CN118146002A - 一种基于熔融沉积成型的层状陶瓷及其制备方法 - Google Patents

一种基于熔融沉积成型的层状陶瓷及其制备方法 Download PDF

Info

Publication number
CN118146002A
CN118146002A CN202410347001.7A CN202410347001A CN118146002A CN 118146002 A CN118146002 A CN 118146002A CN 202410347001 A CN202410347001 A CN 202410347001A CN 118146002 A CN118146002 A CN 118146002A
Authority
CN
China
Prior art keywords
printing
ceramic
slurry
fused deposition
deposition modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410347001.7A
Other languages
English (en)
Inventor
洪于喆
何光起
陈耕耘
熊礼俊
邬妍佼
徐斌
蔡宁宁
顾嘉琪
胡大标
郭岱东
刘洁
沈赟
王坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Vulcan Technology Co ltd
Original Assignee
Ningbo Vulcan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Vulcan Technology Co ltd filed Critical Ningbo Vulcan Technology Co ltd
Priority to CN202410347001.7A priority Critical patent/CN118146002A/zh
Publication of CN118146002A publication Critical patent/CN118146002A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明提供了一种基于熔融沉积成型的层状陶瓷及其制备方法,所述制备方法包括以下步骤:S1:打印丝材制备;S2:建模、打印;S3:填充:打印完成后,将打印的样品台下沉入浆料中,将浆料带入打印层,使浆料填充打印层孔隙后上升,随后刮去多余浆料;S4:固化:等待浆料固化,完成第一层层状陶瓷制备;S5:持续打印:继续进行熔融沉积成型打印,并使打印丝与上一层存在偏移,随后重复打印以及固化,完成下一层层状陶瓷制备,直至打印完成;S6:后处理:烘干、脱脂、烧结后,得到基于熔融沉积成型的层状陶瓷。通过本发明制备的基于熔融沉积成型的层状陶瓷具备较强的力学性能,具备较高的推广价值与商业化价值。

Description

一种基于熔融沉积成型的层状陶瓷及其制备方法
技术领域
本发明涉及层状陶瓷制备领域,具体而言,涉及一种基于熔融沉积成型的层状陶瓷及其制备方法。
背景技术
层状陶瓷是一类新型的复合材料,通过在高强度、高硬度的陶瓷基体层中引入强度较低、界面结合力较差的弱界面层,使裂纹扩展到该层时发生偏转、分叉,大大延长裂纹扩展路径,使陶瓷的断裂韧性和断裂功大幅提高。研究发现,相比于简单的层状结构,采用“砖-泥”式层状结构裂纹扩展路径更长,能获得更好的性能:片状硬质材料为“砖”,交错堆叠;而软质材料为“泥”,填充于硬质“砖”的间隙中。但由于叠层工艺限制,层状陶瓷难以成型复杂结构。
陶瓷熔融沉积成型(FDM)打印技术使用陶瓷与高分子复合的丝材,通过加热熔融后通过喷头挤出沉积到工件上,这种打印方式实现容易、设备简单、打印成本较低,并且可实现多材料复合结构的打印。但FDM打印为逐丝打印,丝与丝之间一般只是部分重叠,会存在一定的间隙,由于FDM打印的材料在加热熔融后流动性好,可以进行挤出,而挤出后冷却凝固,流动性迅速下降,难以充分填充丝间间隙。由于陶瓷是脆性材料,对缺陷很敏感,FDM打印的材料中存在的丝间间隙会使得到的材料力学性能较差。
发明内容
本发明要解决的技术问题是提供一种熔融沉积成型的层状陶瓷的制备方法,以解决常规熔融沉积成型方法制备层状陶瓷难以充分填充丝间间隙、力学性能较差的问题。
为了解决上述问题,本发明提供了一种基于熔融沉积成型的层状陶瓷的制备方法,包括以下步骤:
S1:打印丝材制备:选取热塑性树脂、陶瓷粉体和偶联剂作为原料,通过螺杆挤出制备得到陶瓷/聚合物复合线材;
S2:建模、打印:生成目标样品模型以及目标路径,通过熔融沉积成型打印所述打印丝材,控制打印丝间距为0.1-0.2mm,并将打印丝的上表面压为平面,完成第一层打印;
S3:填充:打印完成后,将打印的样品台下沉入浆料中,将浆料带入打印层,使浆料填充打印层孔隙后上升,随后刮去多余浆料;所述浆料的组分包括浆料陶瓷粉、单体树脂、引发剂以及分散剂;
S4:固化:等待所述步骤S3处理后的浆料固化,完成第一层层状陶瓷制备;
S5:持续打印:在所述第一层层状陶瓷的基础上进行熔融沉积成型打印,并使打印丝与上一层存在偏移,随后重复所述步骤S3、步骤S4的步骤,完成下一层层状陶瓷制备,直至打印完成;
S6:后处理:烘干所述步骤S5打印完成后的产品,进一步进行脱脂、烧结后,得到基于熔融沉积成型的层状陶瓷。
本发明一种基于熔融沉积成型的层状陶瓷的制备方法充分利用了熔融沉积成型打印的特点,使用高强度陶瓷作为打印丝,通过留出打印丝间缝隙,并原位填充弱界面层材料,形成类“砖-泥”结构的层状陶瓷,较传统FDM打印陶瓷,其材料更加的致密,并有更好的力学性能。
在步骤S3的填充中,浆料充分填充打印层孔隙后上升,而后刮刀按比当前层高度略高(一般为0.005-0.030mm)的高度刮过样品,使浆料充分填充打印丝丝间间隙并刮去多余浆料,从而起到更好的填充作用。
作为优选的方案,所述步骤S1中,所述热塑性树脂为聚乳酸、ABS塑料、聚碳酸酯、尼龙、聚乙烯、聚丙烯、乙烯乙酸乙烯酯聚合物、石蜡和硬脂酸中的一种或几种;所述陶瓷粉体为碳化硅、氧化铝、氧化锆、氮化硅、碳化硼、氮化铝、氧化硅、氧化钇、石墨粉中的一种或几种;所述偶联剂为KH550、KH560、KH570、KH792中的一种或几种;所述热塑性树脂、陶瓷粉体和偶联剂的质量比为:(1-10):(70-90):(1-3)。
作为优选的方案,所述步骤S1中,所述螺杆挤出处理包括以下步骤:选取热塑性树脂、陶瓷粉体和偶联剂作为原料,取烧结助剂与所述热塑性树脂和所述陶瓷粉体一起进行干燥,随后将所述陶瓷粉体与所述偶联剂在溶液中球磨处理得到混合粉体,干燥处理后将所述混合粉体与所述热塑性树脂干混,通过双螺杆挤出造粒得到混合颗粒料,将所述混合颗粒料通过单螺杆熔融挤出,获得陶瓷/聚合物复合线材。
作为优选的方案,所述进行干燥的条件为:温度50-80℃,时间4-8h;所述球磨处理的条件为:在水或酒精中球磨混合;所述双螺杆挤出造粒的条件为:出口温度120-200℃;所述单螺杆熔融挤出的条件包括:加热挤出参数:预热区125~135℃,熔融区135~200℃,成型模具135~200℃;所述陶瓷/聚合物复合线材的直径为1.75-2.85mm。
作为优选的方案,所述步骤S2中,所述第一层打印的层厚为0.1-0.6mm,所述熔融沉积成型打印的打印头的直径为所述层厚的150%-300%。
在控制第一层打印的层厚为0.1-0.6mm,所述熔融沉积成型打印的打印头的直径为所述层厚的150%-300%的这一参数范围内,打印丝挤出打印头后沉积的丝被挤压成近似梯形截面,可保证间隙在后续步骤中被浆料填充,而若打印头直径小于层厚150%,截面为圆形,将存在填充死角,影响材料性能,若打印头直径大于层厚300%,则丝材边缘会有较严重的鼓起,影响打印面的质量。同时单层厚度在所述范围时层状结构的效果较好,单层过厚层状结构不能起到强韧化作用,单层过薄则容易产生打印缺陷,因此结合本发明上述打印步骤,将打印的上述参数控制在范围内,能够协同其他步骤,进一步地加强产品的力学性能。
作为优选的方案,所述步骤S3中,所述浆料陶瓷粉与所述陶瓷粉体的成分一致,且所述浆料陶瓷粉的粒径为所述打印丝间距的10%以下;所述单体树脂为HEMA、HDDA、THFA、ACMO、DPHA、OPPEA、A-BPEF、PUA、TMPTA、PPTTA、TPGDA、IBOA中的一种或多种;所述引发剂为907引发剂、784引发剂、819引发剂、TPO引发剂、ITX引发剂、BDK引发剂中的一种或多种;所述分散剂为KOS、TEGO、BYK、SOLSPERSE、VOK系列分散剂中的一种或多种;所述浆料陶瓷粉、单体树脂、引发剂以及分散剂的质量比为(60-90):(10-40):(0-7):(1-9);所述填充过程中需保持环境真空状态。
设计陶瓷瓷粉的粒径为所述打印丝间距的10%以下,能够使陶瓷颗粒可顺利填入缝隙,从而起到更好的填充的作用;在填充过程中持环境真空状态,以避免因缝隙中的空气未及时排出而导致的浆料填充不完全。
作为优选的方案,所述步骤S4中,所述浆料固化的方式为通过紫外光或电子束照射进行固化。
由于本发明独特的采用先熔融沉积成型打印,再通过浆料填充上述熔融沉积成型打印后的打印丝间距,因此特殊采用了紫外光或电子束照射对上述填充后的浆料以及打印丝材进行加快的固化,同时也进一步地提高了固化效果,在基于打印、填充的前提下,进一步地加强了整体的结构强度。
作为优选的方案,所述步骤S5中,所述偏移的距离为所述打印丝宽度的20%-80%。
通过打印丝偏移的设计,使得本发明的打印+固化成为了类似“砖-泥”结构的层状陶瓷,进一步地加强了结构的力学性能,将偏移的距离设计为所述打印丝宽度的20%-80%,能够更好的实现结构的稳固性。
作为优选的方案,所述步骤S6中,所述烘干的条件为:在烘箱中进行热处理1-24h,温度为80-200℃;所述脱脂的条件为:以0.05-0.5℃/min速度升温至700-1000℃,保温1-5h。
所述烘干的处理能够使未完全固化的树脂完全固化,并改善各层间的结合,同时,加热温度应小于打印丝材的挤出温度,以免材料塌陷。
本发明要解决的另一个技术问题是:提供一种基于熔融沉积成型的层状陶瓷,解决传统层状陶瓷制备方法难以成型复杂结构的问题。
为了解决上述问题,本发明提供了一种基于熔融沉积成型的层状陶瓷,所述层状陶瓷由上述制备方法制备而得,可以实现三维模型的直接成型。
附图说明
图1为本发明一种基于熔融沉积成型的层状陶瓷的结构示意图。
具体实施方式
下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种基于熔融沉积成型的层状陶瓷的制备方法,包括以下步骤:
S1:打印丝材制备:选取热塑性树脂、陶瓷粉体和偶联剂作为原料,通过螺杆挤出制备得到陶瓷/聚合物复合线材;
S2:建模、打印:生成目标样品模型以及目标路径,通过熔融沉积成型打印所述打印丝材,控制打印丝间距为0.1-0.2mm,并将打印丝的上表面压为平面,完成第一层打印;
S3:填充:打印完成后,将打印的样品台下沉入浆料中,将浆料带入打印层,使浆料填充打印层孔隙后上升,随后刮去多余浆料;所述浆料的组分包括浆料陶瓷粉、单体树脂、引发剂以及分散剂;
S4:固化:等待所述步骤S3处理后的浆料固化,完成第一层层状陶瓷制备;
S5:持续打印:在所述第一层层状陶瓷的基础上进行熔融沉积成型打印,并使打印丝与上一层存在偏移,随后重复所述步骤S3、步骤S4的步骤,完成下一层层状陶瓷制备,直至打印完成;
S6:后处理:烘干所述步骤S5打印完成后的产品,进一步进行脱脂、烧结后,得到基于熔融沉积成型的层状陶瓷。
优选的,所述步骤S1中,所述热塑性树脂为聚乳酸、ABS塑料、聚碳酸酯、尼龙、聚乙烯、聚丙烯、乙烯乙酸乙烯酯聚合物、石蜡和硬脂酸中的一种或几种;所述陶瓷粉体为碳化硅、氧化铝、氧化锆、氮化硅、碳化硼、氮化铝、氧化硅、氧化钇、石墨粉中的一种或几种;所述偶联剂为KH550、KH560、KH570、KH792中的一种或几种;所述热塑性树脂、陶瓷粉体和偶联剂的质量比为:(1-10):(70-90):(1-3)。
优选的,所述步骤S1中,所述螺杆挤出处理包括以下步骤:选取热塑性树脂、陶瓷粉体和偶联剂作为原料,取烧结助剂与所述热塑性树脂和所述陶瓷粉体一起进行干燥,随后将所述陶瓷粉体与所述偶联剂在溶液中球磨处理得到混合粉体,干燥处理后将所述混合粉体与所述热塑性树脂干混,通过双螺杆挤出造粒得到混合颗粒料,将所述混合颗粒料通过单螺杆熔融挤出,获得陶瓷/聚合物复合线材。
优选的,所述进行干燥的条件为:温度50-80℃,时间4-8h;所述球磨处理的条件为:在水或酒精中球磨混合;所述双螺杆挤出造粒的条件为:出口温度120-200℃;所述单螺杆熔融挤出的条件包括:加热挤出参数:预热区125~135℃,熔融区135~200℃,成型模具135~200℃;所述陶瓷/聚合物复合线材的直径为1.75-2.85mm。
优选的,所述步骤S2中,所述第一层打印的层厚为0.1-0.6mm,所述熔融沉积成型打印的打印头的直径为所述层厚的150%-300%。
优选的,所述步骤S3中,所述浆料陶瓷粉与所述陶瓷粉体的成分一致,且所述浆料陶瓷粉的粒径为所述打印丝间距的10%以下;所述单体树脂为HEMA、HDDA、THFA、ACMO、DPHA、OPPEA、A-BPEF、PUA、TMPTA、PPTTA、TPGDA、IBOA中的一种或多种;所述引发剂为907引发剂、784引发剂、819引发剂、TPO引发剂、ITX引发剂、BDK引发剂中的一种或多种;所述分散剂为KOS、TEGO、BYK、SOLSPERSE、VOK系列分散剂中的一种或多种;所述浆料陶瓷粉、单体树脂、引发剂以及分散剂的质量比为(60-90):(10-40):(0-7):(1-9)。
优选的,所述步骤S4中,所述浆料固化的方式为通过紫外光或电子束照射进行固化。
优选的,所述步骤S5中,所述偏移的距离为所述打印丝宽度的20%-80%。
优选的,所述步骤S6中,所述烘干的条件为:在烘箱中进行热处理1-24h,温度为80-200℃;所述脱脂的条件为:以0.05-0.5℃/min速度升温至700-1000℃,保温1-5h。
本发明还提供了一种基于熔融沉积成型的层状陶瓷,所述层状陶瓷的结构简图如图1所示,所述层状陶瓷由上述制备方法制备而得。
以下提供结合上述数据范围的实施例,以对上述内容进行进一步的说明:
实施例1:
本实施例提供了一种基于熔融沉积成型的层状陶瓷及其制备方法,所述制备方法包括以下步骤:
S1:打印丝材制备:选取热塑性树脂、陶瓷粉体和偶联剂作为原料,将热塑性树脂、陶瓷粉体和烧结助剂放入烘箱中进行干燥,温度为50-80℃,时间为4-8h。
所述热塑性树脂为聚乳酸、ABS塑料、聚碳酸酯、尼龙、聚乙烯、聚丙烯、乙烯乙酸乙烯酯聚合物、石蜡和硬脂酸中的任意一种或几种。陶瓷粉体为碳化硅、氧化铝、氧化锆、氮化硅、碳化硼、氮化铝、氧化硅、氧化钇、石墨粉中的一种或几种,偶联剂为KH550、KH560、KH570、KH792中的任意一种或几种;所述热塑性树脂、陶瓷粉体和偶联剂的质量比为:1:70:1。
将陶瓷粉体与偶联剂在水或酒精中球磨混合均匀,偶联剂为粉体质量的1%,混合后将粉体干燥,然后与热塑性树脂干混混合均匀,通过双螺杆挤出造粒,出口温度120℃。
将混合好的颗粒料通过单螺杆熔融挤出,获得陶瓷/聚合物复合线材,线材的直径为1.75-2.85mm。加热挤出参数:预热区125℃,熔融区135℃,成型模具135℃
S2:建模:生成目标样品模型,使用切片软件切片,生成打印路径;
FDM打印:FDM打印头打印当前层,层厚为0.1mm打印过程中层厚应小于打印头直径,优选打印头直径为层厚的150%,利用打印头的挤压,使打印丝宽度将大于打印头丝径,同时打印丝上表面被压为平面,利于后续刮刀铺料;打印丝间距应使得打印丝之间的缝隙为0.1mm;
S3:填充:打印完成后,样品台下沉入浆料中,将浆料带入打印层,浆料充分填充打印层孔隙后上升,而后刮刀按比当前层高度略高(0.005-0.030mm)的高度刮过样品,使浆料充分填充打印丝丝间间隙并刮去多余浆料;优选地,可以对打印腔内抽真空,以避免因缝隙中的空气未及时排出而导致的浆料填充不完全
所述浆料由浆料陶瓷粉、单体树脂、引发剂、分散剂组成;
其中浆料陶瓷粉种类与打印丝材陶瓷粉的种类一致,但粉体的粒径应为缝隙的10%以下,优选为2%,以使陶瓷颗粒可顺利填入缝隙;
单体树脂为HEMA、HDDA、THFA、ACMO、DPHA、OPPEA、A-BPEF、PUA、TMPTA、PPTTA、TPGDA、IBOA中的一种或几种;
引发剂为907、784、819、TPO、ITX、BDK中的一种或几种;
分散剂为KOS、TEGO、BYK、SOLSPERSE、VOK系列分散剂中的一种或几种;
所述浆料陶瓷粉、单体树脂、引发剂以及分散剂的质量比为60:10:0:1;(不加入引发剂)
S4:固化:用紫外光或电子束对打印区域进行照射,使浆料固化;
S5:持续打印:FDM打印头继续打印下一层,并使打印丝与上一层有一定偏移,偏移量为20%%;如此重复至打印完成;
S6:后处理:打印完成后,在烘箱中进行热处理1h,温度为80℃,使未完全固化的树脂完全固化,并改善各层间的结合,加热温度应小于打印丝材的挤出温度,以免材料塌陷;
脱脂:以0.05℃/min速度升温至700℃,保温1h;
烧结:根据材料配方与烧结特性,选择合适的烧结方式。
实施例2:
本实施例提供了一种基于熔融沉积成型的层状陶瓷及其制备方法,所述制备方法包括以下步骤:
S1:打印丝材制备:选取热塑性树脂、陶瓷粉体和偶联剂作为原料,将热塑性树脂、陶瓷粉体和烧结助剂放入烘箱中进行干燥,温度为80℃,时间为8h。
所述热塑性树脂为聚乳酸、ABS塑料、聚碳酸酯、尼龙、聚乙烯、聚丙烯、乙烯乙酸乙烯酯聚合物、石蜡和硬脂酸中的任意一种或几种。陶瓷粉体为碳化硅、氧化铝、氧化锆、氮化硅、碳化硼、氮化铝、氧化硅、氧化钇、石墨粉中的一种或几种,偶联剂为KH550、KH560、KH570、KH792中的任意一种或几种;所述热塑性树脂、陶瓷粉体和偶联剂的质量比为:10:90:3。
将陶瓷粉体与偶联剂在水或酒精中球磨混合均匀,偶联剂为粉体质量的10%,混合后将粉体干燥,然后与热塑性树脂干混混合均匀,通过双螺杆挤出造粒,出口温度200℃。
将混合好的颗粒料通过单螺杆熔融挤出,获得陶瓷/聚合物复合线材,线材的直径为2.85mm。加热挤出参数:预热区135℃,熔融区200℃,成型模具200℃
S2:建模:生成目标样品模型,使用切片软件切片,生成打印路径;
FDM打印:FDM打印头打印当前层,层厚为1.0mm,打印过程中层厚应小于打印头直径,优选打印头直径为层厚的300%,利用打印头的挤压,使打印丝宽度将大于打印头丝径,同时打印丝上表面被压为平面,利于后续刮刀铺料;打印丝间距应使得打印丝之间的缝隙为0.2mm;
S3:填充:打印完成后,样品台下沉入浆料中,将浆料带入打印层,浆料充分填充打印层孔隙后上升,而后刮刀按比当前层高度略高(0.005-0.030mm)的高度刮过样品,使浆料充分填充打印丝丝间间隙并刮去多余浆料;优选地,可以对打印腔内抽真空,以避免因缝隙中的空气未及时排出而导致的浆料填充不完全
所述浆料由浆料陶瓷粉、单体树脂、引发剂、分散剂组成;
其中浆料陶瓷粉种类与打印丝材陶瓷粉的种类一致,但粉体的粒径应为缝隙的10%以下,优选为2%,以使陶瓷颗粒可顺利填入缝隙;
单体树脂为HEMA、HDDA、THFA、ACMO、DPHA、OPPEA、A-BPEF、PUA、TMPTA、PPTTA、TPGDA、IBOA中的一种或几种;
引发剂为907、784、819、TPO、ITX、BDK中的一种或几种;
分散剂为KOS、TEGO、BYK、SOLSPERSE、VOK系列分散剂中的一种或几种;
所述浆料陶瓷粉、单体树脂、引发剂以及分散剂的质量比为90:40:7:9;
S4:固化:用紫外光或电子束对打印区域进行照射,使浆料固化;
S5:持续打印:FDM打印头继续打印下一层,并使打印丝与上一层有一定偏移,偏移量为80%,如此重复至打印完成;
S6:后处理:打印完成后,在烘箱中进行热处理24h,温度为200℃,使未完全固化的树脂完全固化,并改善各层间的结合,加热温度应小于打印丝材的挤出温度,以免材料塌陷;
脱脂:以0.5℃/min速度升温至1000℃,保温1-5h;
烧结:根据材料配方与烧结特性,选择合适的烧结方式。
实施例3:
本实施例提供了一种基于熔融沉积成型的层状陶瓷及其制备方法,所述制备方法包括以下步骤:
S1:打印丝材制备:选取热塑性树脂、陶瓷粉体和偶联剂作为原料,将热塑性树脂、陶瓷粉体和烧结助剂放入烘箱中进行干燥,温度为65℃,时间为6h。
所述热塑性树脂为聚乳酸、ABS塑料、聚碳酸酯、尼龙、聚乙烯、聚丙烯、乙烯乙酸乙烯酯聚合物、石蜡和硬脂酸中的任意一种或几种。陶瓷粉体为碳化硅、氧化铝、氧化锆、氮化硅、碳化硼、氮化铝、氧化硅、氧化钇、石墨粉中的一种或几种,偶联剂为KH550、KH560、KH570、KH792中的任意一种或几种;所述热塑性树脂、陶瓷粉体和偶联剂的质量比为:5.5:80:2。
将陶瓷粉体与偶联剂在水或酒精中球磨混合均匀,偶联剂为粉体质量的5%,混合后将粉体干燥,然后与热塑性树脂干混混合均匀,通过双螺杆挤出造粒,出口温度160℃。
将混合好的颗粒料通过单螺杆熔融挤出,获得陶瓷/聚合物复合线材,线材的直径为1.75-2.85mm。加热挤出参数:预热区130℃,熔融区165℃,成型模具165℃
S2:建模:生成目标样品模型,使用切片软件切片,生成打印路径;
FDM打印:FDM打印头打印当前层,层厚为0.3mm;打印过程中层厚应小于打印头直径,优选打印头直径为层厚的200%,利用打印头的挤压,使打印丝宽度将大于打印头丝径,同时打印丝上表面被压为平面,利于后续刮刀铺料;打印丝间距应使得打印丝之间的缝隙为0.15mm;
S3:填充:打印完成后,样品台下沉入浆料中,将浆料带入打印层,浆料充分填充打印层孔隙后上升,而后刮刀按比当前层高度略高(0.005-0.030mm)的高度刮过样品,使浆料充分填充打印丝丝间间隙并刮去多余浆料;优选地,可以对打印腔内抽真空,以避免因缝隙中的空气未及时排出而导致的浆料填充不完全
所述浆料由浆料陶瓷粉、单体树脂、引发剂、分散剂组成;
其中浆料陶瓷粉种类与打印丝材陶瓷粉的种类一致,但粉体的粒径应为缝隙的10%以下,优选为2%,以使陶瓷颗粒可顺利填入缝隙;
单体树脂为HEMA、HDDA、THFA、ACMO、DPHA、OPPEA、A-BPEF、PUA、TMPTA、PPTTA、TPGDA、IBOA中的一种或几种;
引发剂为907、784、819、TPO、ITX、BDK中的一种或几种;
分散剂为KOS、TEGO、BYK、SOLSPERSE、VOK系列分散剂中的一种或几种;
所述浆料陶瓷粉、单体树脂、引发剂以及分散剂的质量比为75:25:3.5:5;
S4:固化:用紫外光或电子束对打印区域进行照射,使浆料固化;
S5:持续打印:FDM打印头继续打印下一层,并使打印丝与上一层有一定偏移,使打印丝中心与上一层打印的空隙对齐(偏移量45-55%);如此重复至打印完成;
S6:后处理:打印完成后,在烘箱中进行热处理12h,温度为140℃,使未完全固化的树脂完全固化,并改善各层间的结合,加热温度应小于打印丝材的挤出温度,以免材料塌陷;
脱脂:以0.25℃/min速度升温至850℃,保温3h;
烧结:根据材料配方与烧结特性,选择合适的烧结方式。
以下结合实际的数据、操作方式以及实验测试,提供一组更具体的实施例,以对上述实施例进行进一步地展开:
实施例4:
本实施例提供了一种基于熔融沉积成型的层状陶瓷及其制备方法,所述制备方法包括以下步骤:
S1:打印丝材制备
陶瓷粉由质量比为10:0.5:1的碳化硅(粒径0.4um)、碳化硼(粒径1um)、石墨粉(粒径2um)组成;热塑性树脂为聚乳酸;偶联剂为KH550
所述热塑性树脂、陶瓷粉体和偶联剂的质量比为:5:80:2;
将陶瓷粉体与偶联剂在水中球磨混合均匀,干燥,然后与热塑性树脂干混混合均匀,通过双螺杆挤出造粒。加热挤出参数:预热区125~135℃,熔融区135~200℃,成型模具135~200℃。
S2:建模:生成目标样品模型,使用切片软件切片,生成打印路径;
FDM打印:FDM打印头打印当前层,打印头直径0.6mm,层厚为0.2mm;打印丝之间的缝隙控制为0.15mm;
S3:填充:打印完成后,样品台下沉入浆料中,将浆料带入打印层,保持10秒后上升,而后刮刀按比当前层高度略高0.01mm的高度刮过样品,使浆料充分填充打印丝丝间间隙并刮去多余浆料。
陶瓷粉由质量配比为2:0.1:9的碳化硅(粒径0.4um)、碳化硼(粒径1um)、石墨粉(粒径2um)组成;
光固化树脂由质量配比8:2的HDDA、TMPTA组成,
分散剂为BYK-111;
按陶瓷粉71份、光固化树脂28份、分散剂1份比例,在均质机中混合后,再用三辊机混合,得到基体层与界面层浆料;
S4:固化:电子束固化,加速电压为200kV;曝光剂量为80kGy;
S5:持续打印:FDM打印头继续打印下一层,并使打印丝与上一层有一定偏移,偏移量为50%;
重复打印、填充、固化,选择基体层或界面层浆料打印下一层,直至样品打印完成;
S6:后处理:以0.1℃/min速度升温至800℃保温2小时;
在真空气氛下,1900℃、30MPa压力下热压烧结1小时,得到层状陶瓷产品。
测试实施例4制备得到的层状陶瓷产品,其产品强度为450-500MPa,断裂韧性为4.5-5.5MPa·m1/2。作为对比,采用同样粉体通过FDM打印与热压烧结得到的层状陶瓷产品强度仅250-300MPa,断裂韧性为3.0-3.5MPa·m1/2。通过与现有技术的对比,证明了本发明制备的层状陶瓷产品的结构强度和断裂韧性是更优秀的。
通过上述实施例,也是进一步地证明了,通过本发明一种基于熔融沉积成型的层状陶瓷制备的层状陶瓷具有较高的产品强度和断裂韧性,解决了常规熔融沉积成型方法制备层状陶瓷难以充分填充丝间间隙、力学性能较差的问题。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员,在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (10)

1.一种基于熔融沉积成型的层状陶瓷的制备方法,其特征在于:包括以下步骤:
S1:打印丝材制备:选取热塑性树脂、陶瓷粉体和偶联剂作为原料,通过螺杆挤出制备得到陶瓷/聚合物复合线材;
S2:建模、打印:生成目标样品模型以及目标路径,通过熔融沉积成型打印所述打印丝材,控制打印丝间距为0.1-0.2mm,并将打印丝的上表面压为平面,完成第一层打印;
S3:填充:打印完成后,将打印的样品台下沉入浆料中,将浆料带入打印层,使浆料填充打印层孔隙后上升,随后刮去多余浆料;所述浆料的组分包括浆料陶瓷粉、单体树脂、引发剂以及分散剂;
S4:固化:等待所述步骤S3处理后的浆料固化,完成第一层层状陶瓷制备;
S5:持续打印:在所述第一层层状陶瓷的基础上进行熔融沉积成型打印,并使打印丝与上一层存在偏移,随后重复所述步骤S3、步骤S4的步骤,完成下一层层状陶瓷制备,直至打印完成;
S6:后处理:烘干所述步骤S5打印完成后的产品,进一步进行脱脂、烧结后,得到基于熔融沉积成型的层状陶瓷。
2.根据权利要求1所述的熔融沉积成型的层状陶瓷的制备方法,其特征在于:所述步骤S1中,所述热塑性树脂为聚乳酸、ABS塑料、聚碳酸酯、尼龙、聚乙烯、聚丙烯、乙烯乙酸乙烯酯聚合物、石蜡和硬脂酸中的一种或几种;所述陶瓷粉体为碳化硅、氧化铝、氧化锆、氮化硅、碳化硼、氮化铝、氧化硅、氧化钇、石墨粉中的一种或几种;所述偶联剂为KH550、KH560、KH570、KH792中的一种或几种;所述热塑性树脂、陶瓷粉体和偶联剂的质量比为:(1-10):(70-90):(1-3)。
3.根据权利要求1所述的基于熔融沉积成型的层状陶瓷的制备方法,其特征在于:所述步骤S1中,所述螺杆挤出处理包括以下步骤:选取热塑性树脂、陶瓷粉体和偶联剂作为原料,取烧结助剂与所述热塑性树脂和所述陶瓷粉体一起进行干燥,随后将所述陶瓷粉体与所述偶联剂在溶液中球磨处理得到混合粉体,干燥处理后将所述混合粉体与所述热塑性树脂干混,通过双螺杆挤出造粒得到混合颗粒料,将所述混合颗粒料通过单螺杆熔融挤出,获得陶瓷/聚合物复合线材。
4.根据权利要求3所述的基于熔融沉积成型的层状陶瓷的制备方法,其特征在于:所述进行干燥的条件为:温度50-80℃,时间4-8h;所述球磨处理的条件为:在水或酒精中球磨混合;所述双螺杆挤出造粒的条件为:出口温度120-200℃;所述单螺杆熔融挤出的条件包括:加热挤出参数:预热区125~135℃,熔融区135~200℃,成型模具135~200℃;所述陶瓷/聚合物复合线材的直径为1.75-2.85mm。
5.根据权利要求3所述的基于熔融沉积成型的层状陶瓷的制备方法,其特征在于:所述步骤S2中,所述第一层打印的层厚为0.1-0.6mm,所述熔融沉积成型打印的打印头的直径为所述层厚的150%-300%。
6.根据权利要求1所述的基于熔融沉积成型的层状陶瓷的制备方法,其特征在于:所述步骤S3中,所述浆料陶瓷粉与所述陶瓷粉体的成分一致,且所述浆料陶瓷粉的粒径为所述打印丝间距的10%以下;所述单体树脂为HEMA、HDDA、THFA、ACMO、DPHA、OPPEA、A-BPEF、PUA、TMPTA、PPTTA、TPGDA、IBOA中的一种或多种;所述引发剂为907引发剂、784引发剂、819引发剂、TPO引发剂、ITX引发剂、BDK引发剂中的一种或多种;所述分散剂为KOS、TEGO、BYK、SOLSPERSE、VOK系列分散剂中的一种或多种;所述浆料陶瓷粉、单体树脂、引发剂以及分散剂的质量比为(60-90):(10-40):(0-7):(1-9);所述填充过程中需保持环境真空状态。
7.根据权利要求1所述的基于熔融沉积成型的层状陶瓷的制备方法,其特征在于:所述步骤S4中,所述浆料固化的方式为通过紫外光或电子束照射进行固化。
8.根据权利要求1所述的基于熔融沉积成型的层状陶瓷的制备方法,其特征在于:所述步骤S5中,所述偏移的距离为所述打印丝宽度的20%-80%。
9.根据权利要求1所述的基于熔融沉积成型的层状陶瓷的制备方法,其特征在于:所述步骤S6中,所述烘干的条件为:在烘箱中进行热处理1-24h,温度为80-200℃;所述脱脂的条件为:以0.05-0.5℃/min速度升温至700-1000℃,保温1-5h。
10.一种基于熔融沉积成型的层状陶瓷,其特征在于:所述层状陶瓷由权利要求1-9任意一项所述制备方法制备而得。
CN202410347001.7A 2024-03-26 2024-03-26 一种基于熔融沉积成型的层状陶瓷及其制备方法 Pending CN118146002A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410347001.7A CN118146002A (zh) 2024-03-26 2024-03-26 一种基于熔融沉积成型的层状陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410347001.7A CN118146002A (zh) 2024-03-26 2024-03-26 一种基于熔融沉积成型的层状陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN118146002A true CN118146002A (zh) 2024-06-07

Family

ID=91290443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410347001.7A Pending CN118146002A (zh) 2024-03-26 2024-03-26 一种基于熔融沉积成型的层状陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN118146002A (zh)

Similar Documents

Publication Publication Date Title
Pelz et al. Additive manufacturing of structural ceramics: a historical perspective
TWI655982B (zh) 一種3d列印材料、其製備方法及用途
CN106927847B (zh) 一种基于3d打印技术的纤维增强陶瓷基复合材料成形方法及装置
CN106278201B (zh) 一种直接成型3d陶瓷打印用瘠性陶瓷粉体浆料及其制备方法和应用
CN106242507B (zh) 一种直接成型3d陶瓷打印用粘土泥料及其制备方法和应用
JP4256170B2 (ja) 3次元モデリングのための方法
EP2969487B1 (en) A method of producing a three-dimensional printed article
JP2004532753A5 (ja) 3次元モデリングのための方法
KR20180039682A (ko) 적층 가공 생성물 및 공정
CN101575910A (zh) 复合建筑模板及其制备方法
CN108033802A (zh) 基于凝胶注模3d打印的纤维增强陶瓷异型件成型方法
CN1404437A (zh) 用于转变结晶或半结晶聚合物的方法和设备
CN110842204A (zh) 一种激光选区固化金属的3d打印方法
WO2021058677A1 (en) Manufacturing method for structural components and structural component
CN1850694A (zh) 三维喷涂粘接用石膏基材料体系及其制备方法
CN113400437A (zh) 紫外光束同步固化辅助直写3d打印制备陶瓷材料的方法
CN114014654A (zh) 一种活性填料增强前驱体陶瓷复合材料的光固化增材制造方法
CN109926589A (zh) 超细晶硬质合金数控车刀的注射成型方法及模具
CN118146002A (zh) 一种基于熔融沉积成型的层状陶瓷及其制备方法
JP7137228B2 (ja) 樹脂成形方法
CN105128128A (zh) 一种无模材料成型方法及装置
EP3802064B1 (en) Process for shaping a polymeric object
CN107177172A (zh) 一种用于熔融沉积成型的petg线材及其制备方法
CN100595048C (zh) 大平面聚苯硫醚板材的制备方法
JPH10511323A (ja) 半導体をカプセル封入するのに有用なプレフォームをつくるための改良方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination