacterium phlei Species 0.000 claims description 6
- 239000007857 degradation product Substances 0.000 claims description 6
- 238000010353 genetic engineering Methods 0.000 claims description 6
- 230000002503 metabolic effect Effects 0.000 claims description 6
- 229940055036 mycobacterium phlei Drugs 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 5
- 241000187469 Mycobacterium neoaurum Species 0.000 claims description 5
- 239000013604 expression vector Substances 0.000 claims description 5
- OSVMTWJCGUFAOD-KZQROQTASA-N formestane Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1O OSVMTWJCGUFAOD-KZQROQTASA-N 0.000 claims description 5
- 239000008103 glucose Substances 0.000 claims description 5
- 239000013598 vector Substances 0.000 claims description 5
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 4
- 241000660147 Escherichia coli str. K-12 substr. MG1655 Species 0.000 claims description 4
- 229910000396 dipotassium phosphate Inorganic materials 0.000 claims description 4
- 239000002054 inoculum Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- LUJVUUWNAPIQQI-UHFFFAOYSA-N (+)-androsta-1,4-diene-3,17-dione Natural products O=C1C=CC2(C)C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 LUJVUUWNAPIQQI-UHFFFAOYSA-N 0.000 claims description 3
- BTTWKVFKBPAFDK-UHFFFAOYSA-N (9beta,10alpha)-Androst-4-ene-3,17-dione Natural products OC1CCC2(C)C3CCC(C)(C(CC4)O)C4C3CCC2=C1 BTTWKVFKBPAFDK-UHFFFAOYSA-N 0.000 claims description 3
- SNMVJSSWZSJOGL-PLOWYNNNSA-N 9alpha-hydroxyandrost-4-en-3,17-dione Chemical compound O=C1CC[C@]2(C)[C@@]3(O)CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 SNMVJSSWZSJOGL-PLOWYNNNSA-N 0.000 claims description 3
- 241000187473 Mycobacterium aurum Species 0.000 claims description 3
- 241000187910 Mycobacterium gilvum Species 0.000 claims description 3
- 241000187480 Mycobacterium smegmatis Species 0.000 claims description 3
- 241000316848 Rhodococcus <scale insect> Species 0.000 claims description 3
- 239000002773 nucleotide Substances 0.000 claims description 3
- 125000003729 nucleotide group Chemical group 0.000 claims description 3
- 230000001954 sterilising effect Effects 0.000 claims description 3
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 241000588724 Escherichia coli Species 0.000 abstract description 12
- 230000001360 synchronised effect Effects 0.000 abstract description 2
- 102100023399 Protein moonraker Human genes 0.000 description 77
- 238000001514 detection method Methods 0.000 description 10
- 230000003833 cell viability Effects 0.000 description 8
- 230000002018 overexpression Effects 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000004544 DNA amplification Effects 0.000 description 4
- 101100484521 Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) atpF gene Proteins 0.000 description 4
- 101100110710 Streptococcus mutans serotype c (strain ATCC 700610 / UA159) atpH gene Proteins 0.000 description 4
- 241001052560 Thallis Species 0.000 description 4
- 101150090348 atpC gene Proteins 0.000 description 4
- 101150099875 atpE gene Proteins 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 3
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 3
- NJKOMDUNNDKEAI-UHFFFAOYSA-N beta-sitosterol Natural products CCC(CCC(C)C1CCC2(C)C3CC=C4CC(O)CCC4C3CCC12C)C(C)C NJKOMDUNNDKEAI-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 3
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 3
- 229950005143 sitosterol Drugs 0.000 description 3
- 230000035899 viability Effects 0.000 description 3
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 2
- NOIIUHRQUVNIDD-UHFFFAOYSA-N 3-[[oxo(pyridin-4-yl)methyl]hydrazo]-N-(phenylmethyl)propanamide Chemical compound C=1C=CC=CC=1CNC(=O)CCNNC(=O)C1=CC=NC=C1 NOIIUHRQUVNIDD-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 101710088194 Dehydrogenase Proteins 0.000 description 2
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 229940076810 beta sitosterol Drugs 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 229960003399 estrone Drugs 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- DTBNBXWJWCWCIK-UHFFFAOYSA-N phosphoenolpyruvic acid Chemical compound OC(=O)C(=C)OP(O)(O)=O DTBNBXWJWCWCIK-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- KZJWDPNRJALLNS-VPUBHVLGSA-N (-)-beta-Sitosterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@@H](C(C)C)CC)C)CC4)CC3)CC=2)CC1 KZJWDPNRJALLNS-VPUBHVLGSA-N 0.000 description 1
- MLBZLJCMHFCTQM-UHFFFAOYSA-N (2-methylphenyl)-diphenylphosphane Chemical compound CC1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 MLBZLJCMHFCTQM-UHFFFAOYSA-N 0.000 description 1
- CSVWWLUMXNHWSU-UHFFFAOYSA-N (22E)-(24xi)-24-ethyl-5alpha-cholest-22-en-3beta-ol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(CC)C(C)C)C1(C)CC2 CSVWWLUMXNHWSU-UHFFFAOYSA-N 0.000 description 1
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 1
- RQOCXCFLRBRBCS-UHFFFAOYSA-N (22E)-cholesta-5,7,22-trien-3beta-ol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CCC(C)C)CCC33)C)C3=CC=C21 RQOCXCFLRBRBCS-UHFFFAOYSA-N 0.000 description 1
- ZNWOYQVXPIEQRC-ZRFCQXGJSA-N (8s,9s,10r,13s,14s,17r)-17-(1-hydroxypropan-2-yl)-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(CO)C)[C@@]1(C)CC2 ZNWOYQVXPIEQRC-ZRFCQXGJSA-N 0.000 description 1
- QETBTXOVEBTJQH-VJFOQZSSSA-N 2-[(8s,9s,10r,13s,14s,17r)-10,13-dimethyl-3-oxo-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl]propanoic acid Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(C)C(O)=O)[C@@]1(C)CC2 QETBTXOVEBTJQH-VJFOQZSSSA-N 0.000 description 1
- KLEXDBGYSOIREE-UHFFFAOYSA-N 24xi-n-propylcholesterol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CCC)C(C)C)C1(C)CC2 KLEXDBGYSOIREE-UHFFFAOYSA-N 0.000 description 1
- QETBTXOVEBTJQH-WAMTXRNCSA-N 3-oxo-23,24-bisnorchol-4-en-22-oic acid Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)C(O)=O)[C@@]1(C)CC2 QETBTXOVEBTJQH-WAMTXRNCSA-N 0.000 description 1
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 1
- LPZCCMIISIBREI-MTFRKTCUSA-N Citrostadienol Natural products CC=C(CC[C@@H](C)[C@H]1CC[C@H]2C3=CC[C@H]4[C@H](C)[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)C(C)C LPZCCMIISIBREI-MTFRKTCUSA-N 0.000 description 1
- ARVGMISWLZPBCH-UHFFFAOYSA-N Dehydro-beta-sitosterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)CCC(CC)C(C)C)CCC33)C)C3=CC=C21 ARVGMISWLZPBCH-UHFFFAOYSA-N 0.000 description 1
- DNVPQKQSNYMLRS-NXVQYWJNSA-N Ergosterol Natural products CC(C)[C@@H](C)C=C[C@H](C)[C@H]1CC[C@H]2C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C DNVPQKQSNYMLRS-NXVQYWJNSA-N 0.000 description 1
- YPZRHBJKEMOYQH-UYBVJOGSSA-N FADH2 Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1COP(O)(=O)OP(O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C(NC(=O)NC2=O)=C2NC2=C1C=C(C)C(C)=C2 YPZRHBJKEMOYQH-UYBVJOGSSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241001467578 Microbacterium Species 0.000 description 1
- 101100161224 Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) ksdD gene Proteins 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 108010087230 Sincalide Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- MJVXAPPOFPTTCA-UHFFFAOYSA-N beta-Sistosterol Natural products CCC(CCC(C)C1CCC2C3CC=C4C(C)C(O)CCC4(C)C3CCC12C)C(C)C MJVXAPPOFPTTCA-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000002327 cardiovascular agent Substances 0.000 description 1
- 229940125692 cardiovascular agent Drugs 0.000 description 1
- 238000010609 cell counting kit-8 assay Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000006571 energy metabolism pathway Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- DNVPQKQSNYMLRS-SOWFXMKYSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H](CC[C@]3([C@H]([C@H](C)/C=C/[C@@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-SOWFXMKYSA-N 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000003208 gene overexpression Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000003163 gonadal steroid hormone Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000007269 microbial metabolism Effects 0.000 description 1
- 238000013048 microbiological method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 230000009670 mycobacterial growth Effects 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- VIKNJXKGJWUCNN-XGXHKTLJSA-N norethisterone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 VIKNJXKGJWUCNN-XGXHKTLJSA-N 0.000 description 1
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 235000002378 plant sterols Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 229940076788 pyruvate Drugs 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 1
- 235000015500 sitosterol Nutrition 0.000 description 1
- NLQLSVXGSXCXFE-UHFFFAOYSA-N sitosterol Natural products CC=C(/CCC(C)C1CC2C3=CCC4C(C)C(O)CCC4(C)C3CCC2(C)C1)C(C)C NLQLSVXGSXCXFE-UHFFFAOYSA-N 0.000 description 1
- VSIVTUIKYVGDCX-UHFFFAOYSA-M sodium;4-[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)tetrazol-2-ium-5-yl]benzene-1,3-disulfonate Chemical compound [Na+].COC1=CC([N+]([O-])=O)=CC=C1[N+]1=NC(C=2C(=CC(=CC=2)S([O-])(=O)=O)S([O-])(=O)=O)=NN1C1=CC=C([N+]([O-])=O)C=C1 VSIVTUIKYVGDCX-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229960002256 spironolactone Drugs 0.000 description 1
- LXMSZDCAJNLERA-ZHYRCANASA-N spironolactone Chemical compound C([C@@H]1[C@]2(C)CC[C@@H]3[C@@]4(C)CCC(=O)C=C4C[C@H]([C@@H]13)SC(=O)C)C[C@@]21CCC(=O)O1 LXMSZDCAJNLERA-ZHYRCANASA-N 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P33/00—Preparation of steroids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/32—Mycobacterium
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention belongs to the technical field of biocatalysis, and discloses a method, a strain and application for improving steroid precursor production by enhancing intracellular ATP metabolism, wherein the strain is obtained by constructing genes for expressing ATP enzyme subunits singly or in combination in host bacteria. The invention obtains the strain by over-expressing ATPase subunit gene from escherichia coli in sterol conversion strain MNR, and the highest androstenedione conversion rate reaches 89.1% in the fermentation process, which is improved by 12.4% compared with that of the synchronous starting strain MNR; the MNR-ATPase MNR is obtained by over-expressing an ATPase subunit gene derived from the new Mycobacterium aureum in MNR, the highest androstenedione conversion efficiency reaches 93.2% in the fermentation process, the androstenedione conversion efficiency is improved by 16.5% compared with that of the MNR of the contemporaneous starting strain, and the highest conversion rate is 2.2 times of that of the starting strain.
Description
Technical Field
The invention belongs to the technical field of biocatalysis, and in particular relates to a method, a strain and application for improving steroid precursor production by enhancing intracellular ATP metabolism.
Background
Steroid compounds are essential for the normal functioning of the organism and when the organism itself is under-produced, active intake of such steroid compounds is required to supplement the normal needs of the organism. Up to hundreds of steroid drugs are currently marketed, which are widely used clinically as diuretics, anti-inflammatory agents, steroid hormone immunogens and cardiovascular drugs, which lead to a great demand for precursors of such drugs.
The industrial production of steroid medicine precursor mainly utilizes microbial conversion method to make cheap and easily-obtained raw materials of plant sterol, beta sitosterol, ergosterol and cholesterol undergo the process of microbial metabolism, separation and purification so as to obtain the invented multifunctional high-value steroid medicine precursor. The phytosterol is taken as a raw material, and the producible steroid precursor mainly comprises two major categories of C19-steroid (AD, ADD, 9-OHAD) and C22-steroid (20-carboxyl-pregn-4-en-3-one, 4-BNC, 20-hydroxymethyl-pregn-4-en-3-one and 4-BNA). Wherein, androstane-4-alkene-3, 17-diketone (Androstenedione, AD) can be used for producing androgen, protein assimilation hormone, spirolactone and other medicaments; androstane-1, 4-di-ene-3, 17-dione (Androsta-diene-dione, ADD) produced by dehydrogenation of AD at C1, 2-position can be used to synthesize 19-nor-steroid estrogens, such as Estrone (Estrone), norethindrone (Norethisterone), progesterone (Progestin), and the like. In addition to synthetic sex hormones, the introduction of corticosteroid side chains on the keto groups of AD may also enable the use of them in the production of corticoids, or by hydroxylation at different sites, more types of steroid intermediates such as 9α -OH-AD, 5α -OH-AD, 11α -OH-AD, etc. are produced.
In the process of generating androstenedione by sterol metabolism, a molecule of beta sitosterol can be subjected to preliminary oxidation and side chain degradation by microorganisms, and the complete degradation of a molecule of sitosterol can generate about 10mol of FADH 2 and 21mol of NADH, and finally about 80mol of ATP can be generated, so that the ATP in a bacterium body is excessively accumulated, and cytotoxicity is generated. The accumulation of ATP can inhibit activities of key metabolic enzymes such as pyruvate dehydrogenase and the like related to life, even the main energy metabolism pathway of the strain is in reverse circulation, and the activity of the strain is influenced, so that the yield of androstenedione is limited, and the industrial production cost is increased.
Disclosure of Invention
The invention aims to overcome the defects in the prior art and provides a method, a strain and application for improving the production of steroid precursors by enhancing intracellular ATP metabolism.
The technical scheme adopted for solving the technical problems is as follows:
a genetic engineering strain for efficiently converting sterols is characterized in that: the strain is obtained by constructing a gene for expressing an ATPase subunit singly or in combination in a host bacterium, and the metabolic capacity of the strain on ATP is enhanced by enhancing the expression of the gene in the sterol conversion strain, so that the sterol conversion rate is improved.
Further, the host bacteria of the genetically engineered strain are bacteria or fungi with sterol conversion capability;
or the steroid precursor is obtained after the genetically engineered strain converts sterols, and comprises hydroxylated derivatives and A-ring degradation products;
or the ATPase subunit is expressed by a vector.
Further, the bacterium or fungus having sterol conversion ability is a mycobacterium microorganism or rhodococcus microorganism;
The hydroxylated derivatives and A-ring degradation products include androsta-4-ene-3, 17-dione (androst-4-ene-3, 17-dione, AD), androsta-1, 4-diene-3,17-dione (Androst-1, 4-diene-3,17-dione, ADD), 9 alpha-hydroxyandrosta-4-ene-3, 17-dione (9 alpha-hydroxyandrost-4-ene-3, 17-dione,9 alpha-OH-AD);
the expression vector is pMV261.
Further, the Mycobacterium microorganism is selected from the group consisting of Mycobacterium (Mycobacterium sp.) NRRLB-3683, mycobacterium (Mycobacterium sp.) NRRLB-3805, mycobacterium smegmatis (Mycobacterium smegmatism), mycobacterium fortuitum (Mycobacterium fortuitum), mycobacterium microbacterium (Mycobacterium gilvum), mycobacterium neogolden (Mycobacterium neoaurum), mycobacterium phlei (Mycobacterium Phlei), mycobacterium avium (Mycobacterium avium);
The genetically engineered strain expresses an ATPase subunit in the novel Mycobacterium aurum MNR via pMV 261.
Further, the Mycobacterium microorganism is Mycobacterium neogold (Mycobacterium sp.) mnrm3Δ KsdD.
Further, the ATPase subunits are respectively derived from escherichia coli MG1655 and MNR, and the amino acid sequences are respectively shown as SEQ ID NO.1 and SEQ ID NO. 2;
or coding genes E.coliATPase-F1, MNRATPASE-F1 of the ATPase subunit, and the nucleotide sequence is SEQ ID NO.3 and SEQ ID NO.4.
The application of the genetically engineered strain in the production of steroid precursors.
A method for improving the production of steroid precursor by enhancing intracellular ATP metabolism includes such steps as preparing genetically engineered strain by single over-expression or combined expression of ATP enzyme subunit genes in host bacteria, and enhancing the expression of said genes in sterol transformed strain to increase ATP metabolism of said strain and increase sterol conversion rate.
A method for producing androstane-4-alkene-3, 17-dione by using the genetic engineering strain comprises the following steps of;
Transferring seed culture solution of the genetically engineered bacteria into a fermentation culture medium according to the inoculum size of 2% -12%, and culturing for 48-168 hours under the conditions of 25-37 ℃ and 140-220 rpm; the molar conversion rate of androstenedione can reach 50% -99%.
Further, the seed culture medium comprises the following components: k 2HPO40.5 g/L,MgSO4, 0.5, g/L, ferric ammonium citrate, 0.05g/L, citric acid, 2g/L, ammonium nitrate, 20g/L glycerol, 5g/L glucose, caCO 3, 1, g/L and water as a solvent, wherein the pH value is 7.2;
the composition of the fermentation culture is as follows: (NH 4)2HPO40.1~4g/L,K2HPO40.1~3g/L,MgSO4 -0.1 g/L, ferric ammonium citrate 0.01-0.2 g/L, citric acid 1-5 g/L, reducing sugar 5-50 g/L, sterol 1-50 g/L, water as solvent, pH 6.0-7.5, and sterilizing with high pressure steam.
The invention has the advantages and positive effects that:
1. The invention obtains the strain MNR-ATPase E.coli by over-expressing an ATPase subunit gene derived from escherichia coli in a sterol conversion strain MNR, and the highest androstenedione conversion rate reaches 89.1% in the fermentation process, which is improved by 12.4% compared with that of a synchronous starting strain MNR; the MNR-ATPase MNR is obtained by over-expressing an ATPase subunit gene derived from the new Mycobacterium aureum in MNR, the highest androstenedione conversion efficiency reaches 93.2% in the fermentation process, the androstenedione conversion efficiency is improved by 16.5% compared with that of the MNR of the contemporaneous starting strain, and the highest conversion rate is 2.2 times of that of the starting strain.
2. The invention solves the problems that in the production process of the steroid precursor by a microbiological method, intracellular ATP accumulation of the strain in the later period of fermentation leads to the reduction of sterol conversion rate and consequently leads to the high price of the steroid precursor.
Drawings
FIG. 1 is an electrophoretogram of amplified products of ATPase MNR and ATPase E genes of the present invention; wherein, lane M is a DNA standard marker, lane 1 is an ATPase E gene amplification band, and lane 2 is an ATPase MNR gene amplification band;
FIG. 2 is a colony PCR verification map of the construction process of the vector pMV261-ATPase MNR、pMV261-ATPaseE of the present invention; wherein, lane M is a DNA standard marker, lane 1 is a pMV261-ATPase E gene amplification band, and lane 2 is a pMV261-ATPase MNR gene amplification band;
FIG. 3 is a graph showing ATP changes during the transformation of the strains MNR-ATPase MNR、MNR-ATPaseE.coli and MNR according to the invention;
FIG. 4 is a graph showing changes in viability of the MNR-ATPase MNR、MNR-ATPaseE.coli and MNR-transformed cells of the present invention;
FIG. 5 is a graph showing growth curves during the transformation of the strains MNR-ATPase MNR、MNR-ATPaseE.coli and MNR according to the invention;
FIG. 6 is a diagram showing the production of androstenedione by the strains MNR-ATPase MNR、MNR-ATPaseE.coli and MNR according to the present invention.
Detailed Description
The invention will now be further illustrated by reference to the following examples, which are intended to be illustrative, not limiting, and are not intended to limit the scope of the invention.
The various experimental operations involved in the specific embodiments are conventional in the art, and are not specifically noted herein, and may be implemented by those skilled in the art with reference to various general specifications, technical literature or related specifications, manuals, etc. before the filing date of the present invention.
A genetic engineering strain for efficiently converting sterols is characterized in that: the strain is obtained by constructing a gene for expressing an ATPase subunit singly or in combination in a host bacterium, and the metabolic capacity of the strain on ATP is enhanced by enhancing the expression of the gene in the sterol conversion strain, so that the sterol conversion rate is improved.
Preferably, the host bacteria of the genetically engineered strain are bacteria or fungi with sterol conversion capability;
or the steroid precursor is obtained after the genetically engineered strain converts sterols, and comprises hydroxylated derivatives and A-ring degradation products;
or the ATPase subunit is expressed by a vector.
Preferably, the bacterium or fungus having sterol conversion ability is a mycobacterium microorganism or rhodococcus microorganism;
The hydroxylated derivatives and A-ring degradation products include androsta-4-ene-3, 17-dione (androst-4-ene-3, 17-dione, AD), androsta-1, 4-diene-3,17-dione (Androst-1, 4-diene-3,17-dione, ADD), 9 alpha-hydroxyandrosta-4-ene-3, 17-dione (9 alpha-hydroxyandrost-4-ene-3, 17-dione,9 alpha-OH-AD);
the expression vector is pMV261.
Preferably, the Mycobacterium microorganism is selected from the group consisting of Mycobacterium (Mycobacterium sp.) NRRLB-3683, mycobacterium (Mycobacterium sp.) NRRLB-3805, mycobacterium smegmatis (Mycobacterium smegmatism), mycobacterium fortuitum (Mycobacterium fortuitum), mycobacterium fortuitum (Mycobacterium gilvum), mycobacterium neogolden (Mycobacterium neoaurum), mycobacterium phlei (Mycobacterium Phlei), mycobacterium avium (Mycobacterium avium);
The genetically engineered strain expresses an ATPase subunit in the novel Mycobacterium aurum MNR via pMV 261.
Preferably, the Mycobacterium microorganism is Mycobacterium neogold (Mycobacterium sp.) mnrm3Δ KsdD.
Preferably, the ATPase subunits are respectively derived from escherichia coli MG1655 and MNR, and the amino acid sequences are respectively shown as SEQ ID NO.1 and SEQ ID NO. 2;
or coding genes E.coliATPase-F1, MNRATPASE-F1 of the ATPase subunit, and the nucleotide sequence is SEQ ID NO.3 and SEQ ID NO.4.
The application of the genetically engineered strain in the production of steroid precursors.
A method for improving the production of steroid precursor by enhancing intracellular ATP metabolism includes such steps as preparing genetically engineered strain by single over-expression or combined expression of ATP enzyme subunit genes in host bacteria, and enhancing the expression of said genes in sterol transformed strain to increase ATP metabolism of said strain and increase sterol conversion rate.
A method for producing androstane-4-alkene-3, 17-dione by using the genetic engineering strain comprises the following steps of;
Transferring seed culture solution of the genetically engineered bacteria into a fermentation culture medium according to the inoculum size of 2% -12%, and culturing for 48-168 hours under the conditions of 25-37 ℃ and 140-220 rpm; the molar conversion rate of androstenedione can reach 50% -99%.
Preferably, the seed culture medium comprises the following components: k 2HPO40.5 g/L,MgSO4, 0.5, g/L, ferric ammonium citrate, 0.05g/L, citric acid, 2g/L, ammonium nitrate, 20g/L glycerol, 5g/L glucose, caCO 3, 1, g/L and water as a solvent, wherein the pH value is 7.2;
the composition of the fermentation culture is as follows: (NH 4)2HPO40.1~4g/L,K2HPO40.1~3g/L,MgSO4 -0.1 g/L, ferric ammonium citrate 0.01-0.2 g/L, citric acid 1-5 g/L, reducing sugar 5-50 g/L, sterol 1-50 g/L, water as solvent, pH 6.0-7.5, and sterilizing with high pressure steam.
Specifically, the preparation and detection of the correlation are as follows:
The host Mycobacterium (Mycobacterium sp.) MNR m3Δ KsdD (hereinafter abbreviated as mnr.) used in the present invention is obtained by knocking out the KsdD gene from Mycobacterium (Mycobacterium sp.) MNR M3 (numbered CICC 21097). The construction of a specific strain mnrm3Δ KsdD has been disclosed in Rili Xie,Yanbing Shen,Ning Qin,Yibo Wang,Liqiu Su,Min Wang.Genetic differences in ksdD influence on the ADD/AD ratio of Mycobacterium Neoaurum.Journal of Industrial Microbiology&Biotechnology,2015,42:507-513. wherein the strain mnrm3 has the code TCCC 11028:11028m3 in this article and the same strain as described herein (Mycobacterium sp.) mnrm3, numbered cic 21097.
The invention will be further explained by means of the following embodiments.
Example 1:
the ATPase MNR derived from MNR M3 and the ATPase derived from E.coli MG 1655.
MNR is inoculated to LB culture medium, genomic DNA is extracted, and ATPase MNR gene PCR primer is designed by taking genome as a template:
Matp F:gcggatccagctgcagaattcATGGCAGAGTTGACAATCTCCG
Matp R:acgctagttaactacgtcgacTCACAGCTTGGCGCCGAG
PCR amplification was performed using Matp F and Matp R as primer pairs to obtain the ATPase MNR gene of the ATPase subunit of MNR. The amplified products were detected by nucleic acid electrophoresis (FIG. 1).
E.coli MG1655 is inoculated to LB culture medium, extracting its genome DNA, taking genome as template, designing ATPase E gene PCR primer:
atpE F:gcggatccagctgcagaattcATGCAACTGAATTCCACCGAA
atpE R:acgctagttaactacgtcgacTTAAAGTTTTTTGGCTTTTTCCACA
PCR amplification was performed using atpE F and atpE R as primer pairs to obtain the ATPase E gene, an ATPase subunit of MNR M3. The amplified products were detected by nucleic acid electrophoresis (FIG. 1).
Example 2:
An expression vector for over-expression of ATPase MNR、ATPaseE coding genes is constructed.
And (3) recovering the ATPase MNR、ATPaseE gene PCR product obtained in the last step through a purification kit, performing seamless cloning connection with a pMV261 linearization vector subjected to SalI and BamHI double digestion, constructing an over-expression plasmid pMV261-ATPase MNR、pMV261-ATPaseE, transferring the connection product into E.coli DH5 alpha through a chemical conversion method, and screening positive clones through kanamycin resistance. The positive cloning plasmid is extracted, and the successfully constructed expression vector pMV261-ATPase MNR、pMV261-ATPaseE is obtained after colony PCR and enzyme digestion verification (figure 2) and sequencing.
Example 3:
Construction of ATPase MNR、ATPaseE Gene-enhanced Strain MNR-ATPase MNR、MNR-ATPaseE.coli.
MNR competent preparation: taking a loop of MNR glycerol bacteria by an inoculating loop, culturing for 3 days at 30 ℃ by three dividing lines on an antibiotic-free LB plate, picking single bacterial colonies into an antibiotic-free LB test tube, culturing for 2 days at 30 ℃ at 200r/min, and transferring the single bacterial colonies into a seed culture medium (without calcium carbonate) according to 10% of inoculum size for secondary seed culture; after 36h, 20% (V/V, vol) glycine was added at a concentration of 10% (V/V, vol) and the culture was continued for 24h. Precooling in ice bath, centrifugally collecting thalli at 4 ℃, flushing and centrifuging the suspended thalli by precooled glycerol with the concentration of 10% (V/V, volume concentration) which is 1 time, 3/4 times, 1/2 times and 1/4 times of the volume of the fermentation liquor, finally adding the glycerol suspended thalli with the concentration of 10% (V/V, volume concentration) which is 1/25 times of the volume of the fermentation liquor, and subpackaging for storage;
Electric conversion: 10 mu L of constructed gene overexpression plasmid pMV261-ATPase MNR、pMV261-ATPaseE is taken and added into 100 mu L of competent thalli to be placed for 30min and then transferred into an electric rotating cup for electric shock. The electric shock condition is 2kV/cm,25 mu F,720 omega, and the ice is placed for 5min after 4-6 ms of electric transfer. To the electric rotor, 700. Mu.L of fresh sterilized LB medium was added, mixed well, transferred to a 1.5mL sterilized EP tube, and resuscitated at 30℃for 4 hours at 200 rpm.
Screening and verification: concentrating the resuscitated bacterial liquid, coating the concentrated bacterial liquid on LB solid medium containing 20 mug/mL of kanamycin for culturing for 5 days, picking single colony, extracting plasmid, and sequencing to verify that the sequence is aligned completely or the sequence is mutated unintentionally to obtain MNR M3 delta KsdD-ATPase MNR、MNR M3ΔKsdD-ATPaseE strain which is expressed correctly ATPase MNR、ATPaseE, and is hereinafter referred to as MNR-ATPase MNR、MNR-ATPaseE.coli strain.
Example 4:
MNR-ATPase MNR、MNR-ATPaseE.coli is used for androstenedione production.
Strain activation and seed preparation: respectively transferring the original strain MNR, MNR-ATPase MNR and MNR-ATPase E.coli over-expression strain onto fresh LB culture medium, culturing for 2d at 30 ℃, washing with 20mL of 0.5% (V/V, volume concentration) Tween 80 sterile aqueous solution, sucking the l mL of eluent, adding into 50mL of seed culture medium, and shake culturing for 36h at 30 ℃ and 200rpm to obtain seed solution;
Androstenedione production process: the seed solution obtained in the step 1 is respectively transferred into a fermentation medium according to the inoculation amount of 8 percent, and the seed solution is biologically transformed for 168 hours under the conditions of 30 ℃ and 140 rpm.
The seed culture medium consists of: k 2HPO40.5 g/L,MgSO4, 0.5, g/L, ferric ammonium citrate, 0.05g/L, citric acid, 2g/L, ammonium nitrate, 20g/L glycerol, 5g/L glucose, caCO 3, 1, g/L and the balance water, wherein the pH is 7.2.
The fermentation medium comprises the following components: (NH 4) 2HPO43.5 g/L,K2HPO40.5 g/L,MgSO4 0.4.4 g/L, ferric ammonium citrate 0.05g/L, citric acid 2g/L, glucose 10g/L, phytosterol 5g/L, and water for the rest, and the pH is 6.8-7.2.
Example 5:
ATP content detection during production of the strains MNR-ATPase MNR、MNR-ATPaseE.coli and MNR androstenedione.
The production of androstenedione was carried out according to the method of the previous step using MNR-ATPase MNR、MNR-ATPaseE.coli and MNR, and 1mL of sample was taken every 24h during the production process for intracellular ATP detection of the strain.
Intracellular ATP concentration assay: intracellular ATP concentration was determined by fluorescence. 100. Mu.L of the fermentation broth was added to a black 96-well plate, and 100. Mu. LBacTiterGloTM reagent (Promega, shanghai) was added thereto, and the mixture was shaken at 25℃for 2 minutes at 100r/min, and the fluorescence value was measured in a Lumineancement mode using INFINITE M Pro (Tecan, switzerland). And calculating the ATP concentration corresponding to the fluorescence value by using a standard curve.
Comparison of results:
the results of the detection of intracellular ATP content during fermentation of recombinant strain MNR-ATPase MNR、MNR-ATPaseE.coli and original strain MNR are shown in FIG. 3. The results show that the intracellular ATP content and the ATP growth rate of the recombinant strain are lower than those of the original strain. MNR-ATPase MNR has an intracellular ATP increase rate of k=0.1771, MNR-ATPase E has an intracellular ATP increase rate of k=0.166, and MNR has an intracellular ATP increase rate of k= 0.2304. This result demonstrates that overexpression of ATPase MNR and ATPase E can effectively enhance the metabolic capacity of ATP of the strain, solving the problem of ATP accumulation.
Example 6:
Cell viability detection during production of the MNR-ATPase MNR、MNR-ATPaseE.coli and MNR androstenedione strains.
Production of androstenedione was performed by using MNR-ATPase MNR、MNR-ATPaseE.coli and MNR as in example 4, and 1mL was sampled every 24 hours during production for strain cell viability detection.
Cell viability verification: the bacterial viability detection adopts an improved CCK-8 method, and 2- (2-methoxy-4-nitrophenyl) -3- (4-nitrophenyl) -5- (2, 4-disulfophenyl) -2H-tetrazolium monosodium salt (WST-8) can be reduced into orange-yellow water-soluble formazan by bacterial dehydrogenase in the presence of an electronic carrier, and the generation amount and bacterial activity of the orange-yellow water-soluble formazan are positively correlated. The formazan has a maximum absorption peak at 450nm, and the activity of the thallus can be reflected by detecting the absorption value at 450 nm. After the OD 600 of the fermentation broth in different time periods was adjusted to 1 by using a pH 7.2Tris-HCl buffer, 190. Mu.L of the fermentation broth was added to a 96-well plate, WST-810. Mu.L of the fermentation broth was added to each well, and after incubation at 30 ℃ for 1 hour, the absorbance at 450nm was detected by using an enzyme-labeled instrument (INFINITE M Pro).
Comparison of results:
As shown in FIG. 4, in the middle and late stages of androstenedione production using MNR-ATPase MNR、MNR-ATPaseE.coli and MNR, strain viability tended to decrease due to cytotoxicity resulting from the accumulation of ATP excess. The cell viability decline rate (k= 0.01906) of the recombinant strain MNR-ATPase MNR was lower than MNR (k= 0.02232), the cell viability decline rate was 80% of MNR, the cell viability decline rate (k= 0.02179) of the recombinant strain MNR-ATPase E.coli was lower than MNR (k= 0.02232), the cell viability decline rate was 97% of MNR, and it was demonstrated that enhancing ATP metabolism was beneficial to reducing cytotoxicity resulting from ATP accumulation in excess in the post-production period, maintaining cell viability.
Example 7:
MNR-ATPase MNR、MNR-ATPaseE.coli was compared to the production performance of the original strain MNR androstenedione.
The production of androstenedione was carried out by using MNR-ATPase MNR、MNR-ATPaseE.coli and MNR as in example 4, and 1mL was sampled under aseptic conditions every 24 hours during the reproduction to carry out the detection of the androstenedione production rate.
Sample detection: sampling every 24 hours, taking 1mL of fermentation liquor, adding an equal volume of ethyl acetate, and carrying out ultrasonic treatment for 30min. Centrifuge at 14,000rpm for 10min, aspirate 100. Mu.L of supernatant, dry at room temperature, re-suspend the sample with 80% methanol, sonicate 30min, centrifuge at 14,000rpm for 10min, aspirate supernatant, and perform HPLC analysis.
The parameters of the Agilent 2000 chromatograph are set as follows: c18 (4.6X1250 mm) column, column temperature 30 ℃; mobile phase methanol/water (8:2, V/V), flow rate 1mL/min, detection wavelength 254nm, sample injection amount 10. Mu.L, each sample run for 8min. Androstenedione production and conversion were calculated according to standard curves.
1ML of the sample was sampled by the same method, and the absorbance at a wavelength of 600nm was measured by an ultraviolet spectrophotometer to determine the change in biomass.
Comparison of results:
As shown in FIG. 5, during androstenedione production using MNR-ATPase MNR、MNR-ATPaseE.coli and MNR, the biomass of MNR-ATPase MNR and MNR-ATPase E.coli was slightly lower than that of MNR, indicating that overexpression of ATPase MNR and MNR-ATPase E.coli inhibited mycobacterial growth to some extent, which may be due to enhanced ATP metabolizing capacity at the beginning of transformation.
As shown in FIG. 6, the androstenedione conversion efficiencies of the recombinant strains MNR-ATPase MNR and MNR-ATPase E.coli were progressively higher in the middle and later stages of the transformation than in the original strain MNR. At 120h, the molar conversion of the recombinant strain MNR-ATPase MNR androstenedione was 89.1% and 1.16 times that of the original strain. At 120h, the molar conversion of the recombinant strain MNR-ATPase E.coli androstenedione was 93.2% and 2.2 times that of the original strain.
By combining the analysis of examples 3-6, the overexpression of ATPase MNR and ATPase E genes can effectively enhance the ATP metabolic capacity of the strain, so that the strain is in a favorable Yu Xiong enedione generation state at the later production stage, and the method has obvious enhancement effect on improving the androstenedione production capacity of mycobacterium.
Currently, in article Xiuling Zhou,Yang Zhang,Yanbing Shen,Xiao Zhang,Zehui Zan,Menglei Xia,Jianmei Luo,Min Wang.Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle.Bioresource Technology,2020,309:123307, ATP empty cycle (PAFC) based on the interconversion of pyruvic acid and phosphoenolpyruvic acid and ATP empty cycle (CAFC) based on the interconversion of oxaloacetic acid and citric acid are used to reduce intracellular ATP content, so as to achieve the purpose of improving androstenedione production efficiency. When the same transformation condition as that of the present invention is adopted, the recombinant strain MNR-C3 has highest androstenedione molar conversion rate of 93.2% in 144 hr, and the transformation time is 24 hr longer than that of the present invention, and the transformation effect is poorer than that of the present invention.
The sequences used in the present invention are as follows:
SEQ ID NO.1 Escherichia coli MG1655 ATPase subunit
MQLNSTEISELIKQRIAQFNVVSEAHNEGTIVSVSDGVIRIHGLADCMQGEMISLPGNRYAIALNLERDSVGAVVMGPYADLAEGMKVKCTGRILEVPVGRGLLGRVVNTLGAPIDGKGPLDHDGFSAVEAIAPGVIERQSVDQPVQTGYKAVDSMIPIGRGQRELIIGDRQTGKTALAIDAIINQRDSGIKCIYVAIGQKASTISNVVRKLEEHGALANTIVVVATASESAALQYLAPYAGCAMGEYFRDRGEDALIIYDDLSKQAVAYRQISLLLRRPPGREAFPGDVFYLHSRLLERAARVNAEYVEAFTKGEVKGKTGSLTALPIIETQAGDVSAFVPTNVISITDGQIFLETNLFNAGIRPAVNPGISVSRVGGAAQTKIMKKLSGGIRTALAQYRELAAFSQFASDLDDATRKQLDHGQKVTELLKQKQYAPMSVAQQSLVLFAAERGYLADVELSKIGSFEAALLAYVDRDHAPLMQEINQTGGYNDEIEGKLKGILDSFKATQSW*MAGAKEIRSKIASVQNTQKITKAMEMVAASKMRKSQDR MAASRPYAETMRKVIGHLAHGNLEYKHPYLEDRDVKRVGYLVVSTDRGLCGGLNINLFKKLLAEMKTWTDKGVQCDLAMIGSKGVSFFNSVGGNVVAQVTGMGDNPSLSELIGPVKVMLQAYDEGRLDKLYIVSNKFINTMSQVPTISQLLPLPASDDDDLKHKSWDYLYEPDPKALLDTLLRRYVESQVYQGVVENLASEQAARMVAMKAATDNGGSLIKELQLVYNKARQASITQELTEIVSGAAAV*MATGKIVQVIGAVVDVEFPQDAVPRVYDALEVQNGNERLVLEVQQQLGGGIV RTIAMGSSDGLRRGLDVKDLEHPIEVPVGKATLGRIMNVLGEPVDMKGEIGEEERWAIHRAAPSYEELSNSQELLETGIKVIDLMCPFAKGGKVGLFGGAGVGKTVNMMELIRNIAIEHSGYSVFAGVGERTREGNDFYHEMTDSNVIDKVSLVYGQMNEPPGNRLRVALTGLTMAEKFRDEGRDVLLFVDNIYRYTLAGTEVSALLGRMPSAVGYQPTLAEEMGVLQERITSTKTGSITSVQAVYVPADDLTDPSPATTFAHLDATVVLSRQIASLGIYPAVDPLDSTSRQLDPLVVGQEHYDTARGVQSILQRYQELKDIIAILGMDELSEEDKLVVARARKIQRFLSQPFFVAEVFTGSPGKYVSLKDTIRGFKGIMEGEYDHLPEQAFYMVGSIEEAVEKAKKL*
SEQ ID NO.2 MNATATInase subunit
MAELTISASDIEGAIEGYVSSFSADTEREEVGTVVDAGDGIAHVEGLPSVMTQELLEFEGGVLGVALNLDEHSVGAVILGEFNKIEEGQQVKRTGEVLSVPVGDAFLGRVVNPLGQPIDGQGDIASDTRRELELQAPSVVQRQGVGEPLQTGIKAIDAMTPIGRGQRQLIIGDRKTGKTAVCVDTILNQRQAWETGDPNQQVRCVYVAIGQKGTTIASVKRALEDGGAMEYTTIVAAPASDPAGFKWLAPYTGSAIGQHWMYDGKHVLIVFDDLSKQADAYRAISLLLRRPPGREAFPGDVFYLHSRLLERCAKLSDELGGGSMTGLPIIETKANDISAFIPTNVISITDGQCFLESDLFNQGVRPAVNVGVSVSRVGGAAQIKAMKEVAGSLRLDLSQYRELEAFAAFASDLDAASKAQLDRGVRLVELLKQPQYSPLAVEDQVVAIFLGTQGHLDSVPAEDVSRFVDELLEHVKASHSDILDGIRETKKLSEEAEQKLVNVINDFKKGFSASDGSSVVVNEADSEALDPEDLEKESVKVRKPAPKKA*MAATLRELRGRIKSASSIKKITKAQELIATSRIAKAQARVDAARPYSTEITNMLTELASASALDHPLLVPRDNPKRAAVLVVSSDRGLCGGYNANVLRRAEELFSLLRDEGKDPVLYVIGRKALGYYNFRQRNVAESWTGFSERPTYEHAKEIADTLVTAFMSGADDDEDGAGADGVLGVDEIHIVSTEFRSMLSQTAVALRVAPMVVEYVGDEEPEDGPRTLFSFEPNAETLFDALLPRYIATRVYAALLEAAASESASRRRAMKSATDNADDLIKALTLAANRERQAQITQEISEIVGGANALADAK*MTAVETKTTTGRVVRITGPVVDVEFPRGAVPGLLNALHAEITFGALAKTLTLEVAQHLGE SLVRCISMQPTDGLVRGQEVTDTGASISVPVGDGVKGHVFNALGDCLDEPGYGKDFEHWSIHRKPPAFADLEPRTEMLETGLKVVDLLTPYVRGGKIALFGGAGVGKTVLIQEMINRIARNFGGTSVFAGVGERTREGNDLWVELADANVLKDTALVFGQMDEPPGTRMRVALSALTMAEFFRDEQGQDVLLFIDNIFRFTQAGSEVSTLLGRMPSAVGYQPTLADEMGELQERITSTRGRSITSMQAVYVPADDYTDPAPATTFAHLDATTELSRAVFSKGIFPAVDPLASSSTILHPSVVGDEHYRVAQEVIRILQRYKDLQDIIAILGIDELSEEDKVLVYRARKIERFLSQNMMAAEQFTGQPGSTVPLKETIEAFDKLAKGEFDHLPEQAFFLIGGLDDLAKKAESLGAKL*
SEQ ID NO.3E.coliATPase-F1
ATGCAACTGAATTCCACCGAAATCAGCGAACTGATCAAGCAGCGCATTGCTCAGTTCAATGTTGTGAGTGAAGCTCACAACGAAGGTACTATTGTTTCTGTAAGTGACGGTGTTATCCGCATTCACGGCCTGGCCGATTGTATGCAGGGTGAAATGATCTCCCTGCCGGGTAACCGTTACGCTATCGCACTGAACCTCGAGCGCGACTCTGTAGGTGCGGTTGTTATGGGTCCGTACGCTGACCTTGCCGAAGGCATGAAAGTTAAGTGTACTGGCCGTATCCTGGAAGTTCCGGTTGGCCGTGGCCTGCTGGGCCGTGTGGTTAACACTCTGGGTGCACCAATCGACGGTAAAGGTCCGCTGGATCACGACGGCTTCTCTGCTGTAGAAGCAATCGCTCCGGGCGTTATCGAACGTCAGTCCGTAGATCAGCCGGTACAGACCGGTTATAAAGCCGTTGACTCCATGATCCCAATCGGTCGTGGTCAGCGTGAATTGATCATCGGTGACCGTCAGACAGGTAAAACCGCACTGGCTATCGATGCCATCATCAACCAGCGCGATTCCGGTATCAAATGTATCTATGTCGCTATCGGCCAGAAAGCGTCCACCATTTCTAACGTGGTACGTAAACTGGAAGAGCACGGCGCACTGGCTAACACCATCGTTGTGGTAGCAACCGCGTCTGAATCCGCTGCACTGCAATACCTGGCACCGTATGCCGGTTGCGCAATGGGCGAATACTTCCGTGACCGCGGTGAAGATGCGCTGATCATTTACGATGACCTGTCTAAACAGGCTGTTGCTTACCGTCAGATCTCCCTGCTGCTCCGTCGTCCGCCAGGACGTGAAGCATTCCCGGGCGACGTTTTCTACCTCCACTCTCGTCTGCTGGAGCGTGCTGCACGTGTTAACGCCGAATACGTTGAAGCCTTCACCAAAGGTGAAGTGAAAGGGAAAACCGGTTCTCTGACCGCACTGCCGATTATCGAAACTCAGGCGGGTGACGTTTCTGCGTTCGTTCCGACCAACGTAATCTCCATTACCGATGGTCAGATCTTCCTGGAAACCAACCTGTTCAACGCCGGTATTCGTCCTGCGGTTAACCCGGGTATTTCCGTATCCCGTGTTGGTGGTGCAGCACAGACCAAGATCATGAAAAAACTGTCCGGTGGTATCCGTACCGCTCTGGCACAGTATCGTGAACTGGCAGCGTTCTCTCAGTTTGCATCCGACCTTGACGATGCAACACGTAAGCAGCTTGACCACGGTCAGAAAGTGACCGAACTGCTGAAACAGAAACAGTATGCGCCGATGTCCGTTGCGCAGCAGTCTCTGGTTCTGTTCGCAGCAGAACGTGGTTACCTGGCGGATGTTGAACTGTCGAAAATTGGCAGCTTCGAAGCCGCTCTGCTGGCTTACGTCGACCGTGATCACGCTCCGTTGATGCAAGAGATCAACCAGACCGGTGGCTACAACGACGAAATCGAAGGCAAGCTGAAAGGCATCCTCGATTCCTTCAAAGCAACCCAATCCTGGTAACGTCTGGCGGCTTGCCTTAGGGCAGGCCGCAAGGCATTGAGGAGAAGCTCATGGCCGGCGCAAAAGAGATACGTAGTAAGATCGCAAGCGTCCAGAACACGCAAAAGATCACTAAAGCGATGGAGATGGTCGCCGCTTCCAAAATGCGTAAATCGCAGGATCGCATGGCGGCCAGCCGTCCTTATGCAGAAACCATGCGCAAAGTGATTGGTCACCTTGCACACGGTAATCTGGAATATAAGCACCCTTACCTGGAAGACCGCGACGTTAAACGCGTGGGCTACCTGGTGGTGTCGACCGACCGTGGTTTGTGCGGTGGTTTGAACATTAACCTGTTCAAAAAACTGCTGGCGGAAATGAAGACCTGGACCGACAAAGGCGTTCAATGCGACCTCGCAATGATCGGCTCGAAAGGCGTGTCGTTCTTCAACTCCGTGGGCGGCAATGTTGTTGCCCAGGTCACCGGCATGGGGGATAACCCTTCCCTGTCCGAACTGATCGGTCCGGTAAAAGTGATGTTGCAGGCCTACGACGAAGGCCGTCTGGACAAGCTTTACATTGTCAGCAACAAATTTATTAACACCATGTCTCAGGTTCCGACCATCAGCCAGCTGCTGCCGTTACCGGCATCAGATGATGATGATCTGAAACATAAATCCTGGGATTACCTGTACGAACCCGATCCGAAGGCGTTGCTGGATACCCTGCTGCGTCGTTATGTCGAATCTCAGGTTTATCAGGGCGTGGTTGAAAACCTGGCCAGCGAGCAGGCCGCCCGTATGGTGGCGATGAAAGCCGCGACCGACAATGGCGGCAGCCTGATTAAAGAGCTGCAGTTGGTATACAACAAAGCTCGTCAGGCCAGCATTACTCAGGAACTCACCGAGATCGTCTCGGGGGCCGCCGCGGTTTAAACAGGTTATTTCGTAGAGGATTTAAGATGGCTACTGGAAAGATTGTCCAGGTAATCGGCGCCGTAGTTGACGTCGAATTCCCTCAGGATGCCGTACCGCGCGTGTACGATGCTCTTGAGGTGCAAAATGGTAATGAGCGTCTGGTGCTGGAAGTTCAGCAGCAGCTCGGCGGCGGTATCGTACGTACCATCGCAATGGGTTCCTCCGACGGTCTGCGTCGCGGTCTGGATGTAAAAGACCTCGAACACCCGATTGAAGTCCCGGTAGGTAAAGCGACTCTGGGCCGTATCATGAACGTACTGGGTGAACCGGTCGACATGAAAGGCGAGATCGGTGAAGAAGAGCGTTGGGCGATTCACCGCGCAGCACCTTCCTACGAAGAGCTGTCAAACTCTCAGGAACTGCTGGAAACCGGTATCAAAGTTATCGACCTGATGTGTCCGTTCGCTAAGGGCGGTAAAGTTGGTCTGTTCGGTGGTGCGGGTGTAGGTAAAACCGTAAACATGATGGAGCTCATTCGTAACATCGCGATCGAGCACTCCGGTTACTCTGTGTTTGCGGGCGTAGGTGAACGTACTCGTGAGGGTAACGACTTCTACCACGAAATGACCGACTCCAACGTTATCGACAAAGTATCCCTGGTGTATGGCCAGATGAACGAGCCGCCGGGAAACCGTCTGCGCGTTGCTCTGACCGGTCTGACCATGGCTGAGAAATTCCGTGACGAAGGTCGTGACGTTCTGCTGTTCGTTGACAACATCTATCGTTACACCCTGGCCGGTACGGAAGTATCCGCACTGCTGGGCCGTATGCCTTCAGCGGTAGGTTATCAGCCGACCCTGGCGGAAGAGATGGGCGTTCTGCAGGAACGTATCACCTCCACCAAAACTGGTTCTATCACCTCCGTACAGGCAGTATACGTACCTGCGGATGACTTGACTGACCCGTCTCCGGCAACCACCTTTGCGCACCTTGACGCAACCGTGGTACTGAGCCGTCAGATCGCGTCTCTGGGTATCTACCCGGCCGTTGACCCGCTGGACTCCACCAGCCGTCAGCTGGACCCGCTGGTGGTTGGTCAGGAACACTACGACACCGCGCGTGGCGTTCAGTCCATCCTGCAACGTTATCAGGAACTGAAAGACATCATCGCCATCCTGGGTATGGATGAACTGTCTGAAGAAGACAAACTGGTGGTAGCGCGTGCTCGTAAGATCCAGCGCTTCCTGTCCCAGCCGTTCTTCGTGGCAGAAGTATTCACCGGTTCTCCGGGTAAATACGTCTCCCTGAAAGACACCATCCGTGGCTTTAAAGGCATCATGGAAGGCGAATACGATCACCTGCCGGAGCAGGCGTTCTACATGGTCGGTTCCATCGAAGAAGCTGTGGAAAAAGCCAAAAAACTTTAA
SEQ ID NO.4 MNRATPase-F1
ATGGCAGAGTTGACAATCTCCGCTTCTGATATCGAAGGTGCCATCGAGGGCTACGTATCCTCGTTTTCCGCCGACACCGAGCGGGAAGAGGTCGGCACCGTCGTCGATGCCGGTGACGGCATCGCCCACGTCGAGGGCCTGCCCTCGGTCATGACCCAGGAATTGCTCGAGTTCGAGGGCGGCGTGCTGGGCGTGGCGCTCAACCTCGACGAGCACAGCGTCGGCGCCGTGATCCTGGGCGAGTTCAACAAGATCGAAGAGGGTCAGCAGGTCAAGCGGACCGGCGAGGTCCTCTCGGTGCCCGTCGGCGACGCCTTCCTCGGCCGCGTGGTCAACCCGCTCGGCCAGCCGATCGACGGCCAGGGCGATATCGCCTCGGACACCCGTCGCGAACTGGAACTTCAGGCCCCCTCGGTGGTTCAGCGCCAGGGTGTCGGCGAGCCGCTGCAGACCGGTATCAAGGCCATCGACGCCATGACCCCGATCGGTCGCGGCCAGCGTCAGCTGATCATCGGCGACCGCAAGACCGGTAAGACCGCGGTCTGCGTCGACACCATCCTGAACCAGCGTCAGGCGTGGGAGACCGGTGACCCGAACCAGCAGGTGCGTTGCGTGTACGTCGCGATCGGCCAGAAGGGCACCACGATCGCCTCGGTCAAGCGTGCGCTGGAAGACGGCGGCGCGATGGAGTACACCACCATCGTCGCGGCCCCGGCGTCCGACCCCGCCGGCTTCAAATGGCTTGCCCCCTACACCGGTTCGGCCATCGGCCAGCACTGGATGTACGACGGCAAGCACGTCCTGATCGTTTTCGACGATCTGTCCAAGCAGGCCGACGCCTACCGCGCCATCTCGCTGCTGCTGCGTCGCCCGCCGGGCCGCGAGGCATTCCCCGGTGACGTGTTCTACCTGCACTCTCGCCTGCTGGAGCGTTGCGCCAAGCTGTCCGATGAGCTCGGTGGTGGTTCGATGACCGGGCTGCCGATCATCGAGACCAAGGCCAACGACATCTCGGCGTTCATCCCGACCAACGTCATCTCGATCACCGACGGTCAGTGCTTCCTGGAGTCCGACCTGTTCAACCAGGGCGTGCGACCGGCCGTCAACGTCGGTGTGTCGGTCTCCCGCGTCGGTGGCGCCGCGCAGATCAAGGCGATGAAAGAGGTTGCGGGTTCGCTGCGTCTGGACCTGTCGCAGTACCGCGAGCTGGAGGCCTTCGCGGCCTTCGCCTCCGATCTGGATGCGGCCTCCAAGGCGCAGCTGGACCGCGGTGTGCGCCTGGTCGAGCTGCTCAAGCAGCCCCAGTACAGCCCGCTGGCCGTCGAGGACCAGGTTGTCGCCATCTTCCTCGGTACTCAGGGCCACCTCGATTCGGTTCCCGCTGAGGACGTTTCGCGCTTCGTCGACGAGCTGCTCGAGCACGTGAAGGCCAGCCACTCCGACATCCTCGACGGCATTCGGGAGACCAAGAAGCTCTCCGAGGAGGCCGAGCAGAAGCTGGTCAACGTCATCAACGACTTCAAGAAGGGCTTCTCGGCGAGCGACGGTAGCTCCGTCGTCGTCAACGAGGCCGACTCCGAAGCTCTGGATCCCGAGGACCTGGAGAAGGAATCGGTCAAGGTCCGTAAGCCTGCTCCCAAGAAGGCCTAGGTAACCAATGGCAGCCACACTGCGCGAGCTACGCGGACGTATCAAATCCGCTTCGTCGATCAAGAAGATCACGAAGGCCCAGGAACTGATCGCCACGTCGCGGATCGCCAAGGCGCAGGCCCGGGTCGACGCGGCCCGGCCCTACAGCACCGAGATCACCAACATGCTCACCGAGCTGGCCAGTGCCAGCGCGCTGGACCACCCGTTGCTCGTGCCGCGGGACAACCCGAAGCGGGCCGCCGTGTTGGTGGTGTCCTCGGATCGCGGTCTGTGCGGTGGGTACAACGCCAACGTGCTGCGTCGCGCCGAAGAACTGTTCTCGCTGCTGCGCGACGAGGGCAAGGATCCGGTGCTCTACGTCATCGGGCGGAAGGCGCTGGGTTACTACAACTTCCGCCAGCGCAATGTCGCCGAGTCCTGGACCGGCTTCTCCGAGCGTCCGACCTATGAGCACGCCAAGGAGATCGCCGACACCCTGGTGACGGCGTTCATGTCGGGCGCCGACGATGACGAGGACGGCGCCGGCGCTGACGGTGTTCTCGGCGTCGACGAGATTCACATCGTGTCGACCGAGTTCCGCTCGATGCTGTCGCAGACCGCGGTGGCACTGCGGGTCGCCCCGATGGTCGTCGAGTACGTGGGGGACGAGGAGCCCGAGGACGGCCCGCGCACGCTGTTCTCCTTCGAACCGAACGCCGAGACGCTGTTCGACGCCCTGCTGCCGCGCTACATCGCCACCCGCGTGTACGCCGCATTGCTGGAGGCGGCTGCCTCGGAGTCGGCCTCGCGCCGGCGCGCCATGAAGTCGGCCACCGACAACGCCGACGATCTGATCAAGGCACTCACGCTGGCGGCCAACCGCGAGCGTCAGGCGCAGATCACCCAGGAAATCAGCGAGATCGTCGGTGGCGCCAACGCGCTGGCCGACGCCAAATAGGCCGACGTAAGAGCGAAAGCGAAGAAGAGATATGACTGCCGTAGAGACCAAGACCACGACGGGTCGCGTTGTCCGCATCACGGGCCCCGTGGTCGACGTCGAGTTCCCGCGTGGCGCCGTGCCCGGACTGCTCAACGCCCTGCACGCCGAGATCACCTTCGGCGCGCTGGCCAAGACCCTGACCCTCGAGGTCGCCCAGCATCTCGGCGAGAGCCTGGTCCGCTGCATCTCCATGCAGCCCACCGACGGCCTGGTCCGTGGCCAGGAAGTCACCGACACCGGTGCGTCGATCTCGGTGCCCGTCGGCGACGGCGTCAAGGGCCATGTGTTCAACGCCCTCGGCGACTGCCTCGATGAGCCGGGCTACGGCAAGGACTTCGAGCACTGGTCCATCCACCGCAAGCCGCCGGCCTTCGCCGACCTGGAGCCCCGCACCGAGATGCTGGAAACCGGTCTGAAGGTCGTCGACCTGCTCACGCCGTACGTGCGTGGTGGAAAGATCGCCCTGTTCGGTGGCGCCGGCGTCGGCAAGACCGTTCTGATCCAGGAGATGATCAACCGCATCGCCCGTAACTTCGGTGGCACCTCGGTGTTCGCCGGCGTGGGGGAGCGCACCCGTGAGGGTAACGACCTGTGGGTCGAGCTCGCGGACGCCAACGTGCTCAAGGACACCGCCTTGGTGTTCGGCCAGATGGACGAGCCGCCGGGCACCCGTATGCGCGTCGCCCTGTCCGCGCTGACCATGGCGGAGTTCTTCCGCGATGAGCAGGGCCAGGACGTGCTGCTGTTCATCGACAACATCTTCCGGTTCACCCAGGCCGGTTCCGAGGTCTCGACCCTGCTGGGTCGTATGCCTTCGGCCGTGGGTTACCAGCCGACGCTGGCCGACGAGATGGGCGAGCTGCAGGAGCGCATCACCTCGACCCGTGGTCGCTCAATCACCTCGATGCAGGCCGTGTACGTGCCCGCCGACGACTACACCGACCCGGCGCCGGCCACCACGTTCGCCCACCTCGATGCCACCACCGAGCTCTCGCGTGCGGTGTTCTCCAAGGGCATCTTCCCCGCGGTGGATCCGCTGGCATCGTCTTCGACGATCCTGCACCCCAGCGTGGTCGGCGACGAGCACTACCGCGTCGCCCAGGAAGTCATCCGGATCCTGCAGCGCTACAAGGATCTCCAGGACATCATCGCCATCCTCGGTATCGATGAGCTGTCCGAAGAGGACAAGGTGCTGGTGTACCGCGCCCGTAAGATCGAGCGCTTCCTGAGCCAGAACATGATGGCGGCCGAGCAGTTCACCGGTCAGCCGGGTTCGACCGTTCCGCTCAAGGAGACCATCGAGGCCTTCGACAAGCTGGCCAAGGGCGAGTTCGATCACCTGCCCGAGCAGGCGTTCTTCCTCATCGGTGGTCTCGACGACCTGGCGAAGAAGGCAGAGTCGCTCGGCGCCAAGCTGTGA Although embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that: various substitutions, changes and modifications are possible without departing from the spirit and scope of the invention and the appended claims, and therefore the scope of the invention is not limited to the disclosure of the embodiments.
Claims (10)
1. A genetic engineering strain for efficiently converting sterols is characterized in that: the strain is obtained by constructing a gene expressing an ATPase subunit singly or in combination in a host bacterium.
2. The genetically engineered strain of claim 1, wherein: the host bacteria of the genetic engineering strain are bacteria or fungi with sterol conversion capability;
or the steroid precursor is obtained after the genetically engineered strain converts sterols, and comprises hydroxylated derivatives and A-ring degradation products;
or the ATPase subunit is expressed by a vector.
3. The genetically engineered strain of claim 2, wherein: the bacterium or fungus having sterol conversion ability is a mycobacterium microorganism or rhodococcus microorganism;
The hydroxylated derivatives and A-ring degradation products include androsta-4-ene-3, 17-dione (androst-4-ene-3, 17-dione, AD), androsta-1, 4-diene-3,17-dione (Androst-1, 4-diene-3,17-dione, ADD), 9 alpha-hydroxyandrosta-4-ene-3, 17-dione (9 alpha-hydroxyandrost-4-ene-3, 17-dione,9 alpha-OH-AD);
the expression vector is pMV261.
4. A genetically engineered strain according to claim 3, wherein: the Mycobacterium genus microorganism is selected from the group consisting of Mycobacterium (Mycobacterium sp.) NRRLB-3683, mycobacterium (Mycobacterium sp.) NRRLB-3805, mycobacterium smegmatis (Mycobacterium smegmatism), mycobacterium fortuitum (Mycobacteriumfortuitum), mycobacterium micro Huang Fenzhi (Mycobacterium gilvum), mycobacterium neogolden (Mycobacterium neoaurum), mycobacterium phlei (Mycobacterium Phlei), mycobacterium avium (Mycobacterium avium);
The genetically engineered strain expresses an ATPase subunit in the novel Mycobacterium aurum MNR via pMV 261.
5. The genetically engineered strain of claim 4, wherein: the Mycobacterium microorganism is Mycobacterium neogold (Mycobacterium sp.) mnrm3Δ KsdD.
6. The genetically engineered strain of any one of claims 1 to 5, wherein: the ATPase subunits are respectively derived from escherichia coli MG1655 and MNR, and the amino acid sequences are respectively shown as SEQ ID NO.1 and SEQ ID NO. 2;
or coding genes E.coliATPase-F1, MNRATPASE-F1 of the ATPase subunit, and the nucleotide sequence is SEQ ID NO.3 and SEQ ID NO.4.
7. Use of a genetically engineered strain according to any one of claims 1 to 6 for the production of steroid precursors.
8. A method for enhancing steroid precursor production by enhancing intracellular ATP metabolism, comprising: the method is characterized in that a gene engineering strain is obtained by constructing a gene for expressing ATP enzyme subunits singly or in combination in host bacteria, and the metabolic capacity of the strain to ATP is enhanced by enhancing the expression of the gene in a sterol conversion strain, so that the sterol conversion rate is improved.
9. A method for producing androsta-4-ene-3, 17-dione using the genetically engineered strain of any one of claims 1 to 6, characterized in that: comprises the following steps of;
Transferring seed culture solution of the genetically engineered bacteria into a fermentation culture medium according to the inoculum size of 2% -12%, and culturing for 48-168 hours under the conditions of 25-37 ℃ and 140-220 rpm; the molar conversion rate of androstenedione can reach 50% -99%.
10. The method according to claim 9, characterized in that: the seed culture medium comprises the following components: k 2HPO40.5 g/L,MgSO4, 0.5, g/L, ferric ammonium citrate, 0.05g/L, citric acid, 2g/L, ammonium nitrate, 20g/L glycerol, 5g/L glucose, caCO 3, 1, g/L and water as a solvent, wherein the pH value is 7.2;
the composition of the fermentation culture is as follows: (NH 4)2HPO40.1~4g/L,K2HPO40.1~3g/L,MgSO4 -0.1 g/L, ferric ammonium citrate 0.01-0.2 g/L, citric acid 1-5 g/L, reducing sugar 5-50 g/L, sterol 1-50 g/L, water as solvent, pH 6.0-7.5, and sterilizing with high pressure steam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410225366.2A CN118147027A (en) | 2024-02-29 | 2024-02-29 | Method, strain and application for improving steroid precursor production by enhancing intracellular ATP metabolism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410225366.2A CN118147027A (en) | 2024-02-29 | 2024-02-29 | Method, strain and application for improving steroid precursor production by enhancing intracellular ATP metabolism |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118147027A true CN118147027A (en) | 2024-06-07 |
Family
ID=91289471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410225366.2A Pending CN118147027A (en) | 2024-02-29 | 2024-02-29 | Method, strain and application for improving steroid precursor production by enhancing intracellular ATP metabolism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118147027A (en) |
-
2024
- 2024-02-29 CN CN202410225366.2A patent/CN118147027A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108913643A (en) | A method of it improving mycobacteria regenerating coenzyme and androstenedione is promoted to produce simultaneously | |
WO2017080111A1 (en) | Genetically-engineered bacteria for producing cadaverine and method thereof for preparing cadaverine | |
CN114015712A (en) | Preparation method of ursodeoxycholic acid | |
CN111484962B (en) | Genetic engineering bacterium for efficiently producing 5 alpha-androstane dione and application thereof | |
CN110564652B (en) | Mycobacterium and application thereof | |
CN109706108B (en) | Method for enhancing steroid precursor production by enhancing NADH dehydrogenation | |
CN111484961B (en) | Genetically engineered bacterium for producing 5 alpha-androstanedione and application thereof | |
CN110592169A (en) | Method for preparing ADD by phytosterol microbial transformation | |
CN111454871A (en) | Recombinant mycobacterium with high androstenedione yield, construction method and application | |
CN115029368B (en) | Genetically engineered bacterium for producing bisnoralcohol and application thereof | |
CN114940964B (en) | Engineering bacterium and method for producing UDCA by efficiently catalyzing CDCA by engineering bacterium | |
CN118147027A (en) | Method, strain and application for improving steroid precursor production by enhancing intracellular ATP metabolism | |
CN109722442B (en) | 7 beta-hydroxy cholic acid dehydrogenase and application thereof | |
CN108587997B (en) | Method for producing 9-OH-AD by utilizing whole cell transformation of recombinant corynebacterium glutamicum | |
CN115838679A (en) | Genetically engineered bacterium capable of producing steroid precursor in high yield and application thereof | |
CN109971817B (en) | Preparation of baodanone by sequential transformation of Arthrobacter simplex and genetically engineered yeast strain | |
CN111808830A (en) | Method for producing androstadienedione by microbial degradation of phytosterol | |
CN112813041B (en) | 17 beta-hydroxysteroid dehydrogenase mutant of mycobacterium, engineering bacterium and application of mutant and engineering bacterium | |
CN111172186B (en) | Steroid prodrug production method capable of reducing nitrogen source dosage | |
CN115011626B (en) | Genetically engineered bacterium for producing steroid drug precursor and application thereof | |
CN116790393B (en) | Method for synthesizing active VD3 by modifying saccharomyces cerevisiae and taking glucose as substrate | |
CN114395494B (en) | Saberlin Dener yeast T52 and application thereof | |
CN113136347B (en) | Saccharomyces cerevisiae engineering bacterium for high yield of coniferyl alcohol and construction and application thereof | |
CN116286930A (en) | Genetically engineered bacterium for producing steroid drug precursor and application thereof | |
CN115786292A (en) | 3 alpha-hydroxy steroid dehydrogenase and application thereof in preparation of dehydroepiandrosterone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |